Reducing Methane Emissions from Wet Seal Equipped Centrifugal Compressors

2015 Gas STAR Annual Implementation Workshop

November 16-18, 2015 Pittsburgh, PA

Paul Hosking & Mark Savage, John Crane

EMPOWERING GLOBAL ENERGY

Summary

- Centrifugal compressors equipped with wet seal technology are believed to be the leading source of methane emissions offshore and the fourth most significant source in onshore natural gas operations
- The latest EPA proposed NSPS identify three approaches to reduce methane emissions from such equipment
- The EPA Natural Gas STAR program has also been active in this area. The published work necessarily cites "typical" scenarios comparing some of the options and the data is static
- This presentation showcases a decision support tool "The Life Cycle Cost Calculator" that builds on previous work and takes it to the next level

Insightful, Comprehensive, Customizable, Specific

The Problem

2018 Projected Onshore Methane Emissions (Source: ICF/EDF March 2014)

Centrifugal Compressors (Wet Seals) 5.9%

The Options

- Retrofit oil seal technology with de-gassing vent to flare
- Retrofit oil seal technology with de-gassing vent to capture / use
- Retrofit oil seal technology with gas seal technology

The Determining Factors

Insight from Life Cycle Cost Calculator

- Economic impact
- Climate impact
- Energy impact

The complete life cycle cost

Costs

Annual Operating Costs

- Maintenance cost
- Value of leaked gas
- Consumables
- Energy consumed by seal
- Energy consumed by seal system

One-Time Costs

- Total retrofit costs
- Payback

Present Value

 Present value of annual operating costs over lifespan remaining

Total Life Cycle Cost

Energy Consumed

Energy Consumed From:

- Seal and support system
- Compressed gas energy released
- Pipe friction from contamination

Carbon Footprint

Equivalent CO2 Emissions From:

- Seal leakage
- Compressor blow down
- Energy required for the seal and support system
- Compressed gas energy released
- Energy required to overcome pipe friction

Compressor Seal Life-Cycle Cost Estimator

UTS			Oil Seal Routed to Atmosphere	Oil Seal Routed to Flare	Oil Seal Routed to Capture/Use	Gas Seal
1) Select Units of Measure (click cell to see the drop-down menu)		Units \rightarrow		Imperi	al (\$)	
2) Enter the Financial Assumptions	Default	Units				
Cost of Capital (PV discount rate)	12%	-	12.0% =	12.0% =	12.0% =	12.0%
3) Enter the Equipment Information	Default	Units				
Equipment ID/Number		(User info only)	Compressor 1			
Equipment Description		(User info only)	Description 1			
Number of Seal Chambers	2	Quantity	2 =	2 =	2 =	
Days of Equipment Operation per Year	365	Days / Year	365 =	365 =	365 =	365
Is the Compressor Spared?	Yes	Yes / No	Yes =	Yes =	Yes =	Yes
Equipment Lifespan Remaining	15	Years	15 =	15 =	15 =	15
4) Enter the Plant Utility Cost Data	Default	Units				
Cost of Electricity	0.10	\$ / kWh	0.10 =	0.10 =	0.10 =	0.10
Cost of Purge Gas for Seal Support System and Compressor Blowdown	0.01	\$ / SCF	0.01 =	0.01 =	0.01 =	0.01
5) Enter the Equipment Driver Information	Default	Units				
Compressor Driver Type (click cell to see the drop-down menu)	⇔	⇒	Gas Turbine (Natural Gas I	Powered)		
Driver Rated Power	6500	hP	6500 =	6500 =	6500 =	6500
Driver Load Factor (% of power delivered to the compressor)	70%	-	70% =	70% =	70%	70%
Compressor Driver Fuel Price	2.850	\$ / 1000 ft ³	2.850 =	2.850 =	2.85	2.85
Compressor Driver Fuel Net Calorific Value	950	BTU / ft ³	950 =	950 =	950 =	950
Compressor Driver Efficiency	55%	-	55% =	55% =	55%	55%

John Crane Inc.

Compressor Seal Life-Cycle Cost Estimator

UTS			Oil Seal Routed to Atmosphere	Oil Seal Routed to Flare	Oil Seal Routed to Capture/Use	Gas Seal
1) Select Units of Measure (click cell to see the drop-	down menu)	Units >		Imperi	al (\$)	
2) Enter the Financial Assumptions		Default Units				
Cost of Capital (PV discount rate)		12% -	12.0%	= 12.0% =	12.0% =	12.0%
3) Enter the Equipment Information		Default Units				
Equipment ID/Number		(User info only)	Compressor 1			
Equipment Description " Number of Seal Chambers	5) Enter the Equipment Driver Infor	mation	2	= 2 =	2 =	2
Days of Equipment Operation per Year			365	= 365 =	365 =	365
Is the Compressor Spared?			Yes	= Yes =	Yes =	Yes
Equipment Lifespan Remaining	Compressor Driver Type (dick cel	I to see the drop-down menu)	15	= 15 =	15 =	15
4) Enter the Plant Utility Cost Data	Driver Rated Power					
	Driver Load Factor (% of power de	elivered to the compressor)				
			0.10	= 0.10 =	0.10 =	0.10
	Compressor Driver Fuel Price		0.01	= 0.01 =	0.01 =	0.01
5) Enter the Equipment Driver Information	Compressor Driver Fuel Net Calo	rific Value				
Compressor Driver Type (click cell to see the drop	Compressor Driver Efficiency		iral Ga	as Powered)		
Driver Rated Power		0300 IF	3500	= 6500 =	6500 =	6500
Driver Load Factor (% of power delivered to the comp	ressor)	70% -	70%	= 70% =	70% =	70%
Compressor Driver Fuel Price		2.850 \$ / 1000 ft ³	2.850	= 2.850 =	2.85 =	2.85
Compressor Driver Fuel Net Calorific Value		950 BTU / ft3	950	= 950 =	950 =	950
Compressor Driver Efficiency		55% -	55%	= 55% =	55% =	55%

John Crane Inc.

Compressor Seal Life-Cycle Cost Estimator

UTS			Oil Seal Routed to Atmosphere	Oil Seal Routed to Flare	Oil Seal Routed to Capture/Use	Gas Seal
1) Select Units of Measure (click cell to see the drop-	down menu)	Units >		Imperi	al (\$)	
2) Enter the Financial Assumptions		Default Units				
Cost of Capital (PV discount rate)		12% -	12.0%	= 12.0% =	12.0% =	12.0%
3) Enter the Equipment Information		Default Units				
Equipment ID/Number		(User info only)	Compressor 1			
Equipment Description " Number of Seal Chambers	5) Enter the Equipment Driver Infor	mation	2	= 2 =	2 =	2
Days of Equipment Operation per Year			365	= 365 =	365 =	365
Is the Compressor Spared?			Yes	= Yes =	Yes =	Yes
Equipment Lifespan Remaining	Compressor Driver Type (dick cel	I to see the drop-down menu)	15	= 15 =	15 =	15
4) Enter the Plant Utility Cost Data	Driver Rated Power					
	Driver Load Factor (% of power de	elivered to the compressor)				
			0.10	= 0.10 =	0.10 =	0.10
	Compressor Driver Fuel Price		0.01	= 0.01 =	0.01 =	0.01
5) Enter the Equipment Driver Information	Compressor Driver Fuel Net Calo	rific Value				
Compressor Driver Type (click cell to see the drop	Compressor Driver Efficiency		iral Ga	as Powered)		
Driver Rated Power		0300 IF	3500	= 6500 =	6500 =	6500
Driver Load Factor (% of power delivered to the comp	ressor)	70% -	70%	= 70% =	70% =	70%
Compressor Driver Fuel Price		2.850 \$ / 1000 ft ³	2.850	= 2.850 =	2.85 =	2.85
Compressor Driver Fuel Net Calorific Value		950 BTU / ft3	950	= 950 =	950 =	950
Compressor Driver Efficiency		55% -	55%	= 55% =	55% =	55%

Pipeline compressor

Natural Gas:	96% Methane				
	\$3.00 / Mcf				
Flow:	17,000 scfm (480 m ³ /min)				
Pressure:	600 psig (41.3 Barg) Suction				
	1,100 psig (75.8 Barg) Discharge				
Shaft Speed:	9,000 RPM				
Driver:	Gas Turbine 10,500 hp (7,800 kW)				
Shaft Diameter:	5" (127 mm)				
Operational hours:	4,000 hr/year				
Spared:	Yes				

Equipment operator owns the compressed gas

•	Annual operating costs		Oil Seal Routed	Oil Seal Routed	Oil Seal Routed	Gas Seal	
			to Atmosphere				
1) Ann	ual Operating Calculations						
C _{fs}	Operating Cost of Lost Energy from Seal Friction	\$ / year	3,351	3,351	3,351	98	
C	Operating Cost of Energy Required to Operate Seal Oil System	\$ / year	12,637	12,637	12,637	0	
Ci	Operating Cost of Lost Energy and Product Loss due to Leakage	\$ / year	219,514	219,514	37,138	29,608	
C _{fp}	Operating Cost of Lost Energy to Overcome Pipe Friction Due To Oil Contamination	\$ / year	21,518	21,518	21,518	0	
Cen	Operating Cost to Replace Consumed Seal Oil	\$ / year	39,000	39,000	39,000	0	
Cm	Maintenance and Downtime Costs	\$ / year	11,000	11,000	11,000	7,500	
$\mathbf{C}_{\mathbf{p}}$	Cost of Process and Purge Gas Used During Compressor Blowdown	\$ / year	1	1	1	0	
C _g	Cost of Gas Seal Separation Gas Consumption	\$ / year	0	0	0	5,002	
C _{total}	Total Operating Costs	\$ / year	307,022	307,022	124,645	42,208	
No change as value of							
	lookago is not	Raso	operating				
			Dase				
	(either vented	to at	mospnere		COSt	is reduced	
	or combusted)					
		Value of leakage is recovered. Base operating cost unchanged					

	No change in energy requirements							
• Energy and earbon featurint	of the sealing system as the seals							
 Energy and carbon tootprint 	remain une	changed						
	1	ged						
		Oil Seal Routed to Atmosphere	Oil Seal Routed to Flare	Oil Seal Routed to Capture/Use	Gas Seal			
4) Power Consumption Calculations								
Seal Friction Energy Lost	MWh / year	244	244	244	7			
Energy Required to Operate Seal Oil System	MWh / year	123	123	123	0			
Energy Lost to Compress Gas That is Leaked	MWh / year	1,691	1,691	1,691	1,270			
Energy Lost to Overcome Pipe Friction Due To Oil Contamination	MWh / year	1,569	1,569	1,569	0			
Energy Lost to Compress Gas That is Vented During Compressor Blowdown	MWh / year 🛛 📥	1.3	1.3	1.3	0.2			
Total Power Consumption	MWh / year	3,629	3,629	3,629	1,277			
5) Carbon Footprint								
CO2 Equivalent Emissions from Seal Friction Lost Energy	Metric tons / year	44	44	44	1			
CO2 Equivalent Emissions to Operate Seal Oil System	Metric tons / year	68	68	68	0			
CO2 Equivalent Emissions Resulting From Leakage and Energy Required to Compress Gas That is Leake	ed Metric tons / year	43,324	4,115	3,362	2,901			
CO2 Equivalent Emissions Resulting From Pipe Friction Due To Oil Contamination	Metric tons / year	284	284	284	0			
CO2 Equivalent Emissions Resulting From Compressor Blowdown	Metric tons / year	0.3	0.2	0.3	0.0			
Total CO ₂ Equivalent Emissions	Metric tons / year	43,721	4,512	3,759	2,902			
Carbon footprint is reduced with each variation of the sealing solution								

In the drive to **reduce methane emissions** from wet seal equipped centrifugal compressors...

... The Lifecycle Cost Calculator provides decision support that is:

Insightful

Comprehensive

Customizable

Specific

Paul Hosking pahosking@johncrane.com

Mark Savage msavage@johncrane.com

Natural Gas STAR Annual Implementation Workshop **Exhibition Area Booth 19**