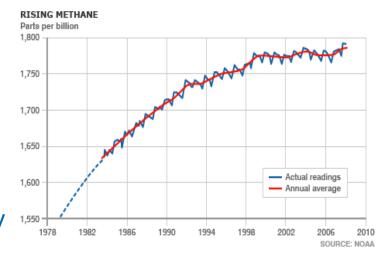
EPA's Natural Gas STAR Program Overview

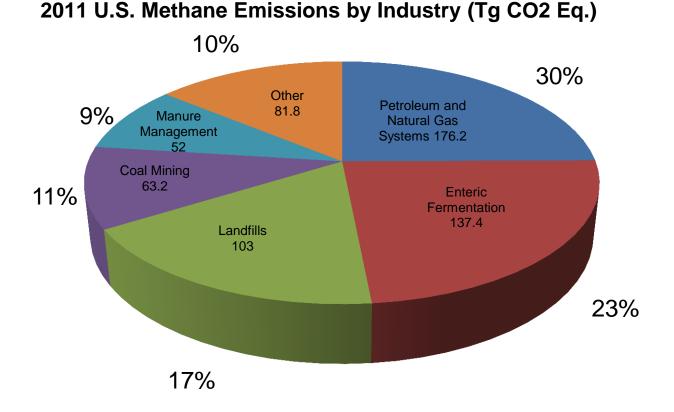
Distribution Technology Transfer Workshop May 23, 2013 Orlando, Florida

Jerome Blackman Program Manager, U.S. EPA Natural Gas STAR Program

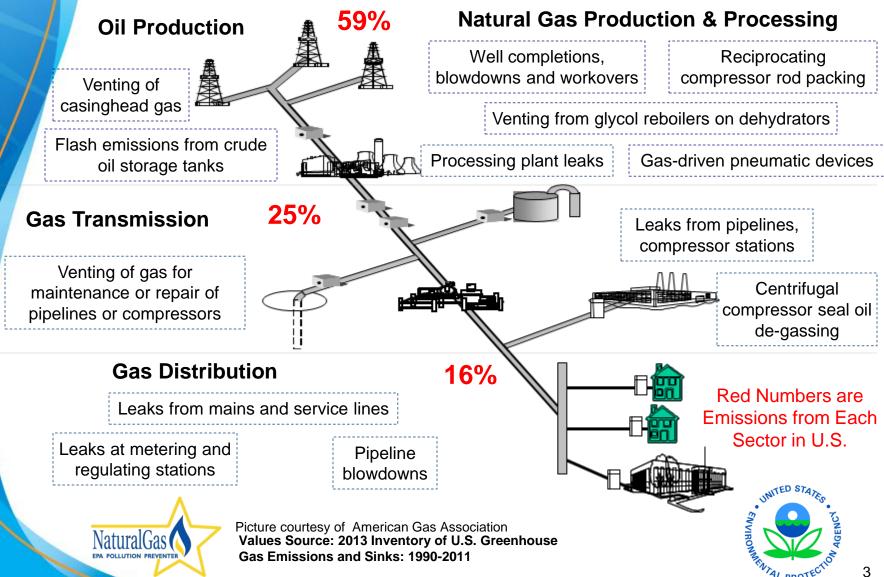

Why Methane?

- Potent greenhouse gas
 - 100 year GWP = 21
 - Lifetime = 12 years
 - Most important short-lived forcer based on emissions, accounts for >1/3 of current anthropogenic forcing

Ozone precursor


- Effects ground-level ozone levels
- Clean energy source primary component of natural gas
- Many emission sources
 - Oil & gas, agriculture & waste sectors
 - 50 70% of which are anthropogenic
- Concentration of methane in the atmosphere has increased by 150% in the last 260 years

2011 U.S. Human-Made Methane Emissions



Source: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2011 (April 2013)

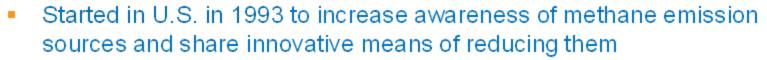
Sources of Methane Emissions from **Oil and Gas Operations**

Methane Projects Deliver Significant Co-Benefits

- New Sources of Clean Energy
 - Emission capture makes methane available for local energy generation

Air Quality Improvement

- Decrease in ground-level ozone
- Reduction of local emissions of VOCs and HAPs


Industrial Safety

Methane is explosive - improved worker safety

Natural Gas STAR Program

- Expanded internationally in 2006 as part of GMI
- Over 120 domestic and 17 international partners have
 - Identified over 50 cost-effective technologies and practices to reduce methane emissions
 - Reduced methane emissions by nearly 1 trillion cubic feet (Tcf), saving over U.S. \$3 billion

Natural Gas STAR Resources

- Resources to advance cost-effective oil & gas sector methane emission reductions:
 - General technology transfer, training, and capacity building
 - Technical documents and research outlining over 50 mitigation options, including analyses of economic, environmental and operational benefits
 - Workshops and Conferences
 - Individual assistance to help companies identify and assess project opportunities
 - Estimated methane emission inventories
 - Measurement studies
 - Mitigation project feasibility studies
- Services and resources provided free of charge and at no obligation

STALLING SAFOR RECEIVENY UNITS IN CARDE IN

Over 50 Cost Effective Methane Reduction Opportunities

Pneumatics/Controls

Document Title	Capital Cost	s Production	Gathering and Processing	Transmission	Distributio	
	Estimated P	ayback: 0-1 yea	ar			
Convert Gas Pneumatic Controls to Instrument Air Lessons Learned (PDF) (12 pp, 314K)	> \$50,000	×	×	x	x	
	Estimated P	ayback: 1-3 yea	ars			
Options for Reducing Methane Emissions From Pneumatic Devices in the Natural Gas Industry Lessons Learned (PDF) (12 pp, 201K) Presentation (PDF) (20 pp, 384K) November 2011	<\$1,000			X		
Convert Pneumatics to Mechanical Controls <u>PRO Fact Sheet #301 (PDF)</u> (3 pp, 204K)	• Lo	- Low implementation costs				
Convert Natural Gas-Driven Chemical Pumps <u>PRO Fact Sheet #202 (PDF)</u> (3 pp, 130K)	_	- 50% cost $<$ \$5,000 to implement				
Replacing Gas-Assisted Glycol Pumps with Electric Pumps <u>Lessons Learned (PDF)</u> (17 pp., 197K)	• Q	 25% <\$1,000 to implement Quick payback times (\$3/Mcf) 50% pay back in <1 year 67% pay back in <2 years 				
ŷTop of page	_					
Tanks	_					
Document rite	• Lo	ow cost	per Mcf or tC	CO2e re	educe	
Convert Water Tank Blanket from Natural Gas to	 70% cost <\$3 per Mcf reduced 					
hot from EPA Gas STAR website	-		cost <\$10 per t			

Strategy for Addressing Methane Emissions

Develop Emissions BASELINE

Evaluate Best REDUCTION OPPORTUNITIES

IMPLEMENT Reduction PROJECTS

Document and SHARE SUCCESSES

- Use emission factors, engineering calculations, software tools, direct measurement
- Prioritize largest sources and most costeffective reduction projects
- Conduct measurement studies and detailed analyses to confirm volumes and scope reduction projects
- Implement top reduction projects
- Pilot projects or company-wide
- Document and share lessons learned
- Quantify operational, economic, and environmental results
- Publicize results to stakeholders

8

- Laclede Gas established a Damage Prevention Department in 2000 to address third party "dig-in" incidents
 - Averaged four dig-in incidents per workday
 - Dig-ins require repairs and result in methane venting to the atmosphere
- Laclede was able to communicate with and educate third parties on:
 - Risk of excavating in and around underground facilities
 - Safe work practices to minimize risk
- Results:

Case Study

- 33% reduction in dig-in damages since 2003 through 2008
- -__65,000 Mcf of emission reductions in 2007

Case Study

- Xcel Energy implemented Accelerated Main Renewal Program (AMRP) in Colorado territory
 - Proactive program to renew aging main in Xcel Energy's Colorado territory
 - Focusing on distribution main below 150 psi
 - Bare steel 110 Mcf/Mile/Yr
 - Cast Iron 239 Mcf/Mile/Yr
 - PVC 12 Mcf/Mile/Yr
 - Xcel Energy approached the Colorado Public Utilities Commission (CPUC) about project
 - Xcel has committed to renewal of all cast iron, bare steel, and PVC main
 - Xcel has committed to renew all of the cast iron in Colorado by 2015

Contact and Further Information

Jerome Blackman

Program Manager, U.S. EPA Natural Gas STAR (202)-343-9630 blackman.jerome@epa.gov

Natural Gas STAR Program:

epa.gov/gasstar/index.html

Recommended Technologies: epa.gov/gasstar/tools/recommended.html

SAVE THE DATE!

Natural Gas STAR Annual Implementation Workshop October 28-30, 2013 Grand Hyatt San Antonio San Antonio, TX

