Optimization of Multipollutant Air Quality Management Strategies

Kuo-Jen "KJ" Liao Texas A&M University-Kingsville

U.S. EPA: Dynamic Air Quality Management Progress Review Webinar

March 31, 2016

Emission Sources of Ozone and PM_{2.5} Precursors

Traditional Framework for Developing State Implementation Plan (SIP)

Cohan et al., 2007

http://www-personal.umich.edu/~sillman/ozone.htm

Air Pollution Control Strategies for <u>Multi-</u> Pollutants and Multi-Locations

Challenge:

Air pollutants at different locations have different responses to changes in precursor emissions from common sources

Objective -I

Development of optimal (i.e., least-cost) control strategies (<u>OPtimal Integrated</u> <u>Emission Reduction Alternatives (OPERA)</u>) for:

- achieving multipollutant air quality targets
- at multiple locations simultaneously

Emission Control Costs

Case Study – Air Quality for NE U.S.

- EPA Models3:
 - MM5
 - SMOKE
 - CMAQ-HDDM
- -Two pollutants:
 - ozone (target: 75ppb)
 - PM_{2.5} (target: 25 μg/m³)
- -Regional precursors:
 - SO₂
 - NO*x*
 - VOC
- Local primary PM_{2.5}

Four regions

Ozone Sensitivities (CMAQ-HDDM)

			Atlanta	Chicago	D.C.	New York	Philadelphia
	Region	Sensitivity/MDA8h O ₃	84.8	61.7	85.6	91.8	84.4
		1 st NOx	12.20	0.22	55.30	-14.20	26.10
		1 st VOC	0.04	0.04	-0.32	16.20	5.00
	OTR	2^{nd} NOx	-11.60	-0.07	-39.70	-22.50	-50.20
		2 nd VOC	-0.88	-0.01	-0.42	0.55	-1.53
Unit: ppb		2 nd NOx_VOC	2.40	0.01	2.60	-1.03	6.70
		1 st NOx	0.42	5.20	0.52	-0.02	0.72
		1 st VOC	0.09	3.60	-0.06	0.02	-0.02
	LADCO	2^{nd} NOx	-0.11	-19.80	-0.08	0.02	-0.09
		2 nd VOC	-0.02	-0.59	~ 0	~ 0	~ 0
		2 nd NOx_VOC	0.06	2.30	0.01	~ 0	0.01
		1 st NOx	0.16	0.57	0.30	0.01	0.33
		1 st VOC	0.01	0.01	-0.01	~ 0	0.01
	CENRAP	2 nd NOx	-0.03	-0.07	-0.04	~ 0	-0.04
		2^{nd} VOC	~ 0	~ 0	~ 0	~ 0	~ 0
		2 nd NOx_VOC	0.01	0.01	0.01	~ 0	0.01
		1 st NOx	26.80	0.02	0.09	~ 0	~ 0
		1 st VOC	1.39	0.01	~ 0	~ 0	~ 0
	SEMAP	2^{nd} NOx	-32.90	-0.01	-0.01	~ 0	~ 0
		2 nd VOC	-0.19	~ 0	~ 0	~ 0	~ 0
		2 nd NOx_VOC	1.89	~ 0	~ 0	~ 0	~ 0

August 2, 2007

Sensitivities of PM_{2.5} (CMAQ-HDDM) and Primary PM_{2.5} Concentrations

			Atlanta	Chicago	D.C.	New York	Philadelphia
	Region	Sensitivity/PM _{2.5}	16.10	26.25	11.73	38.83	30.76
		1 st NOx	0.23	0.05	1.54	5.00	8.81
		1 st VOC	-0.02	-0.03	-0.22	0.17	-0.48
	ОТР	2 nd NOx	-0.14	-0.02	-0.50	-1.29	-1.56
	UIK	2 nd VOC	0.01	~ 0	0.04	~ 0	0.06
		2 nd NOx_VOC	~ 0	~ 0	-0.03	0.04	-0.02
		1^{st} SO ₂	0.67	0.12	1.65	1.25	2.82
Unit: ua/m ³		1 st NOx	~ 0	2.31	0.02	0.06	0.24
		1 st VOC	~ 0	-0.40	-0.01	-0.01	-0.06
		2 nd NOx	0.01	-1.63	-0.01	-0.01	-0.04
	LADCO	2 nd VOC	~ 0	0.04	~ 0	~ 0	~ 0
		2 nd NOx_VOC	~ 0	0.03	~ 0	~ 0	~ 0
		1^{st} SO ₂	0.16	2.96	0.07	0.04	0.12
		1 st NOx	~ 0	0.25	0.01	0.02	0.11
	CENRAI	1 st VOC	~ 0	-0.02	~ 0	~ 0	-0.01
		2^{nd} NOx	~ 0	-0.03	~ 0	~ 0	-0.02
		2 nd VOC	~ 0	~ 0	~ 0	~ 0	~ 0
		2 nd NOx_VOC	~ 0	~ 0	~ 0	~ 0	~ 0
		1^{st} SO ₂	0.04	0.27	0.01	0.01	0.02
		1 st NOx	0.63	0.01	~ 0	~ 0	~ 0
		1 st VOC	-0.01	~ 0	~ 0	~ 0	~ 0
	CEMAD	2 nd NOx	0.11	~ 0	~ 0	~ 0	~ 0
	SEMAP	2 nd VOC	~ 0	~ 0	~ 0	~ 0	~ 0
		2 nd NOx_VOC	-0.01	~ 0	~ 0	~ 0	~ 0
		1 st SO ₂	0.77	0.03	0.03	~ 0	0.01
	Primary I	PM _{2.5}	3.83	9.1	3.57	10.52	7.08

August 2, 2007

Assumptions

1. First-order sensitivities:

$$C_{i,new} \approx C_{i, prior} + \Delta \varepsilon_j S_{i, j} + H.O.T \implies S_{i, j} \approx \frac{\partial C_i}{\partial \varepsilon_j}$$

- 2. Ignore co-benefits of emission reductions for multiple precursors
- Primary PM_{2.5} emissions only have local effects on air quality: Metropolitan Statistical Area (MSA)

Cost Analysis Software-AirControlNET

- US EPA's emission control analysis tool
- Provide the information of mass of emission reduced and associated annualized costs
- $Cost_{i,j}(\Delta E_{i,j}), \Delta E_{i,j}$ is the amount of emission reductions of species i from region j
- Costs of reductions in anthropogenic precursor emissions do not increase linearly
- Higher ratios of emission reductions are expected to be more expensive

Per-ton Cost of Emission Reduction (EPA AirControlNET)

Per-ton Cost of Local Primary PM_{2.5} **Emission Reductions (EPA AirControlNET)**

OPERA – I Formulation

Minimize
$$\sum_{i,j} Cost_{i,j} \left(\Delta \varepsilon_{i,j} \right) + \sum_{k} Cost_{primary_{PM 2.5,k}} \left(\Delta \varepsilon_{primary_{PM 2.5,k}} \right)$$

Subject to:

$$\sum_{i,j} \Delta \varepsilon_{i,j} S_{O_3, i,j,k} \geq C_{O_3, prior,k} - C_{O_3, target,k}$$

$$\sum_{i,j} \Delta \varepsilon_{i,j} S_{PM_{25},i,j,k} + \Delta \varepsilon_{primary_PM_{25},k} C_{primary_PM_{25},k} \geq C_{PM_{25}, prior,k} - C_{PM_{25}, target,k}$$

$$0 \leq \Delta \varepsilon_{SO_2, j} \leq R_{SO_2, j}$$

$$0 \leq \Delta \varepsilon_{NOx, j} \leq R_{NOx, j}$$

$$0 \leq \Delta \varepsilon_{NOx, j} \leq R_{NOx, j}$$

$$0 \leq \Delta \varepsilon_{VOC, j} \leq R_{VOC, j}$$

$$0 \leq \Delta \varepsilon_{primary_PM_{25},k} \leq R_{primary_PM_{25},k}$$
Constraints for emission control efficiencies

Results of Case Study

Target - ozone: 75ppb and $PM_{2.5}$: 25 µg/m³

	Atlanta	Chicago	D.C.	New York	Philadelphia	Four Cities ²
Reduction (%) in contro						
OTR	~ 0	~ 0	~ 0	infeasible	~ 0	~ 0
LADCO	~ 0	~ 0	~ 0	infeasible	~ 0	~ 0
CENRAP	~ 0	~ 0	~ 0	Infeasible	~ 0	~ 0
SEMAP	~ 0	~ 0	~ 0	Infeasible	~ 0	~ 0
Reduction (%) in controllable	NO <u>x</u> emissions					
OTR	15.8	~ 0	20.7	Infeasible	41.6	41.9
LADCO	1.6	0.3	0.8	infeasible	7.9	8.0
CENRAP	0.8	~ 0	0.5	Infeasible	5.3	5.4
SEMAP	38.9	~ 0	~ 0	Infeasible	~ 0	22.9
Reduction (%) in controllable \	/OC emissions					
OTR	0.5	~ 0	~ 0	Infeasible	37.5	37.2
LADCO	~ 0	~ 0	~ 0	Infeasible	~ 0	~ 0
CENRAP	~ 0	~ 0	~ 0	Infeasible	~ 0	~ 0
SEMAP	3.4	~ 0	~ 0	infeasible	~ 0	0.7
Reduction (%) in primary PM2.	<u>5 emissions</u>					
Atlanta	~ 0	~ 0	~ 0	Infeasible	~ 0	~ 0
Chicago	~ 0	13.9	~ 0	Infeasible	~ 0	11.5
D.C.	~ 0	~ 0	~ 0	Infeasible	~ 0	~ 0
New York	~ 0	~ 0	~ 0	infeasible	~ 0	~ 0
Philadelphia	~ 0	~ 0	~ 0	Infeasible	34.2	33.8
Cost (millions of 1999\$)	1,333	253	838	-	5,639	5,831

Conclusions

- Reductions in emission reductions from distant regions could be cost-effective for achieving prescribed ozone and PM_{2.5} levels in the cities examined.
- Reducing regional NOx and VOC as well as local primary PM_{2.5} emissions was more cost-effective than controlling SO₂ emissions for decreasing ozone and PM_{2.5} concentrations simultaneously.
- A major strength of OPERA-I is its flexibility that allows for changes in regulations, involving agencies, study regions, and etc. to be readily incorporated.

Objective -II

Development of optimal resource allocation strategies (OPtimal Integrated Emission Reduction Alternatives - II (OPERA-II)) for:

- achieving largest human health benefits
- at multiple locations simultaneously

Development of OPERA-II

CMAQ-DDM

OPERA-II Formulation

Decreases in total mortality due to reductions in pollutant concentrations

Maximize

 $\sum_{1} \Delta mortality_{c}$ **Subject to:** $\sum_{k=1}^{p} Cost_{j,k} (\Delta \varepsilon_{j,k}) \le R_k$ k = 1, 2, ..., m $0 \leq \Delta \varepsilon_{i,k} \leq U_{i,k}$ $\Delta mortality_i = population \times y_0 \times \left(e^{\beta \cdot \Delta X} - 1\right)$

where *c*, *j* and *k* present the MSAs, precursors and regions, respectively.

n, **p** and **m** are the number of MSAs, precursors and regions, respectively

(<u>M Bell et al. 2004</u>; Pope et al. 2002

Health Effects: Concentration-Response Function

$$\Delta y = y_0 (1 - e^{-\beta \Delta x}) * Population$$

where

- y_0 = baseline mortality rate (deaths per 100 people)
- β for PM is 0.014842 per 1 µg/m³ (Laden et al., 2006)
- β for daily maximum 8-hr average ozone is 0.000795 per 1 ppb (Bell et al., 2005)

RANK	MSA	2010 Population	Уo
1	New York-Newark-Jersey City, NY-NJ-PA	19,567,410	0.01333
2	Los Angeles-Long Beach-Anaheim, CA	12,828,837	0.01146
3	Chicago-Naperville-Elgin, IL-IN-WI	9,461,105	0.01383
4	Dallas-Fort Worth-Arlington, TX	6,426,214	0.01161
5	Philadelphia-Camden-Wilmington, PA-NJ-DE-MD	5,965,343	0.01457

Case Study

-Two pollutants: ozone and PM_{2.5}

-Regional precursors: SO₂, NO*x*, VOC and PC

-Ten U.S. EPA Regions

- Five MSAs

Air Quality Model	U.S. EPA CMAQ-DDM v5.0.1		
Meteorological Model	WRF		
Horizontal Resolution	12*12 km		
Vertical Layer	22 Layers		
Simulation Period	August 8 - August 21, 2010		

Sensitivity of Ambient Ozone and PM_{2.5}

Costs of Air Pollutant Emission Controls

Air Quality Control Resources

- Office of Air and Radiation of U.S. EPA (2010) estimates that annual cost values of complying with the Clean Air Act for 2010 were \$43,900 (million 2006\$), which included costs of reductions in six major criteria pollutants (VOCs, NOx, SO₂, CO, PM₁₀ and PM_{2.5}), ammonia (NH₃) and hazardous air pollutants (HAPs) attributed to regional and local controls over the U.S.
- We assume 70% of the total cost could be used to reduce emissions of the four pollutants from regional sources.
- Furthermore, the total of population of the top five U.S. cities accounted for about ~17.5% of the total U.S. pollution in 2010, and the total budget used in our case study is ~\$5,400 (=\$43,900*0.7*0.175) (millions 2006\$).

Results – Emission Reduction

	NOx	VOC	SO ₂	РС
Region 1	18.0	8.7	96.0	54.8
Region 2	22.9	18.0	74.0	61.7
Region 3	11.6	~0	50.4	50.9
Region 4	5.8	8.2	16.0	1.2
Region 5	15.1	8.9	37.2	42.4
Region 6	19.3	11.0	8.8	48.7
Region 7	20.4	5.8	29.7	7.5
Region 8	17.2	3.7	17.8	2.4
Region 9	8.5	12.0	89.3	51.9
Region 10	6.5	4.2	~0	~0

- Controls of SO₂ and PC emissions would be the most effective approach to reduce air pollution-related mortality for the five MSAs collectively.
- PM_{2.5} has more significant health effects than ambient ozone does.
- Controls of NOx and VOC emissions are expensive, and ozone-related mortalities are less significant than PM_{2.5}-related mortalities

Mortality Avoidance (August 8th ~ August 21st, 2010)

	New York	Los Angeles	Chicago	Dallas- Fort Worth	Philadelphia	All Cities
Ozone-related mortality	700	100	200	200	100	1,300
PM _{2.5} -related mortality	11,100	6,700	6,200	2,300	3,200	29,500
Total	11,800	6,800	6,400	2,500	3,300	~30,800

The results show that reductions in PM_{2.5}-related mortalities (~29,500) would be much higher than ozone-related mortalities (~1,300) if the funds could be allocated in a way suggested by the results of the resource allocation model.

Responses of Mortality Avoidance to Budget Perturbation

	Budgets (in millions)	Mortality Avoidance	Difference (in percentage)
budgets in 2010	5,400	30,796	-
+20%	6,480	31,727	+2.92
+15%	6,210	31,507	+2.27
+10%	5,940	31,280	+1.62
+5%	5,760	31,123	+0.97
-5%	5,130	30,536	-0.97
-10%	4,860	30,261	-1.62
-15%	4,590	29,968	-2.60
-20%	4,320	29,652	-3.57

Limitations and Uncertainties

- The EPA 1999 emission inventory, used by AirControlNET, may not fully represent current air pollutant emissions and their control costs. More recent emissions and their control costs should be considered in developing resource allocation strategies in the future.
- CMAQ-DDM only simulates first-order sensitivities of air pollutants to emission reductions. It could induce uncertainties in the results of resource allocation modeling.
- The coefficients in the C-R function obtained from previous epidemiologic studies may not apply equally well to all the five MSAs. More detailed analysis of responses of mortalities to changes in air pollutant emissions for different cities will be needed to reduce uncertainties.

Conclusions

- Given the cost values in EPA's CAA assessment, the results of the case study suggest that controls of SO₂ and PC emissions would achieve the most significant health benefits for the five selected MSAs collectively.
- The results also show that the majority of the resource would be used controls of SO₂ and PC emissions from Regions 2, 3, 5, 6 and 9.
- Around 30,800 air pollution-related mortalities could be avoided during the selected period for the five selected MSAs.
- OPERA-II can be used to develop air quality management strategies for differnt seasons and more cities if health responses and air quality sensitivities for different seasons and areas can be determined.

Summary

- We develop OPERA-I and OPERA-II which can help design multipollutant air quality management strategies.
- OPERA-I allows identification of <u>least-cost control strategies</u> for achieving multipollutant air quality targets at multiple locations simultaneously.
- OPERA-II allows identification of air quality management strategies that <u>maximize human health benefits</u> subject to budget constraints.
- Main pieces of inputs to OPERA-I and II are : (1) sensitivities of air quality to emission changes, (2) cost functions of emission reductions, and (3) concentration-response (CR) functions.
- The case studies show how OPERA-I and OPERA-II can be applied to develop multipollutant air quality management strategies in the U.S.

Acknowledgements

- U.S. EPA for providing funding under STAR grant R835218.
- EPA Program Officers: Wil Wilson and John Dawson
- The Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources : <u>http://www.tacc.utexas.edu</u>
- The University of Maryland, College Park, for the WRF meteorology output providing and MARAMA for providing the emissions inventory.
- Free use of AQME II data.

Contact information: email: <u>kuo-jen.liao@tamuk.edu;</u> phone: 361-593-3898