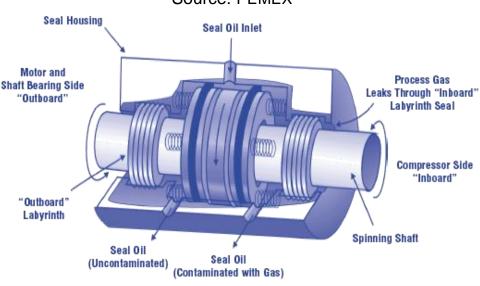
Natural Gas STAR Production Technology Transfer Workshop

"Centrifugal Compressor Wet Seal" "Seal Oil Degassing & Recovery"

NaturalGas

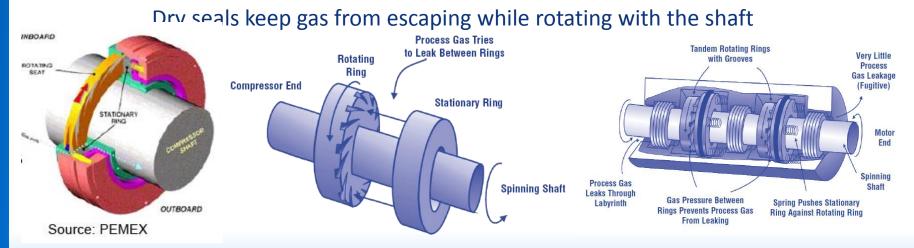
EPA POLLUTION PREVENT

Reid Smith Senior Climate Advisor - BP Denver, Colorado - February 11, 2014 Park City, Utah - February 13, 2014


Centrifugal Compressor Wet Seals

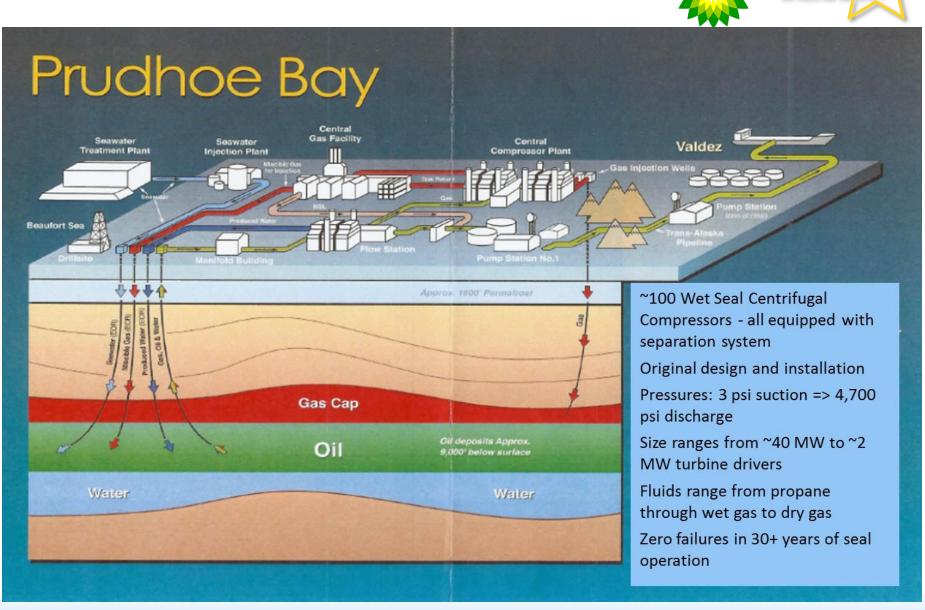
- High pressure seal oil circulates between rings around the compressor shaft
- Oil absorbs the gas on the inboard side
 - Little gas leaks through the oil seal
 - Seal oil degassing vents methane to the atmosphere
- Wet seals leak little gas at the seal face
- Most emissions are from seal oil degassing
- Seal oil degassing may vent 40 to 200 scf/minute
- One Natural Gas STAR \bullet **Partner reported emissions** as high as 75,000 scf/day

Natural Gas STAR Production Technology Transfer Workshops – February 2014



Traditional Solution: Retrofitting/Installing Dry Seals

- Dry seals:
 - 0.4 to 2.8 scf/ minute leak rate
 - Significantly less than wet seals
- Very cost-effective option for new compressors
- Significant capital costs and downtime for retrofitting compressors
 - See Lessons Learned for more info
- Alternative exists for more cost-effective seal oil degassing and vapor recovery retrofit with less downtime


Natural Gas STAR Production Technology Transfer Workshops – February 2014

Alternative Solution – Seal-oil/Gas Separation and Recovery/Use

- Simple process of separating seal-oil and entrained gas with the gas routed to recovery and/or use.
 - Recovery system that separates gas from the exiting seal-oil before routing to the degassing tank
 - Recovered gas sent to various outlets: flare purge, low pressure fuel, turbine fuel ~273 psig (18.6 Bar), compressor suction
 - Systems lead to lower emissions from degassing tank vent (more details on following slides)
- BP has wet seal gas recovery systems on ~ 100 centrifugal compressors at its North Slope facilities
 - BP's initial results show recovery of >99% of seal oil gas that would be otherwise vented to atmosphere from degassing tank
 - BP and Natural Gas STAR collaborated on a detailed study of the alternative wet seal emission mitigation opportunity.

BP's North Slope Experience

Natural Gas STAR Production Technology Transfer Workshops – February 2014

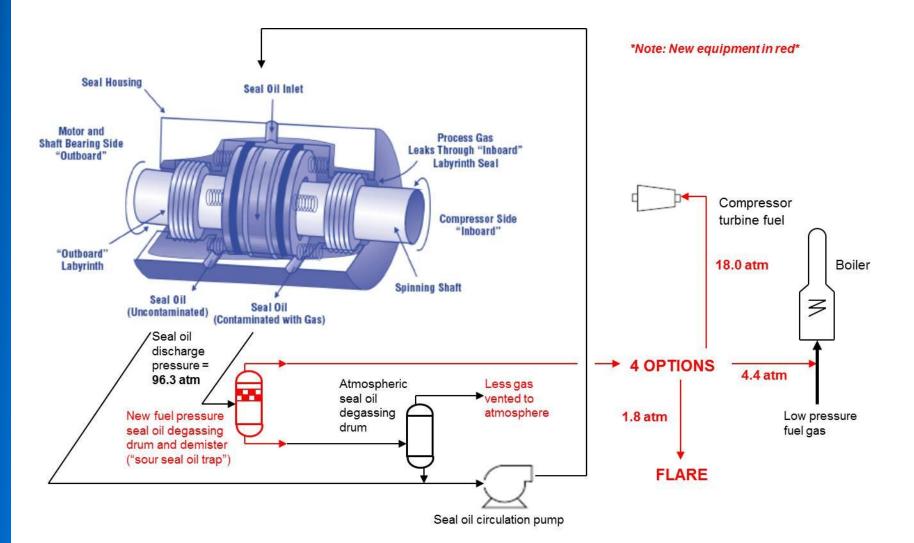
bb

NaturalGas

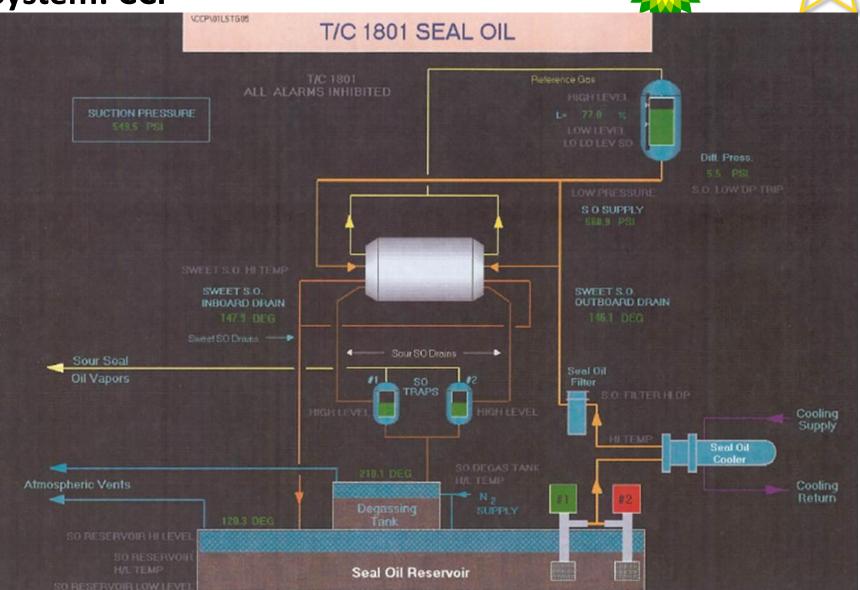
Central Gas Facility (CGF)

- World's largest gas processing plant (max feed of 246 MMcm/day)
- Processes all gas from Prudhoe Bay gathering & boosting stations (except local fuel)
- Products:
 - Residue gas
 - Natural gas liquids (blended with oil and delivered to TAPS)
 - Miscible injectant (used for EOR purposes)
- 11 compressors (totaling over 500,000 HP)
 - Three boosters
 - Two refrigerant
 - Two MI
 - Four tandems
- Seal oil vapor recovery lines to flare purge

Central Compressor Plant (CCP)



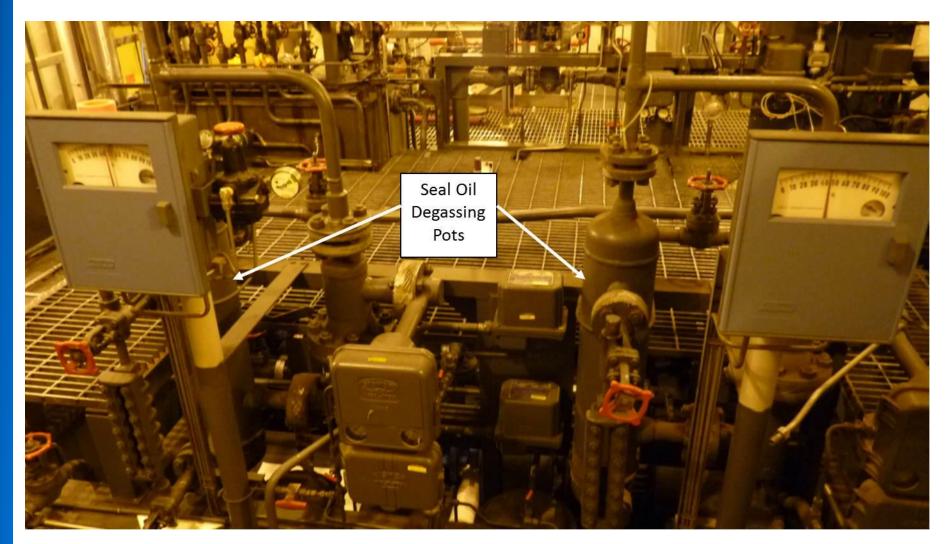
- World's largest compressor station (~238 MMcm/day capacity)
- Receives residue gas from CGF, compresses to higher pressures, and sends to gas injection wellpads (~200 MMcm/day at 3,600 to 4,000 psig)
- 15 compressors (totaling 537,000 HP)
 - Nine low pressure (1st stage) compressors in parallel
 - Four high pressure (2nd stage) compressors in parallel
 - Two tandem compressors (1st and 2nd stages) in parallel
- Seal oil vapor recovery lines sent to flare or fuel gas (for compressor turbines, heaters, and blanket gas)



Sour Seal Oil Vapor Recovery System

Seal-Oil/Gas Separation and Recovery System: CCP

Natural Gas STAR Production Technology Transfer Workshops – February 2014


bp

NaturalGas

EPA POLLUTION PREVENT

Seal Oil Degassing Separators

Seal Oil Degassing Separator/System

Early Results: BP Measurements at CCP

- Table shows initial measurements taken by BP from a low- and highpressure compressor at CCP <u>before</u> study
- Used nitrogen as "tracer gas" to calculate methane and total hydrocarbon flow-rates from vents
- Recovered Gas: 0.92 MMSCFD LP; 3.7 MMSCFD HP Turbine Fuel

	High-Pressure Compressor	Low-Pressure Compressor
Nitrogen Purge Rate (SCF/Hr)	33	25
Vent Analysis (mole%)		
Nitrogen	43.846	86.734
Methane	37.872	6.93
Total Hydrocarbon + CO2	56.1540	13.2660
Total Methane Vent Flow (SCFM)	0.4751	0.0333
Total Vent Gas Flow (SCFM)	0.7044	0.0637
Number of Seals	2	2
Total Methane Vent Flow (SCFM/Seal)	0.2375	0.0166
Total Vent Gas Flow (SCFM/Seal)	0.3522	0.0319
"Average" Total Gas/Seal (Including Recovered) (SCFM)	108	108
Control Effectiveness	0.997	1.000

CCP Compressor Vent Measurement

Natural Gas STAR Production Technology Transfer Workshops – February 2014

FLIR Camera Verification

Benefits

Benefits of approach

- Simple, broadly flexible, and reliable
- Less expensive capital costs compared to dry seal retrofit (\$250,000 - \$1 million – dry seal retrofit)
- Less down-time compared to dry seal retrofit
- Eliminates most emissions & recovers gas for use/sales
- Positive cash flow after less than a month

Investment includes cost of:

- Intermediate degassing drum ("sour seal oil trap")
- New piping
- Gas demister/filter
- Pressure regulator for fuel gas line

PROJECT SUMMARY: CAPTURE AND USE OF SEAL OIL DEGASSING EMISSIONS

Operating Requirements	 Centrifugal compressor with seal oil system 		
	Nearby use for fuel gas or recycle		
	New intermediate pressure flash drum, fuel filter, pressure regulator		
Capital & Installation Costs	\$22,000 ¹		
Annual Labor & Maintenance Costs	Minimal		
Gas saved	~100 MMSCF/Year (2 seals @ 108 scf/min each)		
Gas Price per mscf	\$2.5	\$3.0	\$3.5
Value of Gas Saved	\$250,000	\$300,000	\$350,000
Payback Period in Months	1	<1	<1

¹Assuming a typical seal oil flow rate of 14.20 liters/minute (3.75 gallons/minute) (Source: EPA)

CONCLUSIONS

- Centrifugal compressor oil film (wet) seals have been utilized since the early 1970's
- These seal systems, including the degassing function, when designed, operated and monitored properly are an effective sealing system and greatly minimize emissions
- Wet seals with degassing systems installed originally with compressors can perform effectively with very low emissions and high reliability
- Retrofit degassing systems should be able to meet the same low emissions and high reliability operation