Sources and Radiative Properties of Organosulfates in the Atmosphere

Elizabeth A. Stone, Anusha Hettiyadura, Armando Estillore, Vicki Grassian Department of Chemistry, University of Iowa

> **Tim Humphry** Truman State University

Sources and Radiative Properties of Organosulfates in the Atmosphere

Central research hypotheses:

- Anthropogenic emissions impact biogenic SOA formation
- Organosulfates are climate forcing agents

Synthesis of Organosulfate Standards

1) Reaction of alcohol with pyridine sulfur trioxide complex

2) Cation exchange

(Hoff, et al., *JACS*, 2001)

- Potassium salts formed white needles upon recrystallization
- Structure and purity confirmed by ¹³C NMR, ¹H NMR, highresolution MS, elemental analysis

(Hettiyadura, et al., AMT, 2015; Estillore et al. ES&T, in press) 3

Organosulfate Standards

Characterization of climate-relevant properties

"Water uptake and hygroscopic growth of organosulfate aerosol"

Armando Estillore, Anusha Hettiyadura, Zhen Qin, Erin Leckrone, Becky Wombacher, Tim Humphry, Elizabeth Stone, Vicki Grassian Available online as a just accepted article in Environmental Science & Technology (10.1021/acs.est.5b05014)

Characterization of climate-relevant properties

Property	Measurement technique	Summary of results
Light absorption	UV-vis spectrophotometry	No absorption
Hygroscopicity	Hygroscopicity-tandem differential mobility analyzer	Continuous water uptake

Model Compounds	Formula
Sodium methyl sulfate	CH ₃ SO ₄ Na
Sodium ethyl sulfate	C ₂ H ₅ SO ₄ Na
Sodium propyl sulfate	C ₃ H ₇ SO ₄ Na
Potassium 2-butenediol sulfate	C ₄ H ₇ SO ₅ K
Potassium 4-hydroxy-2,3-epoxybutane sulfate	C ₄ H ₇ SO ₆ K
Potassium glycolic acid sulfate	C ₂ H ₃ SO ₆ K
Potassium hydroxyacetone sulfate	C ₃ H ₅ SO ₅ K
Sodium benzyl sulfate	C ₇ H ₇ SO ₄ Na

Ammonium sulfate has distinct phase transitions

Hydration curve for ammonium sulfate

Deliquescence RH 79.9 ± 0.10 % Efflorescence RH 36.7 ± 1.8%

(Estillore, et al. ES&T, in press)

Organosulfates show continuous and reversible uptake of water

Hydration curve for organosulfates

No distinct transitions; continuous growth upon hydration Absorption of water at low RH

(Estillore, et al. ES&T, in press)

Organosulfates show continuous and reversible uptake of water

Hydration curve for additional organosulfates

(Estillore, et al. ES&T, in press)

Growth factors of 100 nm particles at 85% RH

Organosulfate	Molecular weight	Growth factor	Reference	
Sodium methyl sulfate	111	1.50		
Sodium ethyl sulfate	125	1.45		
Potassium 2-butenediol sulfate	167	1.40	Estillore, et	
Potassium 4-hydroxy-2,3-epoxybutane sulfate	183	1.30	al. in press	
Potassium glycolic acid sulfate	155	1.29		
Potassium hydroxyacetone sulfate	153	1.30		
Limonene-derived organosulfates (OS)	250	1.03	Hansen et	
Limonene OS 10% w/w ammonium sulfate	250	1.20	al. ACPD,	
Limonene OS > 20% w/w ammonium sulfate	250	~ 1.5	2015	

Low molecular weight, alkyl organosulfates have the greatest growth factors

Hygroscopic growth of methyl sulfate and NaCl

Deliquescence RH 75.0 ± 0.50 % Efflorescence RH 44.0 ± 1.0% Deliquescence RH 69.6 ± 1.0 % Efflorescence RH 36.0 ± 0.5%

(Estillore, et al. *ES&T*, in press) (Estillore)

Conclusions from Hygroscopic Growth Studies

- While ammonium sulfate shows distinct deliquescence and efflorescence points upon hydration and dehydration, organosulfates show continuous water uptake.
 - →Organosulfates are hygroscopic even at low relative humidity
 - →Thus, they are expected to extend the range of environmental conditions that water is taken up onto aerosol particles
- When mixed with organosulfates, the deliquescence and efflorescence RH of sodium chloride were shifted to lower values

→ Organosulfates modify the hygroscopic properties of inorganic salts

Develop and validate a method for organosulfate speciation:

- 1) ESI-MS/MS optimization
- 2) LC separation development using HILIC
- 3) Assess sample preparation protocols
- 4) Apply to ambient aerosol

ESI Fragmentation of Organosulfates

Multiple Reaction Monitoring (MRM)

Compound	Precursor ion and m/z		Product ion and m/z		Cone voltage (V)	Collision energy (eV)
Methyl sulfate	CH ₃ SO ₄ -	111	SO ₃ ⁻·	80	36	18
			SO₄	96		14
Ethyl sulfate	C ₂ H ₅ SO ₄ ⁻	125	HSO ₄ -	97	26	12
Benzyl sulfate	C ₇ H ₇ SO ₄ ⁻	187	HSO ₃ -	81	42	18
			SO ₄ ⁻.	96		20
Hydroxyacetone sulfate	$C_3H_5SO_5^-$	153	SO ₃ ⁻.	80	32	18
			HSO ₄ -	97		20
Glycolic acid sulfate	$C_2H_3SO_6^-$	155	$C_2H_3O_3^{-1}$	75	26	18
-			HSO ₄ -	97		14
Lactic acid sulfate	$C_3H_5SO_6^-$	169	HSO ₄ -	97	28	16

(Hettiyadura, et al. AMT 2015)¹⁵

Separation of Organosulfates

Objectives:

- 1) Selective retention of oxygenated organosulfates
- 2) Separation from the sample matrix

Hydrophilic interaction liquid chromatography (HILIC)

Stationary phase:

Ethylene Bridged Hybrid (BEH) amide column (Waters) Retains extremely polar compounds (including sugars) and involves ion exchange

Mobile phase:

Acetonitrile (ACN) and water 10 mM ammonium acetate pH 9

Gradient Time (min.) H₂O ACN 0 5 95 2 5 95 4 20 80 11 20 80

 $(Hettiyadura, et al. AMT 2015)^{17}$

HILIC Separation Development

HILIC separation of PM_{2.5} from Centreville, AL

UPLC-MS/MS Method Performance

Compound	Retention time (min.)	Linear range (µg L ⁻¹)	R ²	LOD (µg L ⁻¹)	LOQ (µg L ⁻¹)	RSD (%)
methyl sulfate	0.88 ± 0.03	25.0-500.0	0.998	2.6	8.6	2.9
ethyl sulfate	0.78 ± 0.03	25.0-500.0	0.998	3.4	11.2	2.5
benzyl sulfate	0.58 ± 0.02	25.0-300.0	0.995	3.9	13.2	3.0
hydroxyacetone sulfate	0.66 ± 0.02	25.0-300.0	0.996	2.6	8.7	3.0
glycolic acid sulfate	7.84 ± 0.01	25.0-300.0	0.998	1.9	6.3	15.6
lactic acid sulfate	7.57 ± 0.02	25.0-300.0	0.995	3.9	13.0	5.9

(Hettiyadura, et al. AMT 2015)²⁰

Sample preparation: to shake or sonicate?

Southern Oxidant and Aerosol Study

- Centreville, AL (CTR) Ground Site
- June 1 July 15, 2013
- Daytime (08:00-19:00) and nighttime (20:00-07:00)
- Chemical measurements
 - Elemental and organic carbon
 - Organic species by GCMS
 - Organosulfates by LCMS
- Source apportionment of PM_{2.5} and organic carbon

Methyltetrol sulfates (m/z 215)

(Hettiyadura, et al., AMT, 2015)

Other biogenic organosulfates (m/z 213)

High resolution extracted ion chromatogram

- Forms in chamber experiments of isoprene (Surratt et al. JPCA, 2008) and potentially other VOC (Gómez-Gónzalez et al. 2008; Shalamzari et al. ES&T, 2014)
- Short retention times suggest keto- and hydroxy- groups, not carboxylic acids
- Isomers positively correlate (r_s > 0.75; p < 0.05)

HO

HO

H+

Other biogenic organosulfates (m/z 211)

High resolution extracted ion chromatogram

- Forms in chamber experiments of isoprene (Surratt et al. JPCA, 2008)
- Similarly, short retention times suggest keto- and hydroxygroups, not carboxylic acids
- Isomers positively correlate (r_s > 0.9; p < 0.05)

Molecular marker source apportionment

Aerosol Source	Markers
Secondary- biogenic	Derivatives of isoprene, monoterpenes, including organosulfates
Secondary- anthropogenic	Aromatic acids
Secondary – <i>inorganic</i>	Ammonium sulfate
Primary biogenic (detritus)	Linear <i>n</i> -alkanes (odd C preference) Linear <i>n</i> -alkanoic acids (even C preference)
Diesel engines	Hopanes, steranes, elemental carbon
Gasoline vehicles	Hopanes, steranes, polycyclic aromatic hydrocarbons (PAH)
Biomass burning	Levoglucosan, plant sterols

Biomass burning

Chemical Signatures: Anhydrosugars

(Simoneit, et al., 1999)

(photo by Joost de Gouw)

Biomass Burning at Centreville

Chemical mass balance source apportionment

EPA CMB v. 8.2

$$c_i = \sum_{i=1}^p a_{ij} s_j$$

10

- c_i = ambient concentration of species *i*
- a_{ij} = fractional concentration of species *i* at source *j*

Key assumptions:

- 1) Conservation of mass, i.e. tracers do not react or interact
- 2) Source compositions are independent of one another
- 3) Sources have been identified and are characterized

Conclusions

- HILIC chromatography provides improved retention and resolution of carboxy- and hydroxy-substituted organosulfates
 - Diagnostic tool for carboxy-organosulfates
 - Complementary to reversed-phase separations
 - May aid in understanding isoprene SOA product distributions
- Organosulfates in Centerville are largely biogenic, showing consistent signatures from isoprene
 - Correlation analysis implies an important role for sulfate
 - pH is consistently low enough to support their formation
- Preliminary source apportionment indicates a very small role for primary sources relative to secondary in Centreville.

Acknowledgements

University of Iowa	Anusha Priyadarshani Silva Hettiyadura, Shuvashish Kundu, Sean Staudt, Zach Baker, Thilina Jayarathne, Vicki Grassian, Armando Estillore, Zhen Qin, Vic Parcell, Lynn Teesch			
Wisconsin State Laboratory of Hygiene	Brandon Shelton, Steve Geis, Jeff DeMinter			
Truman State University	Tim Humphry, Emily Geddes, Erin Lekrone, Becky Wombacher, Katherine Richards			
UNC	Jason Surratt, Avram Gold, Zenfa Zheng			
University of Wisconsin- Madison	Frank Keutsch, Sean Staudt			
SOAS Organizers	Ann Marie Carlton, Jose Jimenez, Allen Goldstein, Joost deGouw, Lindsay Yee (filter captain)			
	This research is funded by U.S. EPA - Science To Achieve Results (STAR) Program Grant # 83540101			