

Stop Venting Your Profits A New Alternate to Pneumatic Controllers

A Few Pneumatic Controller Studies

- Estimates of Methane Emissions from the U.S. Oil Industry (ICF Consulting, 1999) 445,900 MT /yr
- Inventory of Greenhouse Gas Emissions and Sinks: 1990-2012 (U.S. EPA, 2014)
- Greenhouse Gas Reporting Program (U.S. EPA, 2013)
- Measurements of Methane Emissions from Natural Gas Production Sites in the United States (Allen et al., 2013) 570,000 MT/yr
- Economic Analysis of Methane Emission Reduction Opportunities in the U.S. Onshore Oil and Natural Gas Industries (ICF, 2014)

Simple Facts from All Studies

- Pneumatic devices use gas pressure to control the opening and closing of valves (High bleed and Low Bleed)
- Their emissions are estimated to be among the larger sources of methane emissions from the gas supply chain.
- EPA reports 477,606 pneumatic (gas-actuated) devices in use at gas production sites
- In addition to known venting, many could also leak methane at supply lines or due to maintenance issues

Maintenance of Natural Gas-Driven Pneumatic Controllers

- Nozzle corrosion creating more flow through a larger opening.
- Leak at fittings
- Maintenance Issues including replacement of debris filter from the supply gas and replacement of O-rings and/or seals
- Poor calibration of the controller

All can increase the release of methane emissions

EPA: Pneumatic Devices Review Panel April 2014

Replacing high bleed pneumatic with low bleed controllers is infeasible in situations where a process condition may require a fast or precise control response so that it does not stray too far from the desired set point

New solutions now available

Zero bleed, mechanical, and solar-powered controllers can replace continuous bleed controllers in certain applications, but are not broadly applicable to all segments of the oil and natural gas industry.

New solutions now available

Past Electric Actuation Assumptions

- Power
 - Traditional motors typically use too much power to handle the forces needed
- Speed
 - Electric actuators are not fast enough
- Precision
 - Electric actuators don't have the accuracy or turndown capability to properly control the value
- Duty Cycle
 - Many electric motors are not rated for continuous duty

Introducing Electric Servo Actuation Technology to Oil & Gas

SERVO MOTORS

Technology commonly used in motion control applications AC or DC

ROLLER SCREWS OR PLANETARY GEARS

Use to convert rotary motion to linear valve stem motion or increasing torque for a ¼ turn valve

Easily integrated with the servo motor

SERVO CONTROLS

Precisely controls the motors motion, and therefor the valves motion

High speed, high accuracy and feedback on valve position

How Does Servo Electric Technology Differ?

- The use of a servo motor to effortlessly move the actuator in any direction for 100% duty cycles
- Linear Actuation: The use of a roller screw to convert the rotary motion of a high speed motor directly to a linear force
- Rotary Actuation: Use of planetary gears to convert the rotary motion of a high speed motor to higher torque
- The use of direct feedback and controls to provide perfect positioning at all speeds and forces, plus provide feedback

Traditional DC Motor VS. Servo Motor

Traditional Motor

- Low efficiency
- Duty Cycle Limitations
- No Feedback
- Need for limit switches and torque switches
- High power consumption

Stepper Motor

- Consume current regardless of load
- Torque Decreases with Speed
- Noisy

Servo Motor

- High efficiency (90%)
- Position feedback
- Adapts to changing loads
- Faster positioning
- Reserve power
 - Capable of short bursts of peak current to improve positioning
- Quiet

VS

• 100% Duty Cycle

Traditional Gear Train vs Roller Screw

The Roller Screw

 Self-greases at downstroke, which extends life of roller-screw

- Positioning accuracy
- Full motor (3000) rpm

200 thread-to-thread full contact points allow increased power, precision and repeatability

 Continuous velocity at 1.5" per second (5 in/sec max)

Traditional Gear Train vs Exlar Planetary Gearing

Traditional Electronics vs Servo Electronics

Traditional Actuator

- Open loop or comparator
- Limited I/O, if any
- Low temperatures require heaters
- Digital communication capabilities optional
- Feedback optional

Servo Electric Actuator

- Closed loop control of motor
- Digital/Analog feedback
 - No limit switches needed
 - 4-20 input and output
 - Additional I/O
- Digital, Analog, MODBUS control
- Precise position control
- Diagnostics

VS

Integrated Components = Linear Electric Actuator

Integrated Components = Rotary Electric Actuator

Electric Servo Actuator Features

- Modulate or Open/Close
- Failure Modes
 - Voltage monitoring circuit allows configurable operation of the actuator at user selected voltage trip points
- Fieldbus Connectivity
 - Modbus RS-485 protocol for connection to PLCs or RTU systems
- Extends Life of Valve
 - Adjustable valve seating
- Low Power Consumption
 - 12 VDC Solar power capable

Controller Changes

PNEUMATIC SOLUTION EXAMPLE

ELECTRIC SOLUTION EXAMPLE

Electronic automation systems provide better process control through reduced time lag on the output plus feedback from the process

Typical Applications

- Compression
- Separation
- Artificial Lift
- Choke Valves
- Dump Valves
- Flow Control
- Pressure Control

- Upstream, Downstream and Differential

PROVEN APPLICATIONS

Oil & Gas Production: Separators

- PCV (pressure control valve). Relieves gas from the separator to maintain separator pressure.
- LCV (level control valve or dump valve). Controls flow of water/oil out of the separator. Receives signal from the level controller. Maintains appropriate level in the vessel.
- Payline Valve
- Controls
 - Fisher ROC

Separator Installations

SEPARATOR INLET CONTROL

PIPELINE FLOW CONTROL

New Mexico

Vapor Recovery Units

New Mexico

Gas Lift/Chemical Injection/Plunger Lift

 Treatment chemicals are pumped downhole into the produced fluids of a well

Colorado

• Shreveport, La.

Salt Water Disposal

• 6-Inch in Dacoma, Okla.

Suction Control for Compressors

3-Inch and 4-Inch in Kilgore, Texas

Actuator for Compressor Seal Gas Booster Pump

Actuator for Chemical Injection Pumps

CVS Controls AC and DC Electric Chemical Pump

FEQUENTLY ASKED QUESTIONS

- How Fast is it?
 - Up to 5 in/sec
- What is the Fail position?
 - With a signal loss or dropping bus voltage, the fail position is programmable.
 - On total immediate power loss, the actuator fails in place
- What is the installed base?
 - Over 1800 units installed across Texas, New Mexico, Colorado, California, Oklahoma, Louisiana, North Dakota, and Pennsylvania
 - 7+ different producers using the technology
 - Valve independent, but standard option for Kimray and Norriseal

FEQUENTLY ASKED QUESTIONS

Producer Feedback

- Eliminates methane emissions allowing gas to be sold
- Now have better control than with pneumatics
 - Improved accuracy and faster response time
- Ties into our RTU's and provides feedback
- Same unit fits most applications (Dump and Control)
 - Stock one model for all applications

Barb Boynton Business Development Manager Curtiss-Wright/Exlar Actuation Solutions 952-500-6200

Exlar.com