

Impacts of Anthropogenic Emissions in the Southeastern U.S. on Heterogeneous Chemistry of Isoprene-Derived Epoxides Leading to Secondary Organic Aerosol Formation

Jason D. Surratt

Department of Environmental Sciences and Engineering, Gillings School of Global Public Health

U.S. EPA STAR Progress Review Meeting: Anthropogenic Influences on Organic Aerosol Formation and Regional Climate Implications

Monday, March 14, 2016

Acknowledgements – Thank you Collaborators And Funding Agencies!!!

UNC Surratt Group

Dr. Ying-Hsuan Lin Dr. Theran Riedel Dr. Matthieu Riva Dr. Sri Hapsari Budisulistiorini Weruka Rattanavaraha Tianqu Cui Xinxin Li Kevin Chu

Other UNC Folks

Prof. Avram Gold Prof. Barbara Turpin Prof. Zhenfa Zhang

U.S. EPA Dr. Havala Pye

Columbia University Prof. Faye McNeill

Aerodyne, Inc.

Dr. Manjula Canagartna Dr. John Jayne Dr. Philip Croteau

University of Washington

Prof. Joel Thornton Dr. Cassandra Gaston Felipe Lopez-Hilfiker

PNNL

Dr. Alla Zelenyuk-Imre Dr. John Shilling Dr. Liu Jiumeng

University of Aarhus

Prof. Marianne Glasius Kasper Kristensen

UC-Berkeley Prof. Allen Goldstein Dr. Lindsay Yee

ARA, Inc. Dr. Karsten Baumann Eric Edgerton

University of Colorado

Prof. Jose Jimenez Prof. Paul Ziemann Weiwei Hu

SOAS Collaborators

Lynn Russell Group (UCSD) Timothy Bertram Group (Wisconsin) Chris Cappa Group (UCD) McKinney & Martin Groups (Harvard) Betsy Stone Group (Iowa) Annmarie Carlton (Rutgers)

Funding

THE UNIVERSITY Brief History of Isoprene SOA – Need for Chemical of NORTH CAROLINA at CHAPEL HILL Characterization & Proper Reaction Conditions

Paulson et al., J. Aerosol Sci. (1990)

Brief History of Isoprene SOA Formation – Importance of Chemical Characterization

Anthropogenic Pollutants Enhance Isoprene SOA – Need for Understanding Rxn Conditions

Multiphase Chemistry of Isoprene-Derived Oxidation Products Promote SOA Formation

Multiphase Chemistry of Isoprene-Derived Oxidation Products Promote SOA Formation

[Paulot et al., 2009; Surratt et al., 2010, Lin et al., 2012; Lin et al., 2013; Lin et al., 2014; Nguyen et al., 2014; Jacobs et al., 2014; Gaston et al., 2014; Riedel et al., 2015; Liu et al., 2016]

THE UNIVERSITY of North Carolina at Chapel Hill

Research Questions My Group & Collaborators Addressed During Project Period

- Do you **anthropogenic pollutants** alter isoprene SOA formation in the S.E. USA through multiphase chemistry of epoxides?
- What are spatial (urban vs. rural) & temporal variations of isoprene SOA in S.E. USA?

• Do light-absorbing (brown carbon) constituents form from multiphase chemistry of isoprene-derived epoxides?

- What are the uptake kinetics of isoprene-derived epoxides & do SOA coatings/ mixtures have an effect?
- Can model predictions of isoprene SOA match chamber data? If so, how about about field observations (collaborative work with McNeill, Pye, & Nenes)?

My Group's Current Research Approach

UNC 120-m³ Gillings Outdoor Smog Chamber

UNC 274-m³ Dual Outdoor Smog Chamber

UNC 10-m³ Indoor Smog Chamber

Multiphase Chemistry of Isoprene-Derived Oxidation Products Promote SOA Formation

Chemical Characterization of Brown Carbon Oligomers From IEPOX

THE UNIVERSITY of North Carolina

at CHAPEL HILL

Non-Brown Carbon & Brown Carbon

Oligomers Observed in 2013 SOAS Samples

Measured m/z	Ion	Proposed formula	Theoretical m/z	Diff (mDa)	DBE		
Retention time: 5 – 8 min							
137.08072	(M+H)+	$C_{5}H_{12}O_{4}$	137.08084	0.12	0		
237.13316	(M+H)+	$C_{10}H_{20}O_6$	237.13326	0.11	1	1	
255.14415	(M+H)+	C10H22O7	255.14383	-0.32	0	-	
259.11587	(M+Na)+	$C_{10}H_{20}O_6$	259.11521	-0.66	1		
277.12636	(M+Na)+	C10H22O7	277.12577	-0.59	0		
355.19653	(M+H)+	C15H30O9	355.19626	-0.27	1		
359.16765	(M+Na)+	$C_{15}H_{28}O_8$	359.16764	-0.01	2		
373.20717	(M+H)+	C15H32O10	373.20682	-0.35	0		
377.17919	(M+Na)+	$C_{15}H_{30}O_9$	377.1782	-0.98	1		
395.18987	(M+Na)+	C15H32O10	395.18877	-1.10	0		
473.25933	(M+H)+	$C_{20}H_{40}O_{12}$	473.25925	-0.06	1		
477.23059	(M+Na)+	$C_{20}H_{38}O_{11}$	477.23063	0.05	2		
491.27000	(M+H)+	$C_{20}H_{42}O_{13}$	491.26982	-0.17	0		
495.24214	(M+Na)+	$C_{20}H_{40}O_{12}$	495.2412	-0.93	1		
513.25261	(M+Na)+	$C_{20}H_{42}O_{13}$	513.25176	-0.84	0		
613.30012	(M+Na)+	C25H50O15	613.30419	4.08	1		
631.31453	(M+Na)+	C25H52O16	631.31476	0.24	0		
727.39423	(M+H)+	C ₃₀ H ₆₂ O ₁₉	727.39581	1.62	0		
731.36577	(M+Na)+	C ₃₀ H ₆₀ O ₁₈	731.36719	1.45	1		
749.37624	(M+Na)+	C ₃₀ H ₆₂ O ₁₉	749.37775	1.53	0	_	
Retention time: 9	– 14 min		1				
167.10610	(M+H)+	$C_{10}H_{14}O_2$	167.10666	0.56	4	D	
267.16135	(M+H)+	$C_{15}H_{22}O_4$	267.15909	-2.26	5	D	
347.18495	(M+H)+	$C_{20}H_{26}O_5$	347.18530	0.35	8		
365.19608	(M+H)+	$C_{20}H_{28}O_6$	365.19587	-0.21	7		
387.17895	(M+Na)+	$C_{20}H_{28}O_6$	387.17781	-1.14	7		
451.20949	(M+Na)+	C25H32O6	451.20911	-0.38	10		
469.21771	(M+Na)+	C25H34O7	469.21967	1.96	9		
487.23083	(M+Na)+	C25H36O8	487.23024	-0.59	8		
505.24069	(M+Na)+	C25H38O9	505.24080	0.11	7		
547.28908	(M+H)+	C30H42O9	547.29016	1.08	10		
569.27281	(M+Na)+	C30H42O9	569.27210	-0.71	10		
647 34255	(M+H)+	CarHarOu	647.34259	0.04	11		
669 32510	(M+Na)+	CarHarOa	669 32453	-0.57	11		
733 35478	(M+Na)+	C H. O.	733 35583	1.05	14		
751 26619	(M+Na)+	C H O	751 26640	0.22	12		
751.50016	(M+Na)+	C H O	751,50040	0.22	13		
/09.3/03/	(M+Na)+	C ₄₀ H ₅₈ O ₁₃	/09.3/090	0.59	12		
833.40590	(M+Na)+	C45H62O13	855.40826	2.56	15		
851.41803	(M+Na)+	C45H64O14	851.41883	0.80	14		
933.46009	(M+Na)+	C ₅₀ H ₇₀ O ₁₅	933.46059	0.50	16		
951.46835	(M+Na)+	C ₅₀ H ₇₂ O ₁₆	951.47126	2.91	15	_	

[Lin et al., 2014, ES&T]

Non-Brown Carbon Oligomers

Brown Carbon Oligomers in PM_{2.5} from YRK, GA:

Non-Brown Carbon & Brown Carbon Oligomers Have Implications for Volatility of Isoprene SOA

Molecular Composition and Volatility of Organic Aerosol in the Southeastern U.S.: Implications for IEPOX Derived SOA

F. D. Lopez-Hilfiker,[†] C. Mohr,^{†,O} E. L. D'Ambro,[‡] A. Lutz,[§] T. P. Riedel,^{||} C. J. Gaston,[†] S. Iyer,[⊥] Z. Zhang,^{||} A. Gold,^{||} J. D. Surratt,^{||} B. H. Lee,[†] T. Kurten,[⊥] W.W. Hu,^{#, \nabla} J. Jimenez,^{#,\nabla} M. Hallquist,[§] and J. A. Thornton^{*,†}}}

pubs.acs.org/es

<u>VBS</u>: Actual volatility of IEPOX-SOA measured by FIGAERO-CIMS (black bars) reveal *C** more than 3 orders of magnitude lower than structure-activity estimates (white bars) of known IEPOX-SOA tracers

FIGAERO-CIMS suggests that IEPOX-SOA is compromised of effectively non-volatile SOA, thus has implications for modeling!

Organic Synthesis of Gas- and Aerosol-Phase Products Has Helped to Confirm Pathways

[Lin et al., 2012; Zhang et al. 2012; Lin et al., 2013; Jacobs et al., 2014; Lin et al., 2014; Budisulistiorini et al., 2015; Krechmer et al., 2015; Zhang et al., 2015]

THE UNIVERSITY of North Carolina at Chapel Hill

 $P_{tracers} = f([H^+], [nucleophile], [HSO_4^-]$

Measuring Reactive Uptake

From linear fit:

$$k_{total} = -m$$

 $k_{wall} = -m$

$$k_{total} pprox k_{het} + k_{wall}$$

[Riedel et al., 2015, ES&T Letters]

γ Results

Reactive Uptake of IEPOX Competitive with Other Loss Processes

[Gaston et al., 2014, ES&T; Riedel et al., 2015, ES&T Letters]

Sampling PM₁ in SE USA Using Aerodyne Aerosol Chemical Speciation Monitor (ACSM)

Sampling Approach in SE USA – Look Rock Example

PM_{2.5} Filter Collection & Chemical Analyses for LRK, BHM, CTR & JST Sites – Archive at UNC

Regular 11-hr (59 samples) Day 08:00 am – 07:00 pm Night 08:00 pm – 07:00 am (next day)

Intensive (64 samples) 08:00 am – 11:00 am 12:00 pm – 03:00 pm 04:00 pm – 07:00 pm 08:00 pm – 07:00 am (next day)

Total number sample: 123 per site

GC/EI-MS tracers

trans-3-MeTHF-3,4-diol cis-3-MeTHF-3,4-diol 2-methylglyceric acid 2-methylthreitol 2-methylerythritol (Z)-2-methylbut-3-ene-1,2,4-triol 2-methylbut-3-ene-1,2,3-triol (E)-2-methylbut-3-ene-1,2,4-triol

UPLC/DAD-ESI-HR-QTOFMS tracers

IEPOX-derived organosulfate IEPOX-derived dimer organosulfate MAE-derived organosulfate

PM_{2.5} Filter Collection & Chemical Analyses for LRK, BHM, CTR & JST Sites – Archive at UNC

	Urt	oan		Ru	ıral		
	BH	IM	C	ΓR	LF	K	
SOA tracers	Mean (ng m ⁻³)	Average amount detected tracers (%)	Mean (ng m ⁻³)	Average amount detected tracers (%)	Mean (ng m ⁻³)	Average amount detected tracers (%)	
MAE/HMML derived SOA							Average loadings
MAE/HMML-derived OS	7.2	1.1	10.2	1.3	8.2	1.8	Average loadings
2-methylglyceric acid	10.4	1.7	5.1	0.7	7.5	1.6	of the sum of
							tracers contributed
IEPOX derived SOA							~ 7% (up to 20%)
IEPOX-derived OS	164.5	24.3	207.1	26.8	139.2	30.3	& ~ 9% (up to 28%)
IEPOX-derived dimer OS	0.04	0.00	0.7	0.1	1.1	0.2	of total OA mass at
2-methylerythritol	266.7	37.9	204.8	26.5	120.7	26.3	or total OA mass at
2-methylthreitol	107.3	15.8	73.7	9.5	42.4	9.2	BHM and LRK,
(E)-2-methylbut-3-ene-1,2,4-triol	109.0	12.3	137.3	17.8	98.8	21.5	respectively!
(Z)-2-methylbut-3-ene-1,2,4-triol	37.3	4.1	50.7	6.6	29.1	6.1	. copection y
2-methylbut-3-ene-1,2,3-triol	23.4	2.5	26.1	3.4	16.5	3.6	
trans-3-MeTHF-3,4-diol	8.6	1.0	0.0	0.0	2.7	0.6	
cis-3-MeTHF-3,4-diol	6.8	1.0	0.2	0.0	1.7	0.4	

2-methyltetrol/C₅-alkene triol ratio ~ 2.2, nearly double that of CTR and LRK – ozonolysis of isoprene could be one source (Riva et al., 2016, *Atmos. Environ.*) [Rattanvaraha et al., 2016, *ACPD*]

Real-Time Multi-Year Characterization of NR-PM₁ in the S.E. USA using Aerodyne ACSM

Real-Time Multi-Year Characterization of OA Collected from S.E. USA

IEPOX-Derived SOA is a MAJOR Fraction of NR-PM₁ in Spring & Summer

Look Rock 2013

[Budisulistiorini et al., 2016, ACPD]

Date and Time (Local)

Diurnal Variation of Factors at LRK

THE UNIVERSITY of NORTH CAROLINA

IEPOX-Derived SOA Tracers From Compare Well VS. ACSM/AMS A IEPOX-OA Factors: Example Centreville (CTR), AL 2013

$$(EPOX_{(g)} \xrightarrow{\gamma} IEPOX_{(aq)})$$

$$k_{het} = \gamma S_{a} \omega / 4$$

IEPOZ	Recent interest in explicit modeling of SOA formation
IEPOZ	due to model-measurement deviations
IEPOZ	 GAMMA: McNeill et al., ES&T 2012 CMAQ: Pye et al., ES&T 2013; Karambelas et al., ES&TL 2014
IEPOZ	GEOS-Chem: Marais et al., ACPD 2015
IEPO	
IEPOZ	 Need for more constraints on SOA formation kinetics experiments and modeling
IEPO2 IEPO2 IEPO2	 GEOS-Chem: Marais et al., ACPD 2015 Need for more constraints on SOA formation kinetics experiments and modeling

Gaston et al., ES&T 2014; Riedel et al., ES&TL 2015 Eddingsaas et al., JPCA 2010; Cole-Filipiak et al., ES&T 2010; Piletic et al., PCCP 2013

IEPOX Chamber SOA Experiments

10 m³ teflon chamber RH: < 5% aerosol seed: $(NH_4)_2SO_4 + H_2SO_4$ IEPOX injected: 600 ppbv

[Riedel et al., 2016, ACP]

GC/MS: 2-methyltetrols, C₅-alkene triols, 3-MeTHF-3,4-diols, IEPOX-dimer **LC/ESI-MS :** IEPOX-OS, IEPOX-dimerOS

"other SOA" = IEPOX-SOA products not quantified through offline measurements

[Riedel et al., 2016, ACP]

Explicit Chamber Model of IEPOX SOA Formation

- 0-D time-dependent box model
- Model run time = experiment duration
- Initialize model with:
 - chamber measured seed aerosol [S_a] and [mass]
 - E-AIM calculated seed aerosol composition
 - [SO₄²⁻], [HSO₄⁻], [H₂O], [H⁺]
 - first-order wall-loss rates applied to IEPOX_(g) and seed aerosol
 - rate of IEPOX_(g) injection simulated by exponential decay
 - apply $\gamma = 0.021$ derived from Gaston et al. (2014) & Riedel et al. (2015)
- Explicitly track:
 - IEPOX_(g), IEPOX_(aq)
 - 2-methyltetrols, organosulfate, C₅-alkene triols, 3-MeTHF-3,4-diols, IEPOX dimer, IEPOX dimer organosulfate, other SOA
 - [SO₄²⁻], [HSO₄⁻]
- Vary model aqueous rate constants to minimize difference between model output and filter measurements

Explicit Chamber Model Output

RH: < 5% seed: 0.06M $(NH_4)_2SO_4 + H_2SO_4$ IEPOX injected: 5, 15, 30 mg

assumed seed density = 1.6 g/mL assumed SOA density = 1.25 g/mL (Kroll et al., ES&T 2006) "other SOA" = DMAtotal_{mass} – sum(filtertracers_{mass})

[Riedel et al., 2016, ACP]

THE UNIVERSITY

RTH CAROLINA Model-Estimated Rate Constants

SOA tracer formed	k	_
2-methyltetrols	$3.4\pm3.2 imes10^{-4}$ M ⁻² s ⁻¹	Riedel et al.,
IEPOX-OS	$4.8\pm3.4 imes10^{-4}~M^{-2}~s^{-1}$	(2016, ACP)
C ₅ -alkene triols	$8.8\pm3.8 imes10^{-4}~M^{-1}~s^{-1}$	
3-MeTHF-3,4-diols	$2.6{\pm}3.5 imes10^{-4}~M^{-1}~s^{-1}$	
IEPOX-dimer	$1.3\pm0.7 imes10^{-5}\ M^{-2}\ s^{-1}$	
IEPOX-dimerOS	$6.8\pm4.6 imes10^{-5}\ M^{-2}\ s^{-1}$	
other SOA	$5.7\pm6.9 imes10^{-4}~M^{-2}~s^{-1}$	

Consistent with Eddingsaas et al. (2010, JPCA) & Cole-Filipiak et al. (2010, ES&T)

 $IEPOX_{(aq)} + H^+ + H_2O \rightarrow 2$ -methytetrols + H⁺ $IEPOX_{(aq)} + H^+ + SO_4^{2-} \rightarrow IEPOX$ -organosulfate + H^+ $k \approx 9e-4 M^{-2} s^{-1}$ $k \approx 2e-4 M^{-2} s^{-1}$

ORTH CAROLINA Atmospheric-Type Simulation

Initialize with: 500 pptv IEPOX 2-methyltetrols ammonium bisulfate aerosol **IEPOX-OS** C₅-alkene triols $250 \,\mu m^2/cm^3 \,aerosol \,S_a$ 50% RH 3-MeTHF-3,4-diols 6-hour processing time **IEPOX-dimer IEPOX-dimerOS** other 288 ng/m³ 2-methyltetrols **IEPOX-OS**

C₅-alkene triols 3-MeTHF-3,4-diols **IEPOX-dimer IEPOX-dimerOS** other SOA

52 ng/m³ 25 ng/m^3 7.4 ng/m^{3} 0.1 ng/m^{3} 0.1 ng/m^{3} 0.6 ng/m^{3}

Total predicted SOA mass = 0.37 μ g m⁻³

[Riedel et al., 2016, ACP]

What's Certain & Remaining Questions

- We can model explicit SOA tracers from chamber studies; could be extended to field observations from SOAS & GoAMAZON – role of organic coatings/mixtures with sulfate? Why acidity not limiting factor?
- IEPOX SOA large fraction (~1/3) of OA mass in both rural & urban areas of S.E. U.S. during summer; MAE/HMML-derived SOA is minor (at least at surface); Non-IEPOX SOA from ISOPOOH + OH could represent up to 20-25% of OA mass in rural areas
- Role of multiphase chemistry of isoprene-derived peroxides in SOA formation likely important & requires more detailed examination
- Isoprene SOA-induced ROS <u>activates the Nrf2 signaling</u> pathway against oxidative stress health implications (see my computer!)
- Policy Question: Are wet acidic sulfate loadings low enough to prevent potential human health effects?

Thank You!

Questions?