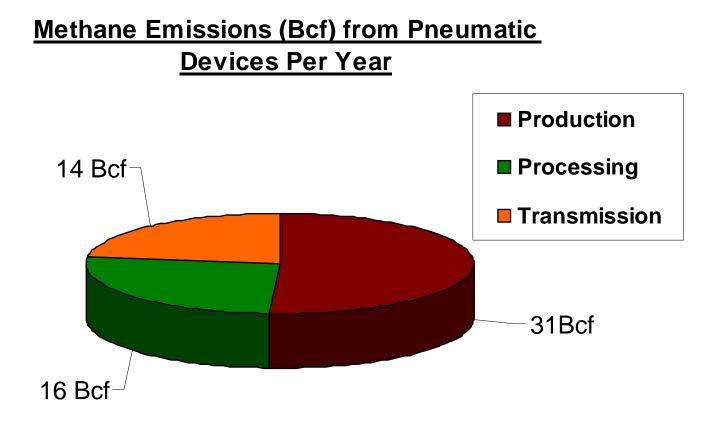
Reducing Emissions Through Retrofitting of High Bleed Devices

Presented By: Greg Giernoth

Key Facts and Figures

- Every year, within a natural gas system, a single unit of pneumatic control valve instrumentation typically releases 500,000 scf of natural gas emissions into the atmosphere.
- 500,000 scf is equivalent to the annual greenhouse gas emissions from 5 passenger vehicles or carbon sequestered annually by over 5 acres of pine or fir forest.
- At a market price of \$5/Mcf, a single unit of pneumatic instrumentation can cost a pipeline operator \$2,500 of lost revenue.
- According to the EPA, "retrofit or complete replacement of worn units can provide better system-wide performance and reliability and improve monitoring of parameters such as gas flow, pressure,"
- Companies who have engaged in pneumatic instrumentation replacements or retrofits have saved over 20 billion cubic feet of natural gas collectively since 1993.

*Source: EPA Methane Emission for the Natural Gas Industry Volume 12: Pneumatic Devices


Pneumatic Devices per Sector

	Number of Devices in Natural Gas Systems	Number of Devices in Petroleum Systems
Production and Gathering	478,000	399 <mark>,</mark> 000
Transmission and Storage	85,000	_

*Source: EPA. *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 – 2009.* April, 2011. epa.gov/climatechange/emissions/usinventoryreport.html.

Pneumatic Device Emissions

One of The Largest Sources of Vented Methane Emissions in the Natural Gas Industry

Where Pneumatic Devices are Used

Various Segments of the Gas Industry Have Different Equipment and Different Standard for Using Pneumatic Devices

	Standard Uses of Pneumatic Devices			
	Production	Processing	Transmission	Distribution
Control Valves Operated by Gas?	Yes	Very Few	Yes	Yes
Isolation Valves Operated by Gas?	No	Some	Yes	Some

Pneumatic Devices Linked to Control Valves Are the Largest Source of Pneumatic Emissions in the Natural Gas Industry*

*Source: EPA Methane Emission for the Natural Gas Industry Volume 12: Pneumatic Devices

Retrofitting High Bleed Instrumentation © 2012 General Electric Company 4/19/2012

Average Bleed Rates for NG Sector

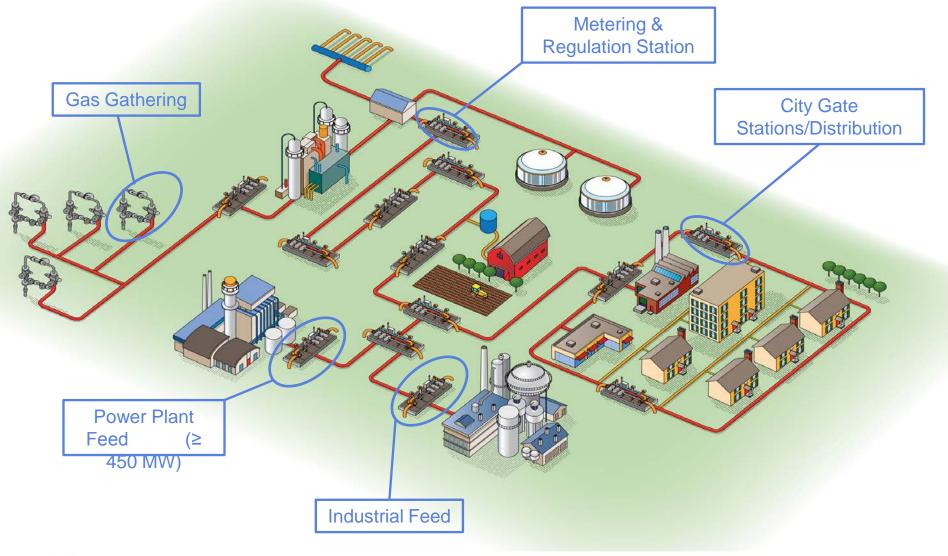
Canadian Petroleum Association (CPA) Study*

	Measured Emissions Rates for Continous Bleed Devices					
	Production Onshore	Production Offshore	Total Production	Transmission		
Number of Measurements	9	9	18	23		
Minimum, (scfd/device)	380	108	108	152		
Maximum, (scfd/device)	2,334	962	2,334	4,215		
Average, scfd/device	1,189 ± 39%	556 ± 33%	872 ± 30%	1,363 ± 29%		

Minimum Production : 39.42 mscf/year per device

Minimum Transmission: 55.48 mscf/year per device

*"A Detailed Inventory of CH₄ and VOC Emissions From Upstream Oil and Gas Operation in Alberta" – Canadian Petroleum Association



imagination at work

Identifying Retrofit Opportunities

Retrofit Opportunities

imagination at work

8 Retrofitting High Bleed Instrumentation © 2012 General Electric Company 4/19/2012

Types of Devices

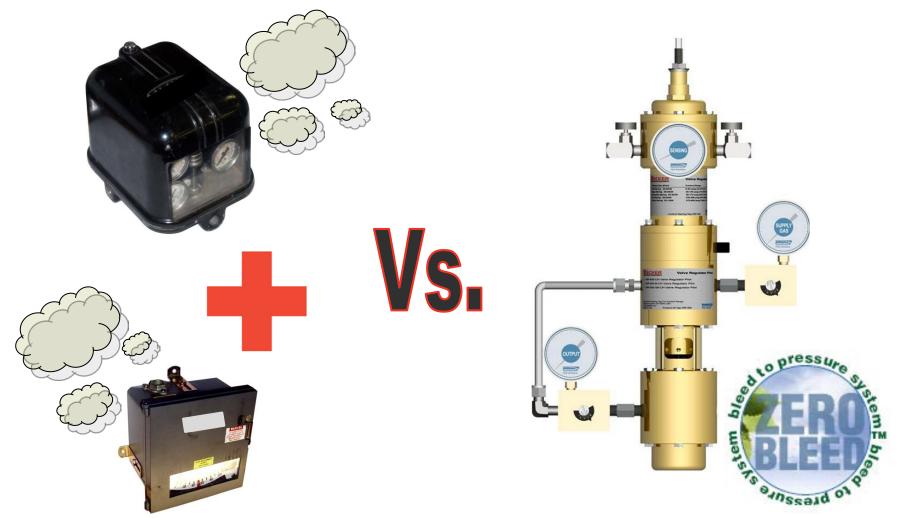
- Continuous bleed devices are used to modulate flow or pressure and will generally vent gas a steady state
- Actuating or Intermittent bleed devices perform snap-acting or control and release gas only when they stroke a valve open or close or as they throttle gas flow
- Self-Contained devices release gas into the downstream pipeline, not the atmosphere

Why Retrofit?

Reduce or Eliminate emissions from high bleed instrumentation
Minimize control instrumentation maintenance
Simplify Control Logic
Maintain System consistency
Retrofit will pay for itself
Increase durability and ruggedness

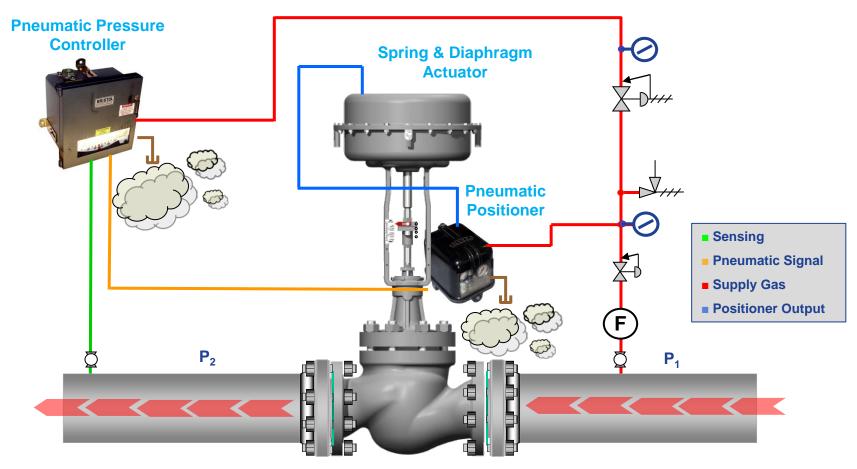
The Replacements

Lower Bleed Pressure Controllers


ZERO Bleed Pilot Controllers

11 Retrofitting High Bleed Instrumentation © 2012 General Electric Company 4/19/2012

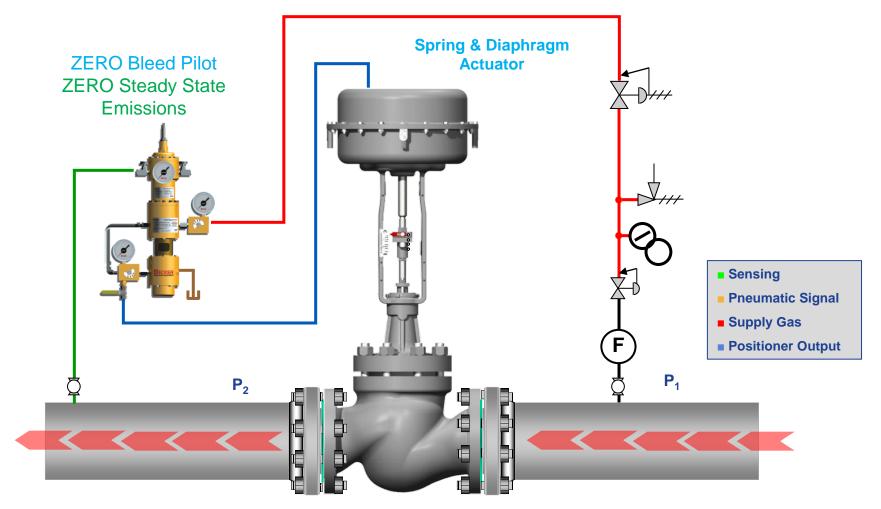
A simple way of adding simplicity



Single Device to Measure and Control Process Variable

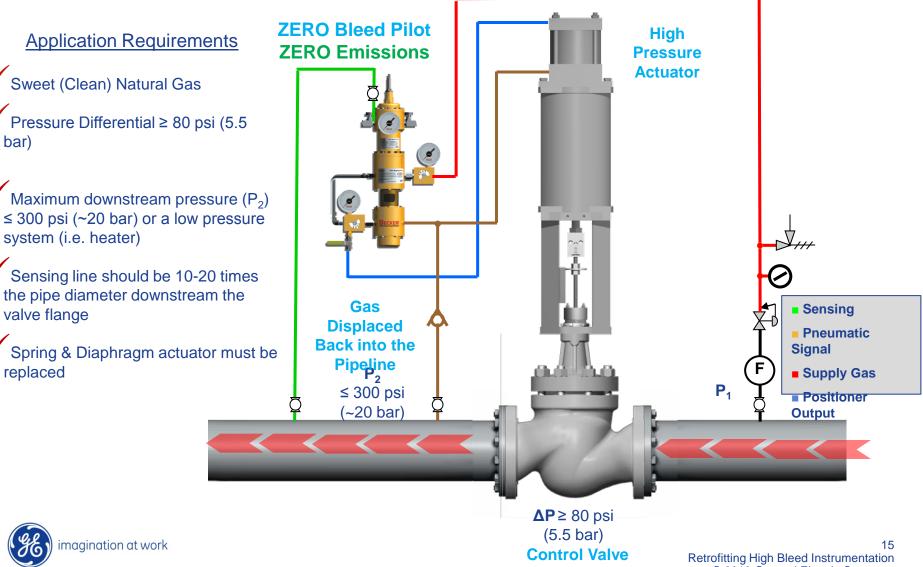
Retrofitting High Bleed Instrumentation © 2012 General Electric Company 4/19/2012

12


Typical Control Valve Configuration

Control Valve

ZERO Steady State Bleed Solution


Control Valve

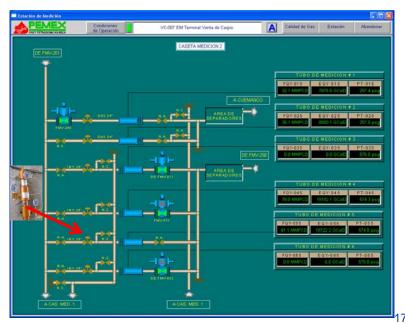
14 Retrofitting High Bleed Instrumentation © 2012 General Electric Company 4/19/2012

Bleed To Pressure System

Completely Eliminates Emissions

^{© 2012} General Electric Company 4/19/2012

Retrofit Examples


Newer Trial Site: PEMEX Venta de Carpio Gas Station

Application: Sales & Metering Regulation Station

- Existing Equipment: Fisher 4150
- Retrofit: VRP-SB-CH

Retrofitting High Bleed Instrumentation © 2012 General Electric Company 4/19/2012

Carpio, Mexico

Bleed to Pressure Example

Before

Company: National Grid UK

Problem: Frequent Gas Call Outs and Station in Enclosed Building Previous Equipment:

- Four (4) Moore 750 Pneumatic Valve Positioners
- Eight (8) Bristol 624 II Pneumatic Pressure Controllers
- Four (4) Actuators on Axial Style Valves

Bristol 624 Controllers Constantly Venting Gas

Axial Style Valve Equipped with Moore 750 pneumatic positioner, two inch (50mm) diameter piping used to vent gas to atmosphere

Bleed to Pressure Example

After

Company: National Grid UK Problem: Frequent Gas Call Outs and Station in Enclosed Building

Becker Solution:

- Replaced Moore 750 Positioners with Becker HPP and Bristol 624 –II Controllers with Becker VRP
- Implemented Becker Bleed to Pressure System with Becker LPDA actuator
- Eliminated natural gas emissions from station with Becker ZERO BLEED[™] instrumentation

Becker High Pressure Positioner (HPP) and LPDA actuator allows gas to be discharged into a downstream Bleed to Pressure system eliminating ALL emissions

19 Retrofitting High Bleed Instrumentation © 2012 General Electric Company 4/19/2012

Bleed to Pressure ROI

Stat	ion Control Va	alve Emissions -	Before
Original Instrumentation	Quantity	Approximate Annual Vent (scf)	Approximate Lost Gas Value*
Bristol 624 – II Controller	8	633,310	\$4,433.00
Moore 750 Positioner	4	1,945,167	\$13,616.00
	Total Gas Lost	2,578,477	\$18,049.00

*Assumed European NG price of \$7/MCF

Emissions Reduced Sum	mary - After
Total Annual Emissions Reduced	2,578,000 scf*
Equivalent to the Annual CO ₂ Emissions From	26 Passenger Vehicles
Equivalent to the Carbon Sequestered Annual by:	ly 28 Acres of Pine Forest
Total Annual Savings	\$18,049.00
Approximate Payback Poriod	< 2 years

*Equivalent to 142.2 Metric Tons of CO₂

50


50 EURO

Partial System Upgrade

Nicor Gas - One of the nation's largest distribution companies

Largest natural gas distributor in Illinois

Network of more than 29,000 miles of pipeline

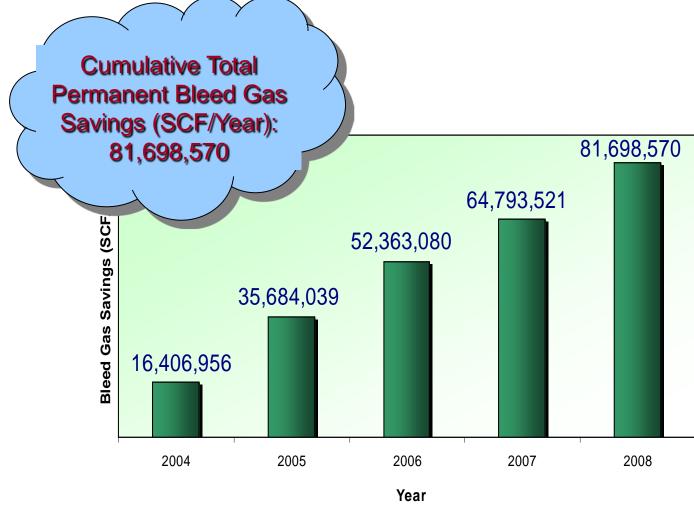
21 GE Title or job number 4/19/2012

Partial System Upgrade cont.

Recognized benefits from ZERO Bleed pressure control system

Implemented system-wide retrofit

- Replaced 25 "high-bleed" pneumatic controls
- 15 locations
- Mechanical controls used for all new installations



Before

After

Partial System Upgrade cont.

*Source: EPA Methane Emission for the Natural Gas Industry Volume 12: Pneumatic Devices

Partial System Upgrade cont.

Total emissions reduced from this project equivalent to:

- > 89,200 passenger cars not driven for a year
- > 2,540 railcars of coal not burned
- > 1,132,700 barrels of oil not used
- > 12,489,100 tree seedlings carbon sequestered
- > 110,700 acres pine acres carbon sequestered

Eliminated emissions equivalent to the gas use of over 1,850 homes

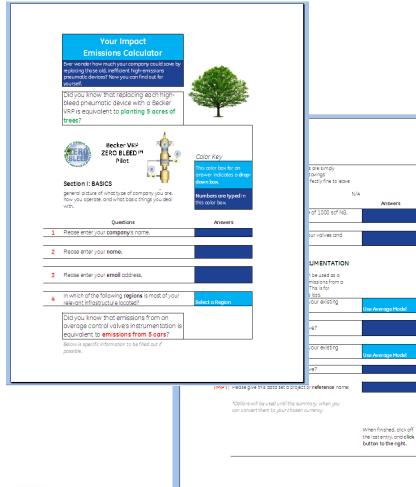
*Source: EPA Methane Emission for the Natural Gas Industry Volume 12: Pneumatic Devices

Tools For Retrofitting

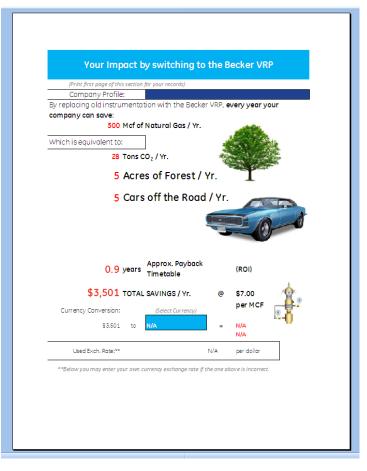
The EPA Website More detail is available on these practices:

epa.gov/gasstar/tools/recommended.html

SUTED STATE							U.S. ENVIRONMENT	AL PROTECTION AGEN
a un a	Natural Gas STAR Program							Share
	Contact Us Search: O All EPA O This Area	Go						
TAL PROTECTION	You are here: EPA Home » Climate Change » Methane » N	atural Gas STAR Program »	Documents, T	ools and Resources » Recommen	nded Technologie	is and Practices		
	Decomposed of Technologi							
ne Home	Recommended Technologi	es and Pract	ices					
IGas STAR	Natural Gas STAR partners share information on cost- reduction activities. To promote technology transfer a							Quick Finder
nformation	opportunities through a variety of documents including	Lessons Learned Studie	s, Partner Rep	ported Opportunities (PRO) Fac	t Sheets, Techn	ical Presentatio	ons, and Partner Update articles (to learn	 Recommended Technologie and Practices
lishments	more, see descriptions of Natural Gas STAR technical r	esources below). Lesson	s Learned Stu	udies and PRO Fact Sheets are	e also available	in <u>Arabic, Chin</u> e	ese, Russian, and Spanish translations.	 Technical Document Translations
s	Please note that EPA does not advocate any particula				presented belo	w is to provide	partner companies and others in industry	Program Forms
Program	with information for evaluating the applicability of the	e technologies and prac	tices to their	operations.				 Technology Transfer Workshops
ies to	Compressors/Engines Dehydrators Directed Inspec	tion and Maintenance F	Pipelines Pn	eumatics/Controls Tanks V	alves <u>Wells</u>	<u>Other</u>		 Service Provider Directory Natural Gas STAR Contacts
ipation	Each technical document on this page shows economi	c payback values at a na	tural gas prid	ce of \$3, \$5, and \$7. However	r, the table on t	his		
nts, Tools & ces	page is arranged by economic payback based on a na individual documents may reflect calculations assumin					oome ci	will need Adobe Reader to view some of the on this page. See EPA's PDF page to learn	
oom	operating circumstances.	y nigher natural yas valu	ies. Actual pa	ayback may vary depending o	n inuividual par	more		
ops/								
ences	Compressors/Engines							
Gas STAR ational	Document Title	Capital Costs	Production	Gathering and Processing	Transmission	Distribution		
Questions		Estimated Paybac	k: 0-1 year					
	Replace Gas Starters with Air or Nitrogen PRO Fact Sheet #101 (PDF) (2 pp, 71K)	< \$1,000	x	×	x			
	Reduce Natural Gas Venting with Fewer Compressor Engine Startups and Improved Engine Ignition <u>PRO Fact Sheet #102 (PDF)</u> (3 pp. 75K)	< \$1,000	x	x	х	х		
	Reducing Methane Emissions from Compressor Rod Packing Systems Lessons Learned (PDF) (8 pp, 271K) Presentation (PDF) (15 pp, 875K) June 2006	< \$1,000	x	X	x			
	Test and Repair Pressure Safety Valves PRO Fact Sheet #602 (PDF) (3 pp, 107K)	< \$1,000	х	×	х	х		
	Reducing Emissions When Taking Compressors Off-	\$1,000-\$10,000	x	X	х	x		



Lessons Learned (PDF) (11 pp, 248K) Presentation (PPT) (19 pp., 590K, About PPT


EXIT Disclaimer

How to quantify savings

Questions

Results

