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Background

Emissions cap and trade programs have been applied as a federal
policy instrument since the early 1990’s.

These programs have demonstrated their flexibility, effectiveness, and
economic efficiency.

Rules for such programs have been designed for annual or seasonal
emissions reductions.

< Previous studies have demonstrated that NO, emissions have variable
damages depending on where and when they occur during the summer ozone
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Research Contributions

Develop methods to evaluate the emissions and air quality effects and
cost-effectiveness of time-differentiated pricing of NO, and SO,
emissions from power plants.

Compare time-differentiated, season-wide, and combined policies.

Consider realistic constraints on power plants and endogenous
technology adoption.

Demonstrate implications for predicted regional ozone and fine
particulate matter concentrations.

Investigated opportunities for joint abatement of NO, and SO, emissions
through single pollutant or multipollutant time-differentiated price
signals.

Evaluated spatial differentiation of time-differentiated NO, pricing
signals for ozone nonattainment areas.



ERCOT Power System:

NO, Emissions and Generation Fuel Mix
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Mid-Atlantic or Classic PJM Power System:
NO, Emissions and Generation Fuel Mix
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Integrated Power System and Air Quality Modeling

Control Technology Investment at Nash Equilibrium with Unit
Commitment (CONTINU) Model

» Developed to investigate generator responses to policies and effects
on emissions and producer costs using 2012 representations of the
ERCOT and Mid-Atlantic PJM grids.

« Realistic operational constraints (ramping limits, minimum load,
minimum uptime and downtime).

 Endogenous dispatching and control technology (SCR and/or
FGD) adoption decisions.

« Open-loop Nash equilibrium approach allows individual generators
to evaluate their decisions based on those of all others in the system.

Air Quality Model
« Updates were made to a 2005 annual CAMXx configuration developed to
support EPA's assessments for the Transport Rule and CSAPR.

» Anthropogenic emissions replaced with those from CONTINU for
affected power generation sources and with the 2011v6 inventory from
the EPA and LADCO for all other sources. 6



Time-Differentiated and Season-wide Policies

S0, Price
($/ton)
Baseline 20 1.50 2011 Allowance
Prices; Applied
Daily
CSAPR 500 500 Applied Daily
Season-wide NO_
1K 1,000 1.50 Applied Daily
5K 5,000 1.50 Applied Daily
Season-wide SO,
1K 20 1,000 Applied Daily
5K 20 5,000 Applied Daily
Time-Differentiated NO,
1K 1,000 1.50 High Ozone Days
5K 2,000 1.50 High Ozone Days
20K 20,000 1.50 High Ozone Days
50K 50,000 1.50 High Ozone Days
100K 100,000 1.50 High Ozone Days
150K 150,000 1.50 High Ozone Days
Time-Differentiated SO,
1K 20 1,000 High Ozone Days
5K 20 5,000 High Ozone Days
20K 20 20,000 High Ozone Days
50K 20 High Ozone Days
100K 20 High Ozone Days
150K 20 High Ozone Da




Layered Policies

SDE Price

($fton)

Layered Policies

CSAPR + 5K Time-
Differentiated NQ,

500 (CSAPR);
5,000 (Time-
Differentiated)

500 (CSAPR)

CSAFPR Price
Applied Daily;
Time-
Differentiated
Price Layered
Only on High
Ozone Days

CSAPR + 5K Time-
Differentiated S0O-:

500 (CSAPR)

500 (CSAFR);
5,000 (Time-
Differentiated)

CSAFR Price
Applied Daily;
Time-
Differentiated
Price Layered
Only on High
Ozone Days

CSAPR + 5K Time-
Differentiated NO, and
S0z

S00 (CSAPR);
5,000 (Time-
Differentiated)

200 (CSAPR);
5,000 (Time-
Differentiated)

CSAFPR Price
Applied Daily;
Time-
Differentiated
Price Layered
Only on High
Ozone Days




wide Emissions (column) by Fuel Type and

Production Costs (diamond) on High Ozone Days
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Cost and Emissions Tradeoffs
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Emissions and Production Costs:
Layered Single- or Joint-Pollutant Pricing Policies
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Regional Mean Differences in MDA8 Ozone on High
Ozone Days in the Mid-Atlantic PJM System
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0.000 0.000
-0.500 0.500
I -1.000 I -1.000
-1.500125 -1.500125
ppb 191 260 ppb 191 260
Min= -1.030 at (237,163), Max= 0.114 at (210,153) Min= -1.625 at (211,155), Max= 0.291 at (201.153)
—  0.500180

Time-differentiated pricing of NO,
and/or SO, produced widespread
ozone reductions, especially in
Pennsylvania.

0.000

1.000 Reductions (> 0.5 ppb) on most of the
Y 51 high ozone days at higher price
p-p-t:a_mm126 191 260 signals. 13

Min= 2.255 at (212,151, Max= 0.234 at(201.153)




Regional Mean Differences in MDA8 Ozone on High
Ozone Days in the ERCOT System
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0.000 0000
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-1.500 o 1500 2
ppb 12 117 ppb 12 117
Min= —0.554 at (92.61), Max= 0.080 at (87,43) kMin= -1.526 at (92.61). Max= 0.136 at (80.24)
— 09007111
Benefits of time-differentiated pricing
0.000 were primarily due to reductions in
coal-fired generation in
-0.500 northeastern Texas.
-1.000 Generation shifts to other areas
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ppl;1 2002 12 117 fuel-

bdisgn_ 1 OO F o+ iy =% hdawr My 71 AaF A1 ATY

14



Time- and Spatial-Differentiation

« What if we also differentiate where the emissions occur?
« Example: On high ozone days, make the price even higher for sources in
non-attainment regions than in attainment regions

Scenario Normal Summer Day High Ozone Day
Attainment Nonattainment Attainment Nonattainment
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Results with Spatial-Differentiation of NO,

Emissions Pricing
(Relative to CSAPR)

Emissions

« Decrease in nonattainment
- Decrease in system-wide
« Small increase in attainment

Small Price

Differential

Generation

« Increase in shift to lower emitting
within each region (i.e. coal to gas)
« Low shift between regions

7,000

6,800

« Small decrease in nonattainment
« Large increase in system-wide
« Large increase in attainment

Large Price
Differential

 Large shift from low emitting in
nonattainment (gas) to high
emitting in attainment (coal)

CSAPR

6,600
6,400
6,200
6,000

Time-Only $5,000

Emissions (ton)

5,800
5,600
$0

Total High Ozone Day

$25 $50

Nonattainment NOx Emission Price (thousand $ per ton)

$75 $100 $125 $150 $175



Implications

Policy goals must be carefully considered

» Time-differentiated pricing is more cost-effective if the goal is
reductions specifically on days conducive to high pollution levels.

> Season-wide and time-differentiated policies can be complementary,
especially for a coal-dominated system (Mid-Atlantic PIM).

» Implement using higher redemption ratio for emission permits or

entirely separate programs.

» Spatial differentiation can reduce emissions in targeted areas but the

design details are critical.

Co-benefits of PM, - reductions, but may require distinct time differentiation

to fully address peak concentrations.

Regional mean differences
in 24-hour average PM, .
concentrations on

high ozone days
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