Longitudinal Data Analysis for Volatile Organic Compounds

Methods

The dataset containing no tentatively identified compounds and all remaining actual and estimated values (NoTICs) contains Multi-level clustered data. They are unbalanced and incomplete- unbalanced in that the various compounds might not have data from all the same days. They are incomplete not because any data are missing, but as certain observations were removed from the analysis because of their estimated identification or value, some intended measurements could not be available. If this is not accounted for 1) the fundamental assumption of independence is violated 2) sampling variability estimates may be incorrect leading to 3) estimates that were less precise which could result in making an incorrect interpretation. Earlier analysis of variance was used for explanatory purposes only; it violated the assumption of independent observations.

To conduct a longitudinal data analysis the data must meet some assumptions [1]. First, the sampled air represents a random sample of all the air that could have been collected. Second, the resultant concentration levels had a multivariate normal distribution (after log transformation). Third, resultant concentration levels from different compounds are independent, while repeated measurements of the same compound are not assumed to be independent. This also holds true for concentration levels from different days and for different locations. Lastly, missingness was assumed to be completely at random as mentioned above.

This is an observational study and so there is no aspect of randomization. As such, we do not require an interaction term to study the association. Additionally, the interest is in group differences overall, not in time. The source of contamination was continuous in time; there was no one singular event that occurred. The group effect, the effect of each compound, and the differences between the specific compounds are the main interest here.

Data Analysis

Compounds are clustered by location and by day. Days form the lowest level of the clustering, nested by compounds which are nested within location. The analysis appropriately accounted for the correlation between the observations. The main source of correlation in the analysis was 'between-individual heterogeneity' or, here, 'between-compound heterogeneity'. A random effects model was used to describe the effect of the explanatory variable (wind) on each compound's outcome. We used a linear mixed effects model with 3 levels, where:

i = day j = compound k = locationLet Y_{ijk} be the resulting concentration level of day i compound j and location k. We assume: $Y_{ijk} \sim N(\mu_{ijk}, \sigma^2)$

and form the model: $\mu_{ijk}=\beta_o+\beta_iwind+b_{jk}+c_k+\varepsilon_{ijk}$.

Here, b_{jk} is the random intercept for the compound and c_k is the random intercept for the location. This model does not include any effects of a random slope.

As an example, a given day and compound, would result in the following matrices and vectors:

$$\mu_{ijk} = \begin{bmatrix} \mu_{ij1} \\ \mu_{ij2} \\ \mu_{ij3} \end{bmatrix}$$

$$X_i = \begin{bmatrix} 1 & wind_{ij1} \\ 1 & wind_{ij2} \\ 1 & wind_{ij3} \end{bmatrix}$$

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

$$b_{jk} = \begin{bmatrix} b_{j1} \\ b_{j2} \\ b_{j3} \end{bmatrix}$$

$$Z_i = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$c_k = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

$$\varepsilon_{ijk} = \begin{bmatrix} \varepsilon_{ij1} \\ \varepsilon_{ij2} \\ \varepsilon_{ij3} \end{bmatrix} .$$

This random effects model used wind as the only predictor. With this complete, the covariance model must also be determined. Using a random effects structure for the

Natural Gas Ambient Air Monitoring Initiative (NGAAMI) Appendix B: Longitudinal Data Analysis for Volatile Organic Compounds model, the number of covariance parameters is the same regardless of the number and timing of the measurement occasions. There are 2 random effects, q=2 and $q^*(q+1)/2 +$ 1 = 4 covariance parameters. Even so, unstructured, compound structure, and autoregressive covariance structures were explored using restricted maximum likelihood (REML). The autoregressive covariance structured is nested within unstructured and these can be compared by -2 log likelihood.

Results

Comparing covariance models suggests an unstructured model is best. Both the autoregressive and compound symmetry models have similar likelihood values and AICs, [(Akaike's Information Criterion) used to compare different models fit to the same data] and these both have fewer parameters typically suggesting their superiority. However, the convergence criteria are met but the final hessian is not positive definitely suggesting these models are overfit. As such, the unstructured model was used. Using this model, we found significant values for the fixed effects of the intercept (p-value <0.0001 and wind (p-value = 0.0102) using an alpha value of 0.05. As such, wind was a confounder for this analysis and must be taken into consideration. With a parameter estimate of 0.2472, if a location experiences 10% more wind in its direction for a given day, the concentration level of a given compound was $e^{2.472}$ ppbv higher, or 11.85 ppbv higher. However, it's the specific compounds and their activity that we are most interested in and not the overall effect.

The following compounds had a significant p-value for at least one of the locations: 1,4-Dichlorobenze (overall location p-value = 0.0323), m-Xylene (overall location p-value 0.0173), Toluene (overall location p-value <0.0001), Ethanol (overall location p-value <0.0001, location 2 p-value 0.0229), Benzene (overall location p-value = 0.0011), Methylene Chloride (overall location p-value <0.0001), Carbon disulfide (overall location p-value = 0.0007), Dichlorodifluoromethane (overall location p-value <0.0001), and Methyl Ethyl Ketone (overall location p-value = 0.0046). Only ethanol had a location specific significant estimate at location 2, all other significant values were for the compound overall, not location-specific. Six of these eight compounds are present most frequently and, as such, were used earlier for the descriptive statistics.

SAS output for the Longitudinal Analysis using the model $\mu_{ijk} = \beta_0 + \beta_1 wind + b_{jk} + c_k + \varepsilon_{ijk}$

Tables A-20: SAS output results from Longitudinal model $\mu_{ijk} = \beta_0 + \beta_1 wind + b_{jk} + c_k + \varepsilon_{ijk}$

Class Level Information						
Class	Levels	Values				
cas_number	30	100-41-4 100-42-5 106-46-7 107-06-2 108-10-1 108-38-3 108-88-3 120-82-1 127-18-4 56-23-5 64-17-5 67-66-3 71-43-2 71-55-6 74-83-9 74-87-3 75-09-2 75-15-0 75-34-3 75-69-4 75-71-8 76-13-1 76-14-2 78-93-3 79-00-5 79-01-6 79-34-5 91-20-3 95-47-6 95-63-6				
location	3	123				

Dimensions				
Covariance Parameters	3			
Columns in X	2			
Columns in Z Per Subject	4			
Subjects	30			
Max Obs Per Subject	127			

Number of Observations				
Number of Observations Read	1081			
Number of Observations Used	1081			
Number of Observations Not Used	0			

Iteration History								
Iteration	Evaluations	-2 Log Like	Criterion					
0	1	3097.64750331						
1	3	2051.72972830	7.51085557					
2	2	2050.84899578	2.93411251					
3	2	2050.42930416	10.73195894					
4	2	2045.21567181	0.00316516					
5	1	2045.13076362	0.00008454					

Iteration History								
Iteration	Evaluations	-2 Log Like	Criterion					
6	1	2045.12825337	0.00000006					
7	1	2045.12825166	0.00000000					

Convergence criteria met.

Estimated G Matrix										
Row	Effect	cas_number	location	Col1	Col2	Col3	Col4			
1	Intercept	100-41-4		0.3876						
2	Intercept	100-41-4	1		0.01102					
3	Intercept	100-41-4	2			0.01102				
4	Intercept	100-41-4	3				0.01102			

Estimated V Matrix for cas_number 100-41-4									
Row	Col1	Col2	Col3	Col4	Col5	Col6	Col7	Col8	Col9
1	0.7562	0.3986	0.3876	0.3986	0.3876	0.3876	0.3986	0.3986	0.3986
2	0.3986	0.7562	0.3876	0.3986	0.3876	0.3876	0.3986	0.3986	0.3986
3	0.3876	0.3876	0.7562	0.3876	0.3876	0.3986	0.3876	0.3876	0.3876
4	0.3986	0.3986	0.3876	0.7562	0.3876	0.3876	0.3986	0.3986	0.3986
5	0.3876	0.3876	0.3876	0.3876	0.7562	0.3876	0.3876	0.3876	0.3876
6	0.3876	0.3876	0.3986	0.3876	0.3876	0.7562	0.3876	0.3876	0.3876
7	0.3986	0.3986	0.3876	0.3986	0.3876	0.3876	0.7562	0.3986	0.3986
8	0.3986	0.3986	0.3876	0.3986	0.3876	0.3876	0.3986	0.7562	0.3986
9	0.3986	0.3986	0.3876	0.3986	0.3876	0.3876	0.3986	0.3986	0.7562

Covariance Parameter Estimates									
Cov Parm	Subject	Estimate	Standard Error	Z Value	Pr > Z				
UN(1,1)	cas_number	0.3876	0.1201	3.23	0.0006				
UN(1,1)	Location (cas_numbe)	0.01102	0.01148	0.96	0.1685				
Residual		0.3576	0.01600	22.35	<.0001				

Fit Statistics				
-2 Log Likelihood	2045.1			
AIC (smaller is better)	2055.1			
AICC (smaller is better)	2055.2			
BIC (smaller is better)	2062.1			

Solution for Fixed Effects									
Effect	Estimate	Standard Error	DF	t Value	$\mathbf{Pr} > \mathbf{t} $				
Intercept	0.4293	0.1304	29	3.29	0.0026				
Wind	0.2822	0.09798	1012	2.88	0.0041				

	Solution for Random Effects							
Effect	Compound	Sample location	Estimate	Std Err Pred	DF	t Value	Pr > t	
Intercept	Ethyl Benzene		-0.05441	0.2315	1012	-0.24	0.8142	
Intercept	Ethyl Benzene	1	0.006038	0.1036	1012	0.06	0.9535	
Intercept	Ethyl Benzene	2	-0.06643	0.1015	1012	-0.65	0.5128	
Intercept	Ethyl Benzene	3	0.05885	0.1026	1012	0.57	0.5663	
Intercept	Styrene		-0.01923	0.2238	1012	-0.09	0.9315	
Intercept	Styrene	1	-0.00706	0.1025	1012	-0.07	0.9451	
Intercept	Styrene	2	-0.1043	0.1010	1012	-1.03	0.3019	
Intercept	Styrene	3	0.1108	0.1025	1012	1.08	0.2798	
Intercept	1,4- Dichlorobenzene		0.9425	0.4397	1012	2.14	<mark>0.0323</mark>	
Intercept	1,4- Dichlorobenzene	3	0.02680	0.1042	1012	0.26	0.7971	
Intercept	1,2- Dichloroethane		0.1040	0.2736	1012	0.38	0.7040	
Intercept	1,2- Dichloroethane	1	-0.01951	0.1030	1012	-0.19	0.8497	

	Solution for Random Effects									
Effect	Compound	Sample location	Estimate	Std Err Pred	DF	t Value	Pr > t			
Intercept	1,2- Dichloroethane	2	-0.01554	0.1037	1012	-0.15	0.8809			
Intercept	1,2- Dichloroethane	3	0.03801	0.1029	1012	0.37	0.7120			
Intercept	Methyl Isobutyl Ketone		0.04676	0.2580	1012	0.18	0.8562			
Intercept	Methyl Isobutyl Ketone	1	0.003478	0.1028	1012	0.03	0.9730			
Intercept	Methyl Isobutyl Ketone	2	-0.02579	0.1028	1012	-0.25	0.8020			
Intercept	Methyl Isobutyl Ketone	3	0.02364	0.1028	1012	0.23	0.8182			
Intercept	m,p-Xylene		0.4460	0.1870	1012	2.38	<mark>0.0173</mark>			
Intercept	m,p-Xylene	1	-0.04051	0.0990 4	1012	-0.41	0.6826			
Intercept	m,p-Xylene	2	-0.02869	0.0977 7	1012	-0.29	0.7693			
Intercept	m,p-Xylene	3	0.08188	0.1022	1012	0.80	0.4233			
Intercept	Toluene		1.1930	0.1499	1012	7.96	<mark><.0001</mark>			
Intercept	Toluene	1	-0.02746	0.0855 7	1012	-0.32	0.7483			
Intercept	Toluene	2	0.04389	0.0815 6	1012	0.54	0.5906			
Intercept	Toluene	3	0.01750	0.0847 8	1012	0.21	0.8365			
Intercept	1,2,4-Trichloro- benzene		-0.1505	0.3270	1012	-0.46	0.6454			
Intercept	1,2,4-Trichloro- benzene	2	-0.00428	0.1039	1012	-0.04	0.9671			
Intercept	Tetrachloro- ethylene		0.1415	0.4396	1012	0.32	0.7477			
Intercept	Tetrachloro- ethylene	2	0.004023	0.1042	1012	0.04	0.9692			
Intercept	Carbon Tetrachloride		-0.3580	0.2386	1012	-1.50	0.1339			

Solution for Random Effects								
Effect	Compound	Sample location	Estimate	Std Err Pred	DF	t Value	Pr > t	
Intercept	Carbon Tetrachloride	1	-0.00180	0.1027	1012	-0.02	0.9860	
Intercept	Carbon Tetrachloride	2	-0.00625	0.1017	1012	-0.06	0.9510	
Intercept	Carbon Tetrachloride	3	-0.00213	0.1036	1012	-0.02	0.9836	
Intercept	Ethanol		1.7491	0.1502	1012	11.64	<.0001	
Intercept	Ethanol	1	-0.03100	0.0856 9	1012	-0.36	0.7176	
Intercept	Ethanol	2	0.1866	0.0819 0	1012	2.28	<mark>0.0229</mark>	
Intercept	Ethanol	3	-0.1059	0.0853 4	1012	-1.24	0.2150	
Intercept	Chloroform		-0.00313	0.2932	1012	-0.01	0.9915	
Intercept	Chloroform	1	-0.02188	0.1037	1012	-0.21	0.8330	
Intercept	Chloroform	2	0.02448	0.1031	1012	0.24	0.8125	
Intercept	Chloroform	3	-0.00268	0.1037	1012	-0.03	0.9794	
Intercept	Benzene		-0.4957	0.1511	1012	-3.28	<mark>0.0011</mark>	
Intercept	Benzene	1	-0.03987	0.0870 6	1012	-0.46	0.6471	
Intercept	Benzene	2	0.01801	0.0830 4	1012	0.22	0.8283	
Intercept	Benzene	3	0.007758	0.0862 2	1012	0.09	0.9283	
Intercept	1,1,1- Tetrachloro- ethane		-0.3767	0.4402	1012	-0.86	0.3923	
Intercept	1,1,1- Tetrachloro- ethane	1	-0.01071	0.1042	1012	-0.10	0.9182	
Intercept	Methyl Bromide		-0.4371	0.4402	1012	-0.99	0.3209	
Intercept	Methyl Bromide	1	-0.01243	0.1042	1012	-0.12	0.9051	
Intercept	Chloromethane		-0.1314	0.1500	1012	-0.88	0.3812	
Intercept	Chloromethane	1	-0.02938	0.0858 5	1012	-0.34	0.7322	

Solution for Random Effects								
Effect	Compound	Sample location	Estimate	Std Err Pred	DF	t Value	$\mathbf{Pr} > \mathbf{t} $	
Intercept	Chloromethane	2	0.02107	0.0816 5	1012	0.26	0.7964	
Intercept	Chloromethane	3	0.004574	0.0848 3	1012	0.05	0.9570	
Intercept	Methylene Chloride		-0.7382	0.1515	1012	-4.87	<mark><.0001</mark>	
Intercept	Methylene Chloride	1	-0.05362	0.0873 2	1012	-0.61	0.5393	
Intercept	Methylene Chloride	2	0.02607	0.0834 9	1012	0.31	0.7549	
Intercept	Methylene Chloride	3	0.006564	0.0863 5	1012	0.08	0.9394	
Intercept	Carbon Disulfide		-0.6709	0.1978	1012	-3.39	<mark>0.0007</mark>	
Intercept	Carbon Disulfide	1	-0.02380	0.1014	1012	-0.23	0.8144	
Intercept	Carbon Disulfide	2	0.03756	0.0999 8	1012	0.38	0.7072	
Intercept	Carbon Disulfide	3	-0.03284	0.0990 9	1012	-0.33	0.7404	
Intercept	1,1-Dichloro- ethane		-0.5055	0.4402	1012	-1.15	0.2510	
Intercept	1,1-Dichloro- ethane	1	-0.01438	0.1042	1012	-0.14	0.8903	
Intercept	Trichlorofluoro- methane		0.01622	0.1499	1012	0.11	0.9139	
Intercept	Trichlorofluoro- methane	1	-0.02301	0.0855 7	1012	-0.27	0.7881	
Intercept	Trichlorofluoro- methane	2	0.01493	0.0815 6	1012	0.18	0.8548	
Intercept	Trichlorofluoro- methane	3	0.008537	0.0847 8	1012	0.10	0.9198	
Intercept	Dichlorofluoro- methane		0.6470	0.1500	1012	4.31	<mark><.0001</mark>	

Solution for Random Effects								
Effect	Compound	Sample location	Estimate	Std Err Pred	DF	t Value	Pr > t	
Intercept	Dichlorofluoro- methane	1	-0.02253	0.0858 5	1012	-0.26	0.7930	
Intercept	Dichlorofluoro- methane	2	0.02476	0.0816 5	1012	0.30	0.7618	
Intercept	Dichlorofluoro- methane	3	0.01617	0.0848 3	1012	0.19	0.8489	
Intercept	Freon-113		-0.1512	0.2959	1012	-0.51	0.6095	
Intercept	Freon-113	1	0.004887	0.1037	1012	0.05	0.9624	
Intercept	Freon-113	2	-0.00919	0.1032	1012	-0.09	0.9291	
Intercept	Freon-114		-0.1503	0.4402	1012	-0.34	0.7329	
Intercept	Freon-114	1	-0.00427	0.1042	1012	-0.04	0.9673	
Intercept	Methyl Ethyl Ketone		-0.4316	0.1520	1012	-2.84	<mark>0.0046</mark>	
Intercept	Methyl Ethyl Ketone	1	-0.00208	0.0883 5	1012	-0.02	0.9812	
Intercept	Methyl Ethyl Ketone	2	-0.03049	0.0838 4	1012	-0.36	0.7162	
Intercept	Methyl Ethyl Ketone	3	0.02029	0.0867 7	1012	0.23	0.8152	
Intercept	1,1,2-Tricloro- thane		-0.3767	0.4402	1012	-0.86	0.3923	
Intercept	1,1,2-Tricloro- thane	1	-0.01071	0.1042	1012	-0.10	0.9182	
Intercept	Trichloro- ethylene		0.7394	0.4398	1012	1.68	0.0930	
Intercept	Trichloro- ethylene	2	0.02103	0.1042	1012	0.20	0.8402	
Intercept	1,1,2,2- Tetrachloro- ethane		-0.2293	0.4402	1012	-0.52	0.6026	
Intercept	1,1,2,2- Tetrachloro- ethane	1	-0.00652	0.1042	1012	-0.06	0.9501	
Intercept	Naphthalene		-0.3193	0.1894	1012	-1.69	0.0922	
Intercept	Naphthalene	1	-0.01055	0.1012	1012	-0.10	0.9170	

Solution for Random Effects								
Effect	Compound	Sample location	Estimate	Std Err Pred	DF	t Value	$\mathbf{Pr} > \mathbf{t} $	
Intercept	Naphthalene	2	0.009557	0.0979 5	1012	0.10	0.9223	
Intercept	Naphthalene	3	-0.00808	0.0990 8	1012	-0.08	0.9350	
Intercept	o-Xylene		-0.2686	0.2093	1012	-1.28	0.1996	
Intercept	o-Xylene	1	-0.02577	0.1015	1012	-0.25	0.7997	
Intercept	o-Xylene	2	-0.04203	0.1001	1012	-0.42	0.6747	
Intercept	o-Xylene	3	0.06016	0.1024	1012	0.59	0.5569	
Intercept	1,2,4-Trimethyl- benzene		-0.1573	0.3226	1012	-0.49	0.6260	
Intercept	1,2,4-Trimethyl- benzene	2	-0.01128	0.1038	1012	-0.11	0.9135	
Intercept	1,2,4-Trimethyl- benzene	3	0.006809	0.1035	1012	0.07	0.9475	

Type 3 Tests of Fixed Effects								
Effect	Num DF	Den DF	Chi-Square	F Value	Pr > ChiSq	Pr > F		
Wind	1	1012	8.30	8.30	0.0040	0.0041		

Natural Gas Ambient Air Monitoring Initiative (NGAAMI) Appendix B: Longitudinal Data Analysis for Volatile Organic Compounds

Figure A-2 for modeled residuals for the final dataset "lresult"

References

[1] Song, P, Xue, J, & Li, Z. Simulation of longitudinal exposure data with variance-covariance structures based on mixed models.

[2] Fitzmaurice, G. M., Laird, N. M., & Ware J. H. (2011). *Applied Longitudinal Analysis: Second Edition*. Boston, MA. Wiley Series in Probability and Statistics.

[3] Jervis, Allison. Philip-Tab, Loni., Gross-Davis, Carol Ann. (unpublished thesis) Analyzing the clustered data of the US Environmental Protection Agency's Natural Gas Ambient Air Monitoring Initiative via linear mixed model methods. For completion of master's degree in Biostatistics. Drexel University School of Public Health