Assessing anthropogenic impact on secondary pollutant formation in the South Eastern US via airborne formaldehyde measurements

J. B. Kaiser, G. M. Wolfe, T. F. Hanisco, M. R. Marvin, F. N. Keutsch,

J. de Gouw, J. Gilman, M. Graus, J.S. Holloway, B. Lerner, L. J. Peischl, I. B. Pollack, J.M. Roberts, T. B. Ryerson, P. Veres, C. Warneke, J. Li, K.-E. Min, R. A. Washenfelder, S. S. Brown, A. M. Middlebrook, Jin Liao, André Welti, Barron H. Henderson, M. Trainer, P. Edwards, S.-W. Kim, A. Neuman, D. Parrish, W. Horowitz, B.H. Lee, F. Lopez-Hilfiker, J. Mao, J.A. Thornton, C.D. Hatch, L. J. Donner, W. F. Cooke, F. Paulot, R. Salawitch, T. Canty, K. Aikin, G. S. Diskin, G. W. Sachse, G. Huey, X. Liu, A. Wisthaler, T. Mikoviny, P. Wennberg, J. St. Clair, J. Crounse, A. Teng

UW-Madison, JCET UMBC, NASA GSFC, UMD, Harvard, CIRES, CU Boulder, NOAA ESRL, NOAA GFDL, UW-Seattle, Princeton, Caltech, Hendrix College, UW-Seattle, University of Oslo, Georgia Tech

Assessing anthropogenic impact on secondary pollutant formation in the South Eastern US via airborne formaldehyde measurements

NOAA WP-3D aircraft

NSF GRFP

Why Formaldehyde?

HCHO tracks photochemical evolution of VOCs.

- 1a) Yield related to VOC type
- 1b) Formation rate related to reactive carbon processing rate
- 2) HCHO is an important radical source

From Jen Kaiser

Formaldehyde (HCHO)

Anthropogenic Influence

Many forms of anthropogenic influence:

- Land-use change (VOC, NH₃, N₂O emissions, ...)
- Emissions: NH₃, SO₂, VOCs, NO_x, ...

Identification of (a) Impact of NO_x emissions on VOC processing (b) VOC emission type

(c) Investigation of aerosol glyoxal sink (Jingy Li, Jinqiu Mao)

SENEX (= SouthEast NEXus) Flights

I. NO_x influence on HCHO

I. NO_x influence on HCHO

Slope: Isoprene Sensitivity of HCHO

"Isoprene Sensitivity" effectively represents the response of HCHO to a change in isoprene emissions

Intercept: Background HCHO

"Background" represents HCHO that cannot be directly linked to isoprene emissions (too aged or other precursors)

NO_{x} influence on HCHO: Comparison with Different Model Mechanisms

Mechanism	Species	Reactions	Reference	
CB05	51	156	Yarwood et al. (2005)	
CB6r2	56	216	Ruiz and Yarwood (2013)	
MCMv3.2*	447	1428	Saunders et al. (2003)	
MCMv3.3.1*	610	1974	Jenkin et al. (2015)	

*Isoprene subset

CB: Carbon Bond Mechanism

- Condensed
- Commonly used for air quality simulations

MCM: Master Chemical Mechanism

- Explicit
- Benchmark mechanism

Box Model Simulations

University of Washington Chemical Model (Wolfe and Thornton, 2011)

- Diel steady-state
- Constrained to aircraft observations of C₅H₈, NO, NO₂, CO, CH₄, O₃, PAN, CH₃OH
- Physical losses represented by a 24-hour lifetime
- Assumes clear sky conditions
- Four simulations
 - Differ only in choice of gas-phase mechanism

Model-Measurement Comparison

Chemical Dependence of HCHO Concentration on NO_x Conditions

 Mechanisms maintain shape of dependence (slope)

 Mechanisms underestimate HCHO concentrations (intercept)

Take-Away Points

- HCHO variability driven by both emissions and chemistry
- Up-to-date mechanisms represent isoprene-HCHO relationship well but background HCHO not captured well
- Most of the NO_x -driven increase in HCHO reflects faster VOC oxidation

For more details: Wolfe et al., ACP (2016)

II. Formaldehyde and Glyoxal as Indicator of VOC Speciation

- Relative yields of glyoxal and HCHO differ between classes of VOC
- Similar atmospheric lifetimes
- Ratio related to local VOC species
- Measurable by satellite
- Aerosol important sink for glyoxal

Observations of R_{GF} have lead to conflicting conclusions.

Reference	Method	Biogenic R _{GF} (%)	Anthropogenic R _{GF} (%)
Vrekousiss et al. (2010)	Satellite	>4.5	<4.5
DiGangi et al. (2012)	LIF ^a /LIP ^b ; review	<2	>2.5
MacDonald et al. (2012)	DOAS ^c ;	20-40	
Li et al. (2014)	DOAS; model	0.2-17 (Depends on NO _x , OH,)	
Miller et al. (2014)	Satellite	<4 (isoprene) >4 (terpenes)	~4

^aLaser Induced Fluorescence (HCHO)
^bLaser Induced Phosphorescence (CHOCHO)
^cDifferential Optical Absorption Spectroscopy

Satellite and in situ R_{GF} in better agreement

- Better agreement between platforms
- Outliers in flight based averaged out in satellite
- Flight-based provides VOC measurements

Kaiser, J. et al, ACP, 15, 7571-7583, (2015).

Low R_{GF} over the Ozarks and near gas flares.

19

High R_{GF} is associated with monoterpenes.

Urban plum: NO_x and Anthropogenic VOCs

R_{GF} in a city outflow

R_{GF} in a city outflow

R_{GF} in a city outflow

24

Trends are matched by satellite retrievals.

Quick, neighborhood-level R_{GF} in the near future!

Tropospheric Emissions: Monitoring of Pollution

TEMPO

TEMPO's concurrent high temporal (hourly) and spatial resolution measurements from geostationary orbit of tropospheric ozone, aerosols, their precursors, and clouds create a revolutionary dataset that provides understanding and improves prediction of air quality and climate forcing in Greater North America.

Anthropogenic Influence on Glyoxal and Implications for SOA production

GFDL Atmospheric General Circulation Model AM3 Leeds Master Chemical Mechanism MCM v3.3.1

Jingqiu Mao, Jingyi Li

NO_x Influence on HCHO Production in Different Mechanisms

NO_x Influence on Glyoxal Production in Different Mechanisms

<u>Glyoxal yield</u> (ppbv) from isoprene

Mean Vertical Profiles During SENEX

* From dry aerosols

Comparison with Observations

- HCHO is underestimated
 - AM3B could reproduce NO_x-glyoxal
- AM3B overestimate R_{GF} at NO_x < 0.5 ppbv
- AM3M (MCM v3.3.1) underestimates glyoxal and R_{GF} across NO_x levels

Glyoxal SOA

Publications from Work Under This Grant

Published Manuscripts

- Wolfe: Formaldehyde production from isoprene oxidation across NOx regimes ACP 2016
- Kaiser: Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation ACP 2015
- De Gouw: Airborne Measurements of the Atmospheric Emissions from a Fuel Ethanol Refinery

Submitted Manuscripts

• Li: Observational Constraints on Glyoxal Production from Isoprene Oxidation and Its Contribution to Organic Aerosol Over the Southeast United States GRL

Manuscripts in Preparation

- DeGouw: Enhanced Removal of Biogenic Hydrocarbons in Power Plant Plumes Constrains the Dependence of Atmospheric Hydroxyl Concentrations on Nitrogen Oxides
- Marvin: Investigating Differences in Isoprene Oxidation Chemistry Between Gas-Phase Mechanisms Using a Constrained Chemical Box Model
- Yuan: Emissions and Chemistry of Volatile Organic Compounds in Early Spring of Western U.S.: Interactions between Oil/Gas Emissions and Biogenic Emissions
- Additional ones in early stages