Analysis of Dynamic, Flexible NO_x and SO₂ Abatement from Power Plants in the Eastern U.S. and Texas

Presenters: Elena McDonald-Buller¹ (PI) & Mort Webster² (Co-PI)

Research Team: Michael Craig³, Yosuke Kimura¹, Zachary Stines², Gary McGaughey¹, David Allen (Co-PI)¹

¹The University of Texas at Austin ²Pennsylvania State University ³Carnegie Mellon University

Presented to the U.S. Environmental Protection Agency (EPA) March 31, 2016

Background

- **Emissions cap and trade programs** have been applied as a federal policy instrument since the early 1990's.
- These programs have demonstrated their flexibility, effectiveness, and economic efficiency.
- Rules for such programs have been designed for annual or seasonal emissions reductions.
 - Previous studies have demonstrated that NO_x emissions have variable damages depending on where and when they occur during the summer ozone season.*
 History of ARP, NBP, CAIR, and CSAPR

Source: http://www3.epa.gov/airmarkets/progress/reports/program_basics_figures.html

*Mauzerall et al. (2005); Muller (2011); Levy et al. (2009); Tong et al. (2006)

Research Contributions

- Develop methods to evaluate the emissions and air quality effects and cost-effectiveness of time-differentiated pricing of NO_x and SO₂ emissions from power plants.
- **Compare** time-differentiated, season-wide, and combined **policies.**
- Consider realistic constraints on power plants and endogenous technology adoption.
- Demonstrate implications for predicted regional ozone and fine particulate matter concentrations.
- Investigated opportunities for joint abatement of NO_x and SO₂ emissions through single pollutant or multipollutant time-differentiated price signals.
- Evaluated spatial differentiation of time-differentiated NO_x pricing signals for ozone nonattainment areas.

ERCOT Power System: NO_x Emissions and Generation Fuel Mix

Source: Demand & Energy Report (http://www.ercot.com/ content/news/presentations/2013/ERCOT2012D&E-full.xls)

Mid-Atlantic or Classic PJM Power System: NO_x Emissions and Generation Fuel Mix

Source: "Operational Analysis: Capacity by Fuel Type 2012", retrieved April 23, 2014 from http://pjm.com/~/media/markets-ops ops-analysis/capacity-by-fuel-type-2012.ashx.

Integrated Power System and Air Quality Modeling

Control Technology Investment at Nash Equilibrium with Unit Commitment (CONTINU) Model

- Developed to investigate generator responses to policies and effects on emissions and producer costs using 2012 representations of the ERCOT and Mid-Atlantic PJM grids.
- **Realistic operational constraints** (ramping limits, minimum load, minimum uptime and downtime).
- Endogenous dispatching and control technology (SCR and/or FGD) adoption decisions.
- **Open-loop Nash equilibrium** approach allows individual generators to evaluate their decisions based on those of all others in the system.

Air Quality Model

- Updates were made to a 2005 annual CAMx configuration developed to support EPA's assessments for the Transport Rule and CSAPR.
- Anthropogenic emissions replaced with those from CONTINU for affected power generation sources and with the 2011v6 inventory from the EPA and LADCO for all other sources.

Time-Differentiated and Season-wide Policies

Policy	NO _v Price	SO, Price	Notes	
	(\$/ton)	(\$/ton)		
Baseline	20	1.50	2011 Allowance Prices; Applied Daily	
CSAPR	500	500	Applied Daily	
Season-wide NO _x				
1K	1,000	1.50	Applied Daily	
5K	5,000	1.50	Applied Daily	
Season-wide SO ₂				
1K	20	1,000	Applied Daily	
5K	20	5,000	Applied Daily	
Time-Differentiated NO.				
1K	1,000	1.50	High Ozone Days	
5K	2,000	1.50	High Ozone Days	
20K	20,000	1.50	High Ozone Days	
50K	50,000	1.50	High Ozone Days	
100K	100,000	1.50	High Ozone Days	
150K	150,000	1.50	High Ozone Days	
Time-Differentiated SO ₂				
1K	20	1,000	High Ozone Days	
5K	20	5,000	High Ozone Days	
20K	20	20,000	High Ozone Days	
50K	20	50,000	High Ozone Days	
100K	20	100,000	High Ozone Days	
150K	20	150,000	High Ozone Days	

Layered Policies

Policy	NO _x Price (\$/ton)	SO ₂ Price (\$/ton)	Notes	
Layered Policies				
CSAPR + 5K Time- Differentiated NO _x	500 (CSAPR); 5,000 (Time- Differentiated)	500 (CSAPR)	CSAPR Price Applied Daily; Time- Differentiated Price Layered Only on High Ozone Days	
CSAPR + 5K Time- Differentiated SO ₂	500 (CSAPR)	500 (CSAPR); 5,000 (Time- Differentiated)	CSAPR Price Applied Daily; Time- Differentiated Price Layered Only on High Ozone Days	
CSAPR + 5K Time- Differentiated NO _x and SO ₂	500 (CSAPR); 5,000 (Time- Differentiated)	500 (CSAPR); 5,000 (Time- Differentiated)	CSAPR Price Applied Daily; Time- Differentiated Price Layered Only on High Ozone Days	

Total System-wide Emissions (column) by Fuel Type and Production Costs (diamond) on High Ozone Days

ERCOT

■COAL ■GAS OIL ■BIOMASS ♦Cost

Total System-wide Emissions (column) by Fuel Type and Production Costs (diamond) on High Ozone Days

Mid-Atlantic PJM

■COAL ■GAS ■OIL ■BIOMASS ♦Cost

Cost and Emissions Tradeoffs

Emissions and Production Costs: Layered Single- or Joint-Pollutant Pricing Policies

Regional Mean Differences in MDA8 Ozone on High Ozone Days in the Mid-Atlantic PJM System

260

Time-differentiated pricing of NO_x and/or SO₂ produced **widespread ozone reductions**, especially in Pennsylvania.

Reductions (> 0.5 ppb) on most of the 51 high ozone days at higher price signals. 13

-0.500

-1.000

Regional Mean Differences in MDA8 Ozone on High Ozone Days in the ERCOT System

Min= -0.554 at (92,61), Max= 0.060 at (87,43)

Min _ _1 907 at (00 57) May __ 0.071 at (101 42)

Benefits of time-differentiated pricing were primarily due to reductions in coal-fired generation in northeastern Texas.

Generation shifts to other areas where natural gas predominates as fuel.

Time- and Spatial-Differentiation

What if we also differentiate where the emissions occur?

30.0 (

27.5 N

 Example: On high ozone days, make the price even higher for sources in non-attainment regions than in attainment regions

	Price of NOx (\$ per ton)				
Scenario	Normal Summer Day		High Ozone Day		
	Attainment	Nonattainment	Attainment	Nonattainment	
CSAPR	500	500	500	500	
Time: \$5,000	500	500	5,000	5,000	
Time/Space: \$5,000;\$10,000	500	500	5,000	10,000	
Time/Space: \$5,000;\$15,000	500	500	5,000	15,000	
Time/Space: \$5,000;\$25,000	500	500	5,000	25,000	
Time/Space: \$5,000;\$35,000	500	500	5,000	35,000	
Time/Space: \$5,000;\$55,000	500	500	5,000	55,000	
Time/Space: \$5,000;\$75,000			5,000	75,000	
Time/Space: \$5,000;\$105,000	35.0° N		5,000	105,000	
Time/Space: \$5,000;\$155,000	32.5° N		5,000	155,000	

105.0°W 1025°W 100.0°W 975°W

95.0°W

Results with Spatial-Differentiation of NO_x Emissions Pricing (Relative to CSAPR)

- Decrease in nonattainment
- Decrease in system-wide
- Small increase in attainment

- Small decrease in nonattainment
- Large increase in system-wide
- Large increase in attainment

Generation

Emissions

Implications

- Policy goals must be carefully considered
 - Time-differentiated pricing is more cost-effective if the goal is reductions specifically on days conducive to high pollution levels.
 - Season-wide and time-differentiated policies can be complementary, especially for a coal-dominated system (Mid-Atlantic PJM).
 - Implement using higher redemption ratio for emission permits or entirely separate programs.
 - Spatial differentiation can reduce emissions in targeted areas but the design details are critical.
- Co-benefits of PM_{2.5} reductions, but may require distinct time differentiation to fully address peak concentrations.

Regional mean differences in 24-hour average PM_{2.5} concentrations on high ozone days

