


 

 

 

 

 

Foreword 
This non-technical guide was developed by the U.S. Environmental Protection 
Agency (EPA) to provide local government officials, beach managers, health 
department personnel, and others basic information on how to develop predictive 
tools in the context of an overall beach monitoring and notification program. Five 
case studies are presented toward the end of this document as examples of how 
predictive tools have been developed and used at actual beaches. Readers seeking 
more in-depth design and implementation information are encourage to review the 
sources used to develop this document as well as various on-line resources provided 
by EPA and other agencies. 
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• qPCR analysis, City of Racine Health Department. 
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• Miami Beach, ©istockphoto.com. 

Case study images are courtesy of the Chicago Parks District, Charles River Watershed 
Association, Milwaukee Department of City Development, Milwaukee County Parks, 
University of Wisconsin Zilber School of Public Health, and City of Racine Health Department. 
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Transformation 

EPA� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � U�S� Environmental Protection Agency 

FIB � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Fecal Indicator Bacteria 

GBM� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Gradient Boosting Machine 

GIS � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Geographic Information System 

GLRI� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Great Lakes Restoration Initiative 

MHD � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Milwaukee Health Department 

MLR � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Multivariable Linear Regression 

MPN� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Most Probable Number 

NDBC� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � National Data Buoy Center 

NOAA � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � National Oceanic and Atmospheric 
Administration 

NWIS � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � National Water Information System 

NWS� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � National Weather Service 

OLS� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Ordinary Least Squares 

PLS � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Partial Least Squares 



                                             

                                           

                                             

                                           

                                        

                                             

                                          

                                          

                                           

                                            

                                             

                                           

                                             

                                             

                                          

                                          

vi Six Key Steps for Developing and Using Predictive Tools at Your Beach

Acronym List 

QA � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Quality Assurance 

QAPP � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Quality Assurance Project Plan 

QC � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Quality Control 

qPCR � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Quantitative Polymerase Chain Reaction 

SCDHEC � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � South Carolina Department of Health and 
Environmental Control (SCDHEC) 

SSO � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Sanitary Sewer Overflow 

TMDL � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Total Maximum Daily Load 

USACE � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � U�S� Army Corps of Engineers 

USGS � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � U�S� Geological Survey 

UTC � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Coordinated Universal Time 

UV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Ultraviolet 

UWM� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � University of Wisconsin–Milwaukee 

VB � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Virtual Beach 

VB3 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Virtual Beach Version 3 

WDNR� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Wisconsin Department of Natural Resources 

WWTP� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Wastewater Treatment Plant 



 

  

Information on EPA’s 
recommended water quality 

 criteria is provided in the National 
 Beach Guidance and Required 

Performance Criteria for Grants (the 
National Beach Guidance) at http:// 
www.epa.gov/sites/production/ 
files/2014-07/documents/beach­
guidance-final-2014.pdf. 
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Introduction 

Even the most pristine waters contain a variety of microscopic
organisms. Most of them are harmless, but a small portion can cause 

illness in humans, including gastroenteritis; eye, ear, and throat infections; 
hepatitis; and giardiasis. Generally disease-causing (pathogenic) organisms 
encountered at swimming beaches originate from the feces of humans 
and warm-blooded animals and are carried into recreational waters by 
stormwater runoff. 

Monitoring directly for pathogens in recreational waters is currently 
impractical for a number of reasons, which include the difficulty in 
identifying which pathogens are present, filtering large volumes of water 
to isolate enough organisms to measure, and the high cost of analytical 
methods. Fortunately, some types of nonpathogenic fecal bacteria are 
transported along with disease-causing microbes. Known generically as 
“fecal indicator bacteria” (FIB), they exist in far greater numbers than 
pathogens and are easier to isolate and enumerate in the laboratory. 
Consequently, FIB can serve as markers for the potential presence of 
pathogens. 

Currently EPA recommends two types of FIB for use in beach monitoring 
programs: enterococci and Escherichia coli (E . coli) Either type can be used 
at freshwater beaches, and enterococci are recommended for marine water. 
State beach programs use exceedance of a beach notification threshold based 
on the U.S. Environmental Protection Agency’s (EPA’s) national criteria 
recommendation or a site-specific water quality standard for these bacteria 
to determine when to issue a swimming advisory or close a beach (beach 
notification). 

1 

Key Resources on Predictive Tools 
 z Predictive Tools for Beach Notification. Volume I, Review and Technical Protocol (USEPA 2010a) 

z Predictive Modeling at Beaches. Volume II, Predictive Tools for Beach Notification (USEPA 2010b) 

z Developing and Implementing Predictive Models for Estimating Recreational Water Quality at Great Lakes 
Beaches (Francy et al. 2013a) 

z Virtual Beach 3.0.4: User’s Guide (Cyterski et al. 2013) 

z Accessing Online Data for Building and Evaluating Real-Time Models to Predict Beach Water Quality  
(Mednick 2009) 

z Report of the Experts Scientific Workshop on Critical Research Needs for the Development of New or Revised 
Recreational Water Quality Criteria  (USEPA 2007) 

z Beach Water Quality Decision Support System (Rockwell et al. 2013) 

http://www.epa.gov/sites/production/files/2014-07/documents/beach-guidance-final-2014.pdf
http://www.epa.gov/sites/production/files/2014-07/documents/beach-guidance-final-2014.pdf
http://www.epa.gov/sites/production/files/2014-07/documents/beach-guidance-final-2014.pdf
http://www.epa.gov/sites/production/files/2014-07/documents/beach-guidance-final-2014.pdf
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Sampling beach water for FIB. 
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Introduction 

The Time-Lag Problem 
At first glance, the process for determining when beach water is safe for 
swimming seems fairly straightforward. If laboratory results indicate FIB 
densities above the state water quality standard or other threshold value, a 
beach notification is issued. If FIB densities are below the threshold value, 
no action is taken (Figure 1). 

Figure 1. Using sampling and culture analysis to make a beach notification decision. 

Underlying this beach notification system is the assumption that FIB 
densities do not change (i.e., they persist) between the time a water sample 
is taken and the laboratory results are known (usually a span of 18–24 hours 
for culture methods—the methods most often used). At some beaches, 
this “persistence model” is valid, especially when natural or artificial 
barriers restrict water movement at the beach. At many open water beaches, 
however, studies have shown that FIB density can fluctuate significantly 
over relatively short periods of time. This phenomenon sets up possible 
undesirable scenarios, for example: 

Beach water is sampled on Monday . Results obtained on Tuesday 
indicate that FIB density was above the state standard, so the 
beach manager issues an advisory . On Wednesday, results of 
follow-up samples taken on Tuesday reveal that FIB density was 
back to normal and the water was actually safe for swimming (i .e ., 
Monday’s FIB levels did not persist into Tuesday) . Consequently, 
Tuesday—a perfectly good beach day—was lost . Monday’s 
swimmers, on the other hand, were exposed to high levels of FIB 
and potentially unhealthy levels of pathogens . 

None of the consequences are good: (1) Monday’s swimmers might have 
swum in contaminated water, (2) beachgoers might have lost recreational 
time on Tuesday, and (3) area businesses might have suffered economic losses 
due to the lack of customers. The 18–24-hour time-lag can be a problem. 
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Introduction 

Predictive Tools 
The time-lag problem of culture analysis and the shortcomings of the 
persistence model have led to the development of tools that predict whether 
the applicable water quality standard has been or is likely to be exceeded so 
that beach notifications can be issued in a more timely way. When integrated 
properly into a beach notification program, these tools can provide an early 
warning of potentially unsafe swimming conditions. This guide presents 
an overview of how to develop a predictive tool for your beach program. It 
focuses mainly on implementation activities and issues and not on technical 
details. 

In most instances, the “tool” is actually a mathematical equation or 
“model” designed to produce one of two types of output: (1) a FIB density 
prediction, or (2) a probability prediction that expresses the chances that an 
applicable water quality standard or notification threshold will be exceeded 
(e.g., “There is 60 percent chance that the standard or threshold will be 
exceeded.”). Either output type can be used by beach managers to “trigger” 
a beach notification. Throughout this document, when “bacteria density” 
is mentioned as the model output, assume that it includes “exceedance 
probability” as an alternative form of output, unless indicated otherwise. 

Figure 2 shows the timeline for a beach program using predictive modeling. 
The time required to make the beach notification decision is significantly 
shorter than the time required in the scenario shown in Figure 1. 

Figure 2. Using predictive modeling to make a beach notification decision. 

In addition to improving the timeliness of beach notifications, predictive 
models can also help reduce sampling and increase the accuracy of 
identifying notification days by adding to the existing monitoring 
program (e.g., if FIB sampling occurs only once or twice a week because of 
resource constraints, predictive models can provide information for timely 
notification on other days). 
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Introduction 

Developing a Predictive Model 
This document presents six basic steps that an interdisciplinary project team 
(the Beach Team) might take to analyze, develop, implement, and evaluate 
the success of a predictive model. Each step is discussed in a separate section. 

•	 Step 1: Evaluate the Appropriateness of a Predictive Tool . This
section outlines factors that your Beach Team should consider before
proceeding with a modeling project. The team should assess the
degree of risk to the public from swimming at the beach, confirm that
essential historical FIB data exist that can be used to develop the model,
identify any beach conditions or attributes that are not compatible with
FIB modeling, and evaluate whether sufficient resources are available
locally to support model development, operation, and maintenance.

•	 Step 2: Identify Variables and Collect Data . This section introduces
independent variables influencing the movement of bacteria from their
sources, through the drainage system and receiving water, and into the
swimming area of a beach. It offers insights into which independent
variables might serve as the best candidates for modeling FIB at a
beach.

•	 Step 3: Perform Exploratory Data Analysis . Once a set of candidate
independent variables is selected, they must be statistically evaluated to
see how well they correlate with FIB densities. Results from exploratory
data analysis further refine the list of candidate variables.

•	 Step 4: Develop and Test the Predictive Tool . Models can range from
simple to complex. This section begins with a discussion of rainfall-
based models that need only one independent variable to develop and
run. The discussion continues with modeling using multiple variables
and concludes with techniques for testing the model.

•	 Step 5: Integrate the Predictive Tool into a Beach Monitoring and
Notification Program . Predictive tools are one component of an
overall beach program. To successfully integrate a model into a beach
monitoring program, your Beach Team should develop protocols for
collecting input data, running the model, and using model results.

•	 Step 6: Evaluate the Predictive Tool over Time . To ensure that model
output remains accurate and relevant over time as beach conditions
change, your Beach Team should evaluate the model’s accuracy at least
annually. 



This document concludes with a series of case studies that illustrate various 
ways that predictive models have been developed and implemented. The 
following case studies helped inform this guidance: 

• The Grand Strand, South Carolina . The South Carolina Department
of Health and Environmental Control (SCDHEC) developed a
stormwater model to predict FIB densities at South Carolina state
beaches. This case study highlights the limitations of monitoring
equipment and the value of collaboration and technology.

• Charles River, Massachusetts . The Charles River Watershed Association
(CRWA) worked with Tufts University to develop a statistical model
to predict water quality in the Lower Charles River Basin. CRWA’s
experience highlights the importance of model simplicity and the
availability of real-time data when resources are limited.

• Chicago, Illinois . The Chicago Parks District (CPD) developed a
predictive model in 2011 with the assistance of the U.S. Geological
Survey (USGS). CPD’s experience emphasizes the need for
comprehensive knowledge of the beach environment as well as
adequate funding and technical resources to collect data and conduct
statistical analyses.

• Racine, Wisconsin . The City of Racine and the Wisconsin Department
of Natural Resources developed NOWCAST statistical models for
Racine’s two beaches using EPA’s Virtual Beach (VB) software.
Racine’s experience illustrates the importance of a robust data set and
the advantages of reinforcing a model with other beach monitoring
components.

• South Shore Beach, Wisconsin . With assistance from the University
of Indiana and USGS, the Milwaukee Health Department (MHD)
developed a statistical model for three of its public beaches based on
24-hour rainfall data and previous 24-hour bacterial sampling data.
MHD’s experience shows that a model can be a good fit for the local
public health department.
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Step 1: Evaluate the Appropriateness of a 
FIB Predictive Tool 

Introduction to Step 1 
While a predictive tool might provide a huge benefit to some beach 
programs, your Beach Team should first carefully consider and answer the 
following questions to make sure that a predictive tool is right for your beach: 

a.	 Is there a need for a predictive tool?

b.	 Are beach characteristics compatible with predictive tools?

c.	 Are there sufficient historical data to develop and test a predictive tool?

d.	 Are there funding and personnel experienced with model development
and maintenance available to develop, operate, maintain, and update a
predictive tool?

Is There a Need for a Predictive Tool? 
One of the first things your Beach Team should evaluate is whether a 
predictive tool is needed. Remember that the main purpose of a predictive 
tool is to predict whether the applicable water quality standard has been or 

is likely to be exceeded during the time period prior to 
culture results being available (time lag) on a sampling 
day or on nonsampling days. Using time series analyses, 
EPA reports that bacteria levels at the beach can change 
over relatively short periods of time (USEPA 2010c). If FIB 
density at your beach, however, is known to persist for 
24 hours or more, the need for making predictions is not 
as important. Traditional water sampling and laboratory 
analysis alone might adequately protect swimmer health. 

Other situations when a predictive tool might not be 
needed include (1) beaches being sampled daily using 
rapid methods, and (2) beaches never, or hardly ever, 
exceeding applicable recreational water quality standards. 
Given several beaches to manage and limited budgets, 
your Beach Team will likely rank their beaches according 
to factors such as potential risk to human health 
presented by pathogens and beach use. These rankings 
(described further in Chapter 3 of EPA’s 2014 National 
Beach Guidance) can also help identify the beaches that 
could benefit most from predictive models. 



Checklist of Beach and Program 
Characteristics Compatible with 
Modeling 

4 The beach operates 
under a constant range of 
“normal” conditions. 

4 Exceedances of beach 
notification threshold 
values occur occasionally 
but are not a chronic 
problem. 

4 FIB densities change over 
relatively short periods of 
time (time-lag problem). 

4 A sufficient amount 
of historical FIB and 
independent data exists. 

4 Funding for personnel 
and technical experts is 
available. 

4 Monitoring equipment is 
available. 

4 Computer equipment and 
software are available. 
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Step 1: Evaluate the Appropriateness of a FIB Predictive Tool 

Are Beach Characteristics Compatible with 
Predictive Tools? 
Beaches that make the best candidates for predictive tools are located in 
environmental settings that are themselves predictable. A good candidate 
beach operates under a fairly constant range of “normal” conditions that, 
when processed through a predictive tool, should yield a good estimate of 
FIB levels. The tool operates like an “if…then” statement. If a set of these 
conditions occurs, then you get a specific FIB density. Importantly, most 
predictive tools are developed using historical data which, in effect, describe 
and define the norm in terms of both the conditions and the predicted value. 
Once in operation, if the tool is presented with conditions outside the norm, 
it might not yield accurate results. Therefore, the team might have to revisit 
the conditions predictive for FIB density. 

Beaches that might not be good candidates for predictive tools are usually 
those subject to a wide or frequently changing set of conditions and 
disturbances that impact FIB density, making “normal” difficult to define 
and characterize. These conditions might include frequent impacts by spills 
or illicit discharges or periodic visits by large flocks of birds. Some open 
ocean beaches are not good candidates for modeling simply because of the 
sheer complexity of the various meteorological conditions, tidal patterns, 
offshore currents, and other factors that occur. 

Are There Sufficient Historical Data to Develop and 
Test a Predictive Tool? 
Access to a sufficient amount of historical FIB density data and 
corresponding data describing a variety of environmental conditions (i.e., 
independent variable data) is crucial for developing and testing predictive 
models. EPA recommends having at least 50 observations; but 100 or more is 
preferable (USEPA 2010b). Ideally the observations should represent a range 
of conditions experienced at the beach and include data collected in normal 
seasons, dryer-than-normal seasons, and wetter-than-normal seasons. This 
is rarely the case; but the closer you can get to this ideal, the more robust 
your model will be. 

An important part of the model development process is testing the model. 
Francy et al. (2013a) recommends that you collect data for at least three 
seasons, then use two seasons’ data as the training dataset and one season’s 
data as the testing dataset. 



(see http://www.epa.gov/beach-tech/beach-sanitary-surveys  

A more complete discussion of independent variable data along with tips 
on how to collect them is provided in step 2. For preliminary purposes, 
however, your Beach Team should investigate the FIB density, rainfall data, 
and data on factors that affect water movement in and around the beach 
(i.e., wind and wave direction and magnitude). Water quality data such as 
turbidity and water temperature are also important factors at some beaches; 
as are data on near-shore sources of fecal pollution (e.g., birds). 

Sources of data include federal agencies (e.g., the National Weather Service 
(NWS) and USGS) as well as various state and local agencies. A particularly 
valuable resource is beach sanitary surveys, especially if they are conducted 
on a daily basis 

for sanitary surveys developed by EPA). Sanitary 
surveys provide site-specific data that match exactly 
to the time a FIB sample is collected. 

If a minimum of three seasons’ worth of historical 
data is not readily available, then your Beach Team 
might need to collect more data before developing 
the model. Step 2 provides more information on data 
collection. 

Are There Funding and Other 
Resources Available to Develop, 
Operate, Maintain, and Update a 
Predictive Tool? 
The development of a predictive model is just the first 
phase of an overall predictive modeling program. 
Once the model is developed, there are a variety of 
costs associated with operating and maintaining it. 
The majority of local agencies responsible for beach 
programs—usually city or county public health 
departments—have limited staff time, technical exper-
tise, and funding available for projects. Consequently, 
resources and costs must be carefully planned and 
budgeted. Major costs to consider include: 

• Personnel and technical experts. 

• Data collection. 

• Monitoring equipment and supplies. 
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Collaboration with Others 
Many partnerships have successfully developed a number of modeling programs. For example, USGS 
has played a major role in modeling efforts in the Great Lakes region. They offer extensive resources, 
expertise, and comprehensive knowledge of watersheds (including beaches) and can provide in-depth 
statistical tools and statisticians to run them. Local universities can be another highly valuable resource. 
Graduate students from ecology, biology, and environmental science and engineering departments 
might be available to assist with water quality monitoring, sampling, and even model development. A 
mutually beneficial partnership might develop as students have the opportunity to apply their research 
to a real-world scenario and it allows for low-cost sampling and monitoring. In addition, universities often 
have their own monitoring equipment, laboratories, and even statistical software that can be shared. 

Some beach programs have models that began as part of graduate theses and dissertations. For example, 
SCDHEC developed its model with the help of a graduate student at the University of South Carolina who 
used it as part of a master’s thesis. The CRWA’s predictive model was also developed as part of a master’s 
thesis by a student at Tufts University. These collaborative efforts proved to be highly advantageous, 
providing a wealth of knowledge and expertise, as well as significant cost savings. 
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Step 1: Evaluate the Appropriateness of a FIB Predictive Tool 

• Modeling and statistical software. 

• Model evaluation over time. 

Personnel and Technical Experts 
Your Beach Team needs to have the right combination of staff to develop 
and implement a predictive tool. The most important staff will be the 
following: 

• Field staff—to conduct sampling and maintain equipment. 

• Modeler/statistician—to analyze data and develop, validate, and refine 
the model. 

• Beach manager—to integrate the model into your beach program and 
conduct public outreach. 

It can be helpful to collaborate with others, such as universities, federal 
agencies, and state or local governments (see Collaboration with Others 
text box). They can be excellent resources, especially when the technical 
knowledge of a statistician is required. 

Data Collection 
In addition to gathering historical data, the team will need to continue to 
collect data from the same sources to run the model once it is implemented. 
Data collection is discussed in more detail in step 2. If the data source changes 



for any of the model’s variables or significant alterations occur to the beach 
and surrounding area, the model will need to be recalibrated (see step 6). 

Monitoring Equipment and Supplies 
Even when there is an abundance of data for your beach from external 
sources, use of monitoring equipment such as data sondes, flow meters, and 
rain gauges might provide you with more accurate data. The main drawback 
of using this equipment is that it can be expensive to purchase and maintain, 
especially when it must be placed in harsh environments and exposed to 
weather, waves, sand, and vandalism. Sufficient funding resources as well as 
staff to maintain and repair equipment are necessary. As described in the 
case studies, both MHD and SCDHEC stopped using data sondes and rain 
gauges because of their high maintenance costs, but were able to develop 
successful models using other data sources. 

Modeling and Statistical Software 
Some models are simple enough to run in a basic Excel spreadsheet, with 
no additional software required. Statistical software can be purchased, 
but it might have licensing costs. EPA developed VB, a free model builder 
software program (described in more detail in steps 3 and 4), that enables 
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beach managers and others to develop or update models using statistical 
techniques. The software is user-friendly; however, preparing data for input 
into the modeling software requires considerable time and expertise. Visit 
http://www.epa.gov/exposure-assessment-models/virtual-beach-vb for more 
information about VB. 

For information on how to manage your data set for use in VB, see step 2. If 
the answers to the four questions asked in the introduction to this step are 
“Yes”, you are in a good position to move forward with the development of 
a predictive model. If you determine that a predictive model is not needed 
or your beach is not a good candidate for a modeling project, consider 
working with your public health officials to alter the current monitoring 
program to focus your efforts during times when conditions favor high FIB 
densities. If your answer is “No” to question c., you might need to collect 
additional data to build a historical database for use for model development 
in the future. If your answer is “No” to question d., consider exploring the 
potential of collaborating with others interested in model development (see 
“Collaborating with Others” text box). If that option is not available, there 
are other ways to increase the level of public health protection at beaches, 
including the use of sanitary surveys and preemptive advisories. 

Model Evaluation Over Time 
Once your model has been developed, it must be maintained to keep it 
running properly and performing as expected. This process is covered in 
step 6. 
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Step 2: Identify Variables and Collect 
Data 

Introduction to Step 2 
After your Beach Team has determined that a predictive model is 
appropriate for a beach, it can proceed to Step 2: identifying candidate 
independent variables for use in model building and collecting a set of high-
quality historical data for those variables and FIB density. Refer to page 16 
for list of independent variables. 

To predict an exceedance of a water quality standard, your Beach Team 
must first identify environmental conditions that likely affect the levels of 
bacteria at the beach. In the context of predictive modeling, those conditions 
are the “independent variables.” In this step you are trying to identify and 
collect data for the independent variables that exhibit the strongest statistical 
relationship with the dependent variable, FIB density. It is important to 
keep in mind, however, that a strong statistical association should not be 
interpreted as reflecting actual causative mechanisms for an observed 
elevation of FIB densities.  The association is based only on the correlation 
of past observations of independent variables with FIB density.  When such 
associations are evident, further scientific investigation can inform beach 
managers of the nature of the association and improve their understanding 
of future occurrences and how much weight to give them. 

Key Attributes of Variable Data Sets 
For model-building, the variable data sets should possess the following basic 
characteristics. 

An adequate amount of data to develop (training dataset) and validate 
(testing dataset) the model . EPA recommends at least 50 observations 
for model development, but 100 or more are preferred. There are several 
ways of portioning the available data into training and testing datasets. 
One common way is to collect three seasons of data, then designate two 
seasons as the training data set and the third as the testing data set. You 
can construct your model using fewer data, but model performance might 
suffer because accuracy might be low. 

High-quality data, including quality assurance documentation . Ideally, 
a quality assurance plan exists that describes data collection methods, 
protocols, and procedures. Given the particular variable, the plan might 
include laboratory methods; field sampling protocols, including metadata 
(e.g., sampling time and depth of sample); and data processing procedures. 



Quality Assurance and Quality 
Control 

EPA’s National Beach 
Guidance (2014) provides 
important information and 
recommendations concerning 
primary data collection to 
ensure that all observations, 
samples, and measurements 
are properly and consistently 
collected and processed. 
Specifically, the Agency 
recommends that a quality 
assurance project plan (QAPP) 
be developed to ensure that 
collected data are complete, 
accurate, and suitable for the 
intended purpose. Essentially, 
the QAPP serves as a blueprint 
for collection activities and 
quality assurance (QA) and 
quality control (QC) procedures. 
Also included in the plan should 
be detailed descriptions of 
standard operating procedures 
and staff training requirements. 

Easily collected or obtained data . Because predictive models are often 
run daily, all input data must be obtained quickly. Automatic samplers 
with data transmission capabilities and data that are easily downloaded 
from government agencies’ websites (e.g., NWS and USGS) represent 
good data sources. The “ease of collection” will likely eliminate many 
potentially good candidate variables from consideration. In some 
cases, a more easily collected surrogate variable might convey similar 
information; in other cases, your Beach Team will have to abandon 
the variable and look elsewhere. In general, data collected locally are 
preferred over data obtained from external sources. If data from external 
sources are used, it is preferable if the collection methods are subject to 
good QA/QC (e.g., USGS or NWS data). 

Consistent procedures for collecting data for pre- and post-model 
development . Independent variable data have two functions: (1) they 
are used to develop the predictive model, and (2) they are used as input 
variables to run the model. When you use historical data to build a 
model, you assume that the methods used to collect and report that data 
will remain in place for future model input data collection. Consistency 
is key. You cannot mix and match data sources for the same variables 
without re-validating the model. 

Temporally relevant independent variable and FIB data . FIB sampling 
at swimming beaches usually occurs early in the morning. Some 
independent variable data are likely collected at the time of sampling. 
Other data might relate to conditions that occurred prior to the sample 
collection time, such as cumulative rainfall over the previous 12 hours. 
As you determine your independent variables, you must keep them 
temporally relevant to the sample time. If the sample time was at 8:00 a.m., 
you need to ensure that your independent variables are also based on 8:00 
a.m. or an earlier time based on knowledge of stream effects and runoff. 
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Some Basic Bacteria Facts 

FIB are very small, immobile 
single-celled organisms. 
They have to be physically 
transported from point to point 
by some mechanism. Usually 
this mechanism is moving 
water. 

Life expectancy of individual 
cells outside their natural 
environment is usually short, 
around 2–5 days. Many 
stressors can shorten it further. 

FIB can survive and even 
multiply for some time in 
sediments and algal mats. 
They can be easily stirred up 
and resuspended in overlying 
waters. 
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Step 2: Identify Variables and Collect Data 

FIB Density 
It is important that FIB density measurements are taken at a consistent 
location, depth, and time. Sample collection, handling procedures, and 
analytical methods must be consistent as well. This section lists EPA 
recommendations concerning FIB sampling and analysis. They are presented 
not to encourage immediate changes to data collection procedures (which 
would disrupt consistency), but as background to allow better interpretation 
of FIB density data that have already been collected. 

•	 Sample Location . Sample sites should be located where the greatest 
recreational use occurs. Features that might directly affect the 
movement of FIB to and from the beach, such as outfalls and jetties, 
should also be taken into account. 

•	 Sample Depth . Samples should generally be taken in approximately 
knee- to waist-deep water unless that depth poses a safety risk to the 
sampler (e.g., powerful waves). The sample should be drawn 0.5–1 foot 
below the surface. Samples taken from shallower waters might not 
accurately represent ambient FIB density due to the resuspension of 
bacteria from sediments. 

•	 Sample Time . Samples taken early in the morning are generally 
considered the best for beach monitoring programs because that is 
the time when FIB densities are usually the highest. The sampling 
time should be consistent day to day because FIB density can change 
fairly quickly in response to increasing sunlight intensity, temperature, 
and other environmental conditions. EPA’s National Beach Guidance 
includes a detailed discussion on event-scale, diurnal, and tidal 
variability (USEPA 2014). 

•	 Sample Frequency . For the purpose of developing a predictive model, 
the more samples the better. Most beach programs sample high priority 
beaches at least once a week during the swimming season. In general, 
a model will be increasingly robust as more FIB data are collected and 
matched with independent variable data. The Report of the Experts 
Scientific Workshop on Critical Research Needs for the Development of 
New or Revised Recreational Water Quality Criteria recommends you 
collect data four or five times a week covering a variety of sampling 
events to capture temporal variability (e.g., if FIB sampling occurs only 
once or twice a week due to resource constraints, predictive models can 
provide information for timely notifications on other days) (USEPA 
2007). 



Sources of Bacteria 

Human Sources 

Some older cities have combined sewer systems that convey both sanitary sewer wastewater and 
stormwater in one piping system. During periods of significant rainfall, the capacity of the combined sewer 
might be exceeded. When this happens, the excess mixture of sanitary wastewater and stormwater is 
discharged at combined sewer overflow (CSO) points, typically to rivers and streams. During dry weather 
periods, human-derived bacteria usually cause a problem at beaches only if septic systems in the area fail 
or wastewater pipes are compromised or illegally connected to storm drains. 

Animal Sources 

In urban and suburban landscapes, animal-derived bacteria and other pollutants tend to collect on 
impervious surfaces. Sources typically include dogs and cats; waterfowl such as geese, gulls, and ducks; and 
scavenger species such as raccoons, rats, and pigeons. During the beginning of a storm, the initial runoff 
flow will sweep up most of the deposited fecal matter and quickly carry it into the drainage network. Known 
as the “first flush” phenomenon, this flow typically has significantly higher concentrations of bacteria than 
subsequent flows that occur as the storm lingers. In general, the amount of first flush pollutants available for 
transport is a function of the number of dry days since the previous storm. Animal-derived bacteria can also 
be transported from feedlots, barnyards, and other confined-animal facilities located in the drainage area. 
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Step 2: Identify Variables and Collect Data 

•	 Sample Processing and Analysis . Your Beach Team should consult the 
state for the proper procedures and QA/QC requirements, including 
holding times, for collecting, handling, and analyzing water samples. 
EPA has approved a number of analytical methods for culture analyses 
of recreational waters (40 CFR part 136). In addition, EPA has validated 
quantitative polymerase chain reaction (qPCR) methods for measuring 
water quality at beaches (see http://www.epa.gov/cwa-methods/other­
clean-water-act-test-methods-microbiological). Standard Methods 
for the Examination of Water and Wastewater (APHA 1998) is also a 
source of valuable information. 

FIB density data is usually reported as colony forming units (CFUs) and 
most probable number (MPN). CFU is a measurement based on a direct 
count of bacteria colonies grown on Petri plates and substrate media from 
water samples passed through membrane filters. MPN tests involve multiple 
tubes that are allowed to ferment over time. Probability formulas are applied 
to the number of tubes that produce a positive reaction, and a FIB density 
estimate is calculated. EPA has approved methods for both types of analyses 
and either is acceptable to use in modeling. The key is consistency, however. 
If the type of analysis has changed for your beach, construct (or reconstruct) 
your model using only data generated using the current analytical method. 

qPCR 

Newer analytical technologies 
have accelerated the timeliness 
of laboratory results. One 
such method is quantitative 
polymerase chain reaction 
(qPCR) which quantifies a 
targeted genetic sequence 
for both viable and nonviable 
forms of the indicator bacteria. 
Because the method does not 
require culturing live bacteria, 
analysis can be completed in 
less time—within 2–4 hours of 
receipt of the sample by the 
laboratory. Although both qPCR 
and bacteria culture methods 
report FIB density, they are 
derived using significantly 
different methods. These 
results should not be combined 
when building and operating a 
predictive model. 

http://www.epa.gov/cwa-methods/other-clean-water-act-test-methods-microbiological 
http://www.epa.gov/cwa-methods/other-clean-water-act-test-methods-microbiological 


Common Parameters Used in 
Models 

• Parameters relating to sources 
of FIB at the beach 

Beach attendance 
Bather counts 
Dog counts 
Bird counts 

• Parameters relating to 
movement of FIB through the 
drainage area 

Cumulative rainfall 
Antecedent dry days 
Stream discharge 
Stream stage 

• Parameters relating to 
movement of FIB in receiving 
waters 

Current speed 
Current direction 
Current A- and O-components 
(created by VB) 
Wind speed 
Wind direction 
Wind A- and O-components 
(created by VB) 
Water level 
Barometric pressure 

• Parameters relating to the fate 
FIB at the beach 

Solar irradiance 
Air temperature 
Water temperature 
Cloud cover 
Dew point 
Day of year (ordered number) 
Turbidity 
Conductivity 
Wave height 
Wave direction 
Wave A- and O-components 
Chlorophyll 
Dissolved Oxygen 

Independent Variables 
Independent variables associate directly and indirectly to environmental 
conditions. To aid in choosing the best candidate variables, your Beach Team 
should become familiar with the likely sources of bacteria that affect the 
beach, how they are transported to the beach area, and conditions that tend to 
increase or decrease FIB density in the swimming area. A useful way to collect 
this information is by using a sanitary survey (see Data Sources text box on 
page 21 for more details on sanitary surveys). That information can serve as a 
valuable starting point for selecting candidate independent variables. 

Independent variables can be roughly categorized into one of four groups: 

• Variables relating to bacteria movement through the drainage area. 

• Variables relating to bacteria movement through the receiving water. 

• Variables relating to the fate of bacteria in the swimming area. 

• Variables relating to activities and conditions at the beach. 

Other good sources of guidance on selecting variables include: 

• Predictive Tools for Beach Notification . Volume I, Review and Technical 
Protocol (USEPA 2010a). 

• Predictive Modeling at Beaches . Volume II, Predictive Tools for Beach 
Notification . (USEPA 2010b) 

• Procedures for Developing Models to Predict Exceedances of Recre-
ational Water Quality Standards at Coastal Beaches: U .S . Geological 
Survey Techniques and Methods 6–B5 (Francy and Darner 2006). 

Variables Relating to Bacteria Movement through the 
Drainage Area 
The amount, intensity, and duration of a rain event determine the timing 
and amount of runoff and the extent of water movement in the drainage 
area. Since runoff functions as the primary transport mechanism for both 
human- and animal-derived bacteria, rainfall is usually identified as a very 
important independent variable for FIB predictive modeling. 

Your Beach Team’s analysis of the drainage network and the potential 
sources of bacteria within the network should help identify the specific types 
of rainfall statistics that might be considered for use in the predictive model. 
The most common choice is cumulative rainfall over a specific time period 
prior to the FIB sample time (e.g., 6-hour, 24-hour, 48-hour lag). 
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Further analysis might lead you to create an even better variable by assigning 
more importance or “weight” to segments within a chosen time range. For 
example, Francy and Darner (2006) created a weighted 3-day rainfall statistic 
by assigning the most weight to the rainfall total occurring 24-hours 
immediately prior to the sample time and progressively lesser weights to the 
amounts occurring one and two days before sampling (see equation below). 

RW = (3*RDay1 + 2*RDay2 +RDay3) 

where: 

RW = weighted cumulative variable 

RDay1 = 24-hour total rainfall/0-hour lag 

RDay2 = 24-hour total rainfall/24-hour lag 

RDay3 = 24-hour total rainfall/48-hour lag 

Rainfall data can be collected locally using a rain gauge, or it can be 
obtained from an external source such as the NWS. Some water and 
wastewater utilities operate rain gauges near beaches and might be good 
sources of data. Locally collected data might correlate better with actual 
conditions at the beach site; however, operating and maintaining rain gauges 
can be challenging. Data available on the Internet can be easy to download 
and use, but might not adequately characterize local conditions. 

Since drainage flow is a direct result of rainfall, if one or more streams in 
the drainage network have monitoring gauges in place that provide daily 
or hourly measurements of discharge 
or the height of the water surface (i.e., 
stage or gauge height), those data might 
also prove to be valuable as independent 
variables. 

Variables Relating to Bacteria 
Movement through the 
Receiving Water 
The endpoints of the drainage networks 
are typically mouths of streams or 
drainage outfall structures that discharge 
into a lake, river, estuary, or ocean 
(the “receiving waters”). When outfalls 
are not located directly on the beach, 
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bacteria contained in the discharge must be transported from the outfall, 
through the receiving water, and to the beach to cause unhealthy conditions 
for swimmers. In addition to the lateral movement of bacteria from outfall 
to beach, bacteria residing in sand or sediments can move vertically into the 
water column when the sand or sediment is stirred up. 

Wind, waves, and water currents are usually the three most important 
independent variables associated with the movement of bacteria through the 
receiving water. They all can be characterized by direction and magnitude 
measurements. In general, “continuous variables” (those with numeric 
values) are preferred over “categorical variables” (those with labels as values), 
but both forms have been successfully used in predictive models. 

Routine sanitary surveys tend to collect either (1) very simple discrete 
measurements (continuous variable) of wind speed and direction, current 
speed and direction, and wave height, or (2) categorical descriptions of wind 
and wave attributes. The Beaufort Wind Scale, developed in 1805 by Sir 
Francis Beaufort, U.K. Royal Navy, is an example of a categorical approach 
to measuring wind and waves (Table 1). 

Table 1. Beaufort Wind Scale 

Wind 
(Knots) Classification On the Water 

Less 
than 1 

Calm Sea surface smooth and mirror-like 

1–3 Light Air Scaly ripples, no foam crests 

4–6 Light Breeze Small wavelets, crests glassy, no breaking 

7–10 Gentle Breeze Large wavelets, crests begin to break, scattered whitecaps 

11–16 Moderate Breeze Small waves 1–4 ft. becoming longer, numerous whitecaps 

17–21 Fresh Breeze Moderate waves 4–8 ft taking longer form, many whitecaps, some spray 

22–27 Strong Breeze Larger waves 8–13 ft, whitecaps common, more spray 

28–33 Near Gale Sea heaps up, waves 13–19 ft, white foam streaks off breakers 

34–40 Gale Moderately high (18–25 ft) waves of greater length, edges of crests begin to 
break into spindrift, foam blown in streaks 

41–47 Strong Gale High waves (23–32 ft), sea begins to roll, dense streaks of foam, spray may 
reduce visibility 

48–55 Storm Very high waves (29–41 ft) with overhanging crests, sea white with densely 
blown foam, heavy rolling, lowered visibility 

56–63 Violent Storm Exceptionally high (37–52 ft) waves, foam patches cover sea, visibility more 
reduced 

64+ Hurricane Air filled with foam, waves over 45 ft, sea completely white with driving 
spray, visibility greatly reduced 



Automated collection of wind, wave, and current data offers several 
advantages over manual collection because (1) it is more easily obtained, 
(2) it eliminates the subjectivity associated the measurements, and 
(3) assuming data are recorded continuously, it allows for the construction 
of antecedent variables (e.g., average wind speed over the previous 24 hours). 
The most convenient source of wind, wave, and current data is the National 
Data Buoy Center. This agency is part of the NWS and maintains a network 
of 90 buoys and 60 coastal stations that collect hourly data on wind speed 
and direction and wave height. Some also collect data on currents. 

Tides also create currents that can affect 
FIB density in beach areas. Incoming tides 
usually tend to keep FIB in residence at some 
beaches, while outgoing tides can serve to 
flush them away. Although very site-specific, 
the tidal cycle might be an important 
independent variable at some ocean beaches. 

Man-made structures such as jetties, groins, 
piers, breakwaters, and seawalls can affect 
FIB movement through the receiving water at 
some beaches. Those structures can enclose 
most or part of a beach, preventing water 
circulation between the beach and open 
water. Several studies have reported higher 
densities of FIB in those situations because 
of the retention of bacteria from lack of 
flushing. 

Variables Relating to the Fate of 
Bacteria in the Swimming Area 
Bacteria residing in the receiving water, 
including in the swimming area, are subject 
to many conditions that can increase or 
decrease their presence in the water column. 
One of the more important stressors of 
bacteria is sunlight—specifically, ultraviolet 
(UV) light. Exposure causes bacteria to die 
off, which is why FIB densities are usually 
found to be greater in the early morning 
before the sun rises higher in the sky. 
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Waterfowl as a Pollution 
Source 

Gulls and other waterfowl 
are often a source of fecal 
contamination at beaches, 
particularly in the Great Lakes. 
Hansen et al. (2011) concluded 
that waterfowl, including 
Canada geese, ring-billed 
gulls, and mallard ducks were 
the primary source of E. coli 
contamination at beaches 
near Duluth, Minnesota, and 
Superior, Wisconsin. Chicago 
and Racine have also correlated 
gull populations at its beaches 
to FIB densities in beach water 
samples (Converse et al. 2012; 
Whitman and Nevers 2003; 
Hartmann et al. 2013). Chicago 
has reduced the numbers 
of gulls at its beaches by 
managing their nests. 
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Turbidity is a common measurement and often found to be an important 
independent variable for predictive modeling. It is essentially the cloudiness 
of the water as defined by a measurement of scattered light. Turbidity is 
generally caused by a combination of suspended solids, colloidal matter, 
and algae. Cloud cover also affects the amount of light penetrating the water 
column and is sometimes used as an inverse surrogate for UV light. Staining 
of the water by tannins also affects light penetration. 

Light alone is not the only factor attributable to turbidity’s value as 
an independent variable. Perhaps even more importantly, stormwater 
runoff carries with it a load of suspended solids, silt, and other material. 
Consequently, outfall discharge during and following storms is usually more 
turbid than the receiving water. Thus, turbid water moves in tandem with 
outfall bacteria. Other parameters associated with stormwater runoff—such 
as total suspended solids, salinity, and conductivity—can also serve as 
independent variables. 

Suspended solids can play a role in removing FIB from the water column 
via sedimentation. Individual bacteria cells are very small (some are only a 
micron in length) and easily remain suspended in water. But they can also 
be adsorbed on sediment particles and, in doing so, increase their weight 
and their chances of settling to the bottom. Once in the sediments, however, 
they can remain viable and be resuspended in the water column by any 
number of turbulent forces, including waves and even swimmer activity. 

Variables Relating to Activities and Conditions at the Beach 
The variables described in the previous subsection are related to sources of 
FIB that (1) originate in the drainage area and are subsequently transported 
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through the drainage network and receiving waters to the beach, and 
(2) have settled from the water column to the sediments. At some beaches, 
however, significant sources of bacteria found in or immediately adjacent 
to beaches can cause high FIB densities within the swimming area. 
For example, resident populations of gulls and Canada geese have been 
identified as important contributors to bacteria loads at some beaches. 

Table 2 includes a list of the independent variables included in the final 
models for the five case studies. The variables were useful in making timely 
beach notification decisions. Models must be developed on a beach-specific 
basis using site-specific data, as shown by the variety of independent 
variables used in the case studies as well as the number of variables used in 
similar models (Francy et al. 2013b). 

Table 2. Independent variables used in final statistical models from case studies. 

Location Beaches Independent Variables Used in Final Model 

Chicago Montrose Beach, 6-hour rainfall, 4-hour wave period, 
Parks Oak Street Beach, 6-hour solar radiation, 48-hour rainfall, 
District Foster Beach, 

63rd Street Beach, 
and Calumet Beach 

6-hour longshore wind, onshore wind, 
turbidity 

Charles Lower Charles Rainfall volume, river flow, and wind 
River River Basin from 
Watershed Watertown to 
Association Boston Harbor 

Milwaukee, Bradford Beach, 24-hour rainfall, previous 24-hour E. coli 
Wisconsin McKinley Beach, 

and South Shore 
Beach 

sampling, pH, conductivity, wave height, 
water temperature 

Horry Grand Strand Cumulative rainfall, rainfall intensity, 
County, beaches preceding dry days, weather (e.g., wind 
South speed), tides and lunar phase data, 
Carolina current and salinity 

Racine, North Beach, Water temperature, air temperature, 
Wisconsin Zoo Beach seagull counts, dog counts, wildlife 

counts, wave height and intensity, water 
clarity, sky conditions, color changes, 
odor, algae amount, algae type, bather 
load (in, out, and total), long shore 
current and components, wind direction 
and speed, stream discharge, pollution 
discharge , rainfall (24-, 48-, and 72­
hour), day of year, season, lake levels, 
and previous day’s E. coli values 

21 

Sand and Algal Mats 

Sand in the wave-washed zone 
of a beach can be a potential 
source of fecal contamination 
(Alm et al. 2003). Beach sand 
can support large densities 
of FIB for prolonged periods, 
independent of lake, human, 
or animal input (Whitman et al. 
2014). 

Other research has examined 
the presence of FIB in algal 
mats along beaches. Whitman 
et al. (2003) found that 
Cladophora can provide a 
secondary habitat for FIB that 
could potentially impact water 
quality in affected Great Lakes 
swimming areas. 
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Data Sources 

National Oceanic and Atmospheric Administration (NOAA)/NWS Weather 
Station Data 

z NWS airport weather data (e.g., rainfall, temperature, cloud cover, wind speed and 
direction) are frequently available and easily downloaded. 

z NOAA maintains a network of buoys, tidal stations, and satellite measurements that 
provide data on tides, currents, wind, cloud cover, and other marine characteristics 
(http://tidesandcurrents.noaa.gov). 

z Additional water quality data are available from NWS (e.g., forecast maps, radar, 
river/lake levels, rainfall, air quality, and past weather) (http://www.weather.gov). 

USGS 

z USGS provides continuous real-time water quality data, including streamflow, 
water temperature, conductivity, pH, dissolved oxygen, turbidity, and runoff 
(http://water.usgs.gov/data). 

z USGS supports the National Water Information System (NWIS), which includes data 
from more than 1.5 million sites, some in operation for more than 100 years 
(http://waterdata.usgs.gov/nwis). 

Sanitary Surveys 

Sanitary surveys are an excellent source of information on site characteristics that 
can support the development of predictive models. The surveys provide detailed 
environmental data, including the following observational variables that could be 
translated into predictive variables for a model: 

z Number of swimmers/bathers. 

z Boat traffic. 

z Wildlife and domestic animals. 

z Debris and litter. 

z Presence of algae. 

z Infrastructure (e.g., parking lots, storm drains, WWTPs). 

EPA has developed beach sanitary survey tools—one each for marine and Great Lakes 
beaches—to help beach managers evaluate all contributing beach and watershed 
information, including water quality data, pollution source data, and land use data 
(http://www.epa.gov/beach-tech/beach-sanitary-surveys). 

http://www.epa.gov/beach-tech/beach-sanitary-surveys
http://waterdata.usgs.gov/nwis
http://water.usgs.gov/data
http:http://www.weather.gov
http:http://tidesandcurrents.noaa.gov
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Step 3: Perform Exploratory Data 
Analysis 

After selecting and collecting high-quality FIB data and independent 
variable data sets, your Beach Team is ready to proceed to exploratory data 
analysis (EDA). 

Introduction to Step 3 
The primary purpose of EDA is to explore the relationships between the 
independent and FIB density variables and identify the best candidate 
variables for model development. Another purpose is to assess two 
fundamental assumptions of the statistical models described in this 
guidance: (1) the data sets represent the normal range of conditions that are 
expected in the future, and (2) the FIB density and independent variables 
are linearly related. Your Beach Team should consider working with a 
statistician who can provide statistical expertise during EDA. 

The EDA work is valuable because it adds to your Beach Team’s depth of 
knowledge about relationships between FIB density and the various drainage 
area, receiving water, and fate independent variables. This knowledge is 
crucial for integrating predictive modeling into an overall beach program. 

The purpose of this section 
is to provide an overview of 
the approach to exploratory 
analysis. It does not attempt to 
provide a thorough discussion 
of techniques or evaluations. 
Further information can be 
found at http://www3.epa.gov/ 
caddis/da_exploratory_0.html. 

http://www3.epa.gov/caddis/da_exploratory_0.html
http://www3.epa.gov/caddis/da_exploratory_0.html
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Virtual Beach Software 
Your Beach Team will need to use specialized computer software for many of 
the data processing and EDA tasks described in this step, as well as for model 
development and testing activities described in the next step. EPA’s Virtual 
Beach (VB) software package is specifically designed for constructing site-
specific FIB prediction models at freshwater and marine beaches. Created 
for use by beach managers and researchers, VB includes a variety of EDA 
techniques, including the basic ones described in this section. 

Although many free and proprietary statistical packages that include EDA 
programs are available, VB allows predictive beach modelers to seamlessly 
integrate all the necessary components for preparing and analyzing data 
and building and testing models. VB also includes an integrated mapping 
component to determine geographic orientation of the beach and assists 
the user in compiling wind/current speed and direction in along-shore and 
onshore/offshore components. Your Beach Team should ensure they have 
staff with appropriate skills as VB does not replace the need to work with 
someone knowledgeable in data management and analysis. 

For more information about VB and its capabilities, including how to 
download a free copy, visit http://www.epa.gov/exposure-assessment­
models/virtual-beach-vb. You can also visit http://www.seagrant.wisc.edu/ 
home/Default.aspx?tabid=646#Training for predictive modeling workshop 
presentations, webinars on accessing online data, and step-by-step modules 
on VB. 

Data Management 
The management of data is an important 
part of the model development process. 
Before data can be uploaded to VB or other 
modeling software, it must be manipulated 
and formatted properly. This can be a fairly 
complex and time-consuming process and 
enlisting the help of data processing experts 
is often necessary. 

It is important to keep in mind that each 
measurement in an independent variable 
data set must pair with one, and only one, 
FIB density measurement. Some beaches 
collect multiple samples at about the same 

http://www.epa.gov/exposure-assessment-models/virtual-beach-vb
http://www.epa.gov/exposure-assessment-models/virtual-beach-vb
http://www.seagrant.wisc.edu/home/Default.aspx?tabid=646#Training
http://www.seagrant.wisc.edu/home/Default.aspx?tabid=646#Training


NOAA and USGS have 
developed tools to help 
automate the process of 
downloading data from online 
sources and compiling them 
into a single data sheet. 

• NOAA–PROCESSNOAA. 
Accesses, compiles, and 
processes wind speed and 
direction (instantaneous 
and previous 24 hours) and 
rainfall totals for 24-hour 
windows of lag times of 1, 
2, and 3 days. It also has 
the ability to display data 
graphically and weight 
rainfall variables. 
To access the tool, visit 
http://pubs.usgs.gov/ 
sir/2013/5166/pdf/sir2013-
5166 appendix2.pdf. 

• USGS–Environmental 
Data Discovery and 
Transformation (EnDDaT). 
Accesses, compiles, and 
processes data from a 
variety of data sources, 
including NWS, National 
Data Buoy Center (NDBC), 
and NWIS. EnDDaT can be 
used to compile historical 
data in a single worksheet 
for model development and 
to create real-time datasets 
for direct import to VB for 
model operation. 
To access, visit http://cida. 
usgs.gov/enddat/. 

time and record all of them in a database. In that case, you can take the 
geometric mean and use that as your data point. 

As with any data-driven analyses, variable data must be checked carefully 
and identified errors or anomalies corrected before they are entered into 
any analytical software, including VB. Some basic things to watch out for 
include missing data, improperly recorded information, invalid data cells, 
and other potential formatting problems. Data formatting and structure 
must meet all of the input standards and requirements of the software. For 
example, empty data cells are not permitted in VB. In such cases, you need 
to either identify and replace these values or delete the observation from the 
data set. 

VB includes a component that assists users in the input data-check process. 
It can go through a spreadsheet cell by cell looking for blanks as well as 
non-numeric or user-specified values. If a bad cell or value is identified, the 
user is presented with an opportunity to fix it. 

Other data checks can include: 

Linking FIB observations with independent variable data . A key 
challenge in developing the input data sheet for VB is selecting only those 
data temporally linked to the FIB observations. The challenge is further 
complicated if you are also creating antecedent variables from those data. 
There are several methods for accomplishing this data manipulation task, 
both within and outside of the VB-input file. Mednick (2009) describes 
a system for joining various data tables into one master table using 
Microsoft’s Access database software. 

Numerical conversion of categorical variables . VB requires that all 
categorical variable labels be given a numerical designation. Ordinal 
variables can be simply converted to a continuous-like numerical variable. 
For example, turbidity values can be translated as Clear = 1, Slightly 
Turbid = 2, Turbid = 3, and Opaque = 4. Of course, even though they 
appear as numbers, they are still categorical values and, therefore, most 
summary statistics (e.g., mean values) are not applicable. VB provides 
an opportunity for the user to flag categorical variables to prevent the 
creation of inappropriate summary statistics and variable transformations 
(e.g., natural log or square root variable). 

Data entry errors . Your Beach Team should put in place data 
management QA oversight and QC procedures that include the transfer 
and manipulation of data such as in the VB input data sheet. After data 
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have been transferred to the data sheet, review for errors and anomalies in 
the data sets. Excel 2013 and later versions include a Quick Analysis tool 
that allows you to select data and instantly create statistics and charts that 
will help identify problems. 

Placeholders for unmeasured values . Some data sets, especially those 
downloaded from online data sources, use numeric placeholders to 
indicate unmeasured data (e.g., 999). You need to identify and replace 
these values or delete the cells. Empty data cells are not permitted in 
many model building programs, including VB. 

Unit errors . Most numeric data are reported 
in unit measurements. The units can vary and 
must be converted to common units for model 
development. The most common conversions 
involve converting data from English to metric 
units, or vice versa. For modeling purposes, the 
unit chosen is not as important as consistently 
using the same units. Unit information should be 
included in the column title. 

Date/time errors . Some data sets downloaded 
from online data sources list date and time by the 
numerical day of the year (DOY, 1–366) and/or 
Coordinated Universal Time (UTC). Some data 
sources use “Zulu Time” or “Greenwich mean 
time.” These data need to be converted into the 
same time zone and the date/time format selected 
for use in the input data sheet. A UTC conversion 
tool can be found at http://www.noaanews.noaa. 
gov/hurricanes/zulu-utc.html. A DOY conversion 
tool can be found at http://www.ngs.noaa.gov/ 
GRD/GPS/DOC/doy/doy.html. 

FIB data inconsistencies . A special case is often 
noted with FIB density data. Because laboratories 
have minimum density detection limits for FIB, 
data sets will sometimes have category-type 
entries mixed in with numerical entries (e.g., 
< 10CFU/100 milliliters (mL)). In this case, your 
Beach Team must decide how to handle the 
“below detection limit” entries so the variable is 
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continuous. Typically, one of three options is chosen: (1) use the detection 
limit value, (2) use one-half the detection limit value, or (3) use zero 
as the value. Too many detection limit substitutions, however, might 
compromise the integrity of the FIB density data set. 

Multiple stations or sites . Some beaches have one sample site, others 
use multiple sites. For modeling purposes, however, you need just one 
density measurement to represent the beach as a whole for a sampling 
event. In the case of beaches with multiple sites, some sampling schemes 
are designed to produce a composite sample composed of subsamples 
taken from each of the stations at approximately the same time. In 
that case, you would use the composite sample measurement as your 
FIB observation. Other programs process multiple station samples 
individually, resulting in multiple FIB data points for an event. A 
common approach in that case is to calculate the geometric mean of the 
samples and use that as your FIB observation. Occasionally, you might 
come across duplicate samples taken from the same station for QA or 
other purposes. In that case, using the average of the two samples would 
be appropriate, or a more conservative approach would be to use the 
highest value as your observation. 

Characterize the FIB and Independent Variable 
Data Sets 
EDA usually begins with an examination of the distribution of each of the 
data sets. If the “most ideal normal condition” is assumed to be the center 
of the data distribution (signal), the spread of data from the center (noise) 
should be examined and at least informal inferences made about the range 
of environmental circumstances and conditions that produced the variation. 

Box Plots 
Box plots are an effective way to summarize data distributions. An example 
of a box plot is presented in Figure 3. You can generate box plots in VB as 
well as other statistical software. Note that the box itself is plotted on the 
Y-axis, and the top and bottom of the box represent the lower and upper 
quartiles of the ordered data set (25th and 75th percentiles, respectively). The 
median is calculated and displayed as a horizontal line inside the box. The 
difference between the quartiles is called the “interquartile range”. Vertical 
lines (whiskers) extend from the quartile lines to represent data above and 
below interquartile range. Traditionally, the box plot’s whiskers terminate 
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with a short horizontal line that represents the highest and lowest data 
points of the distribution. 

Figure 3. Box plot attributes. 

By visually inspecting the box plots, your Beach Team can observe: 

• Outliers—Extreme values in the data set that should be investigated. 

• Median—The central tendency of the data. 

• Spread—The variability in the data set in relationship to the median. 
Smaller spreads are generally better for modeling than larger spreads. 
The interquartile range is an indicator of spread of the middle half of 
the data set. 

• Symmetry and Skewness—The variability of the data set on either side 
of the median. A symmetric data set shows the median in the middle 
of the box. A skewed data set displays the median closer to one edge 
of the box, indicating that the spread is greater for those data on the 
other side of the median line. If the data are skewed with outliers, the 
interquartile range is often a better measure of variability than the 
standard deviation because it is not inflated by the entire data set. 

Your Beach Team might find that some data sets are difficult to plot and 
characterize because the data range over several orders of magnitude. FIB 
densities, in particular, often range from very low densities (< 10 CFU per 
100 mL) to very high densities (> 10,000 CFU per 100 mL). Data ranges 
such as these require that data be transformed to induce symmetry in the 
distribution and to make it easier to graph, observe, and interpret results. 
The logarithm is the favored method used for this purpose. 
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As mentioned earlier in step 3, categorical variables have values that 
function as labels rather than numbers. Therefore, they are not an ordered 
data set and cannot be box-plotted in the same manner as continuous data. 
FIB density data, however, can be box-plotted by variable categories. The 
resulting plots will indicate how the different categories of the independent 
variable individually influence FIB levels (Figure 4). 

Figure 4. Box plots of E. coli density sorted by wind direction. 

Outliers 
An “outlier” is a data point located outside of the overall pattern of a 
distribution of other data points. Sometimes outliers are a result of a 
faulty measurement or a data entry error. In other cases, the data might 
be correctly measured, but the measurement or sampling occurred under 
unusual circumstances or conditions. This could be especially significant 
at beaches with infrequent but predictable exceedances, such as after a 
heavy rain event. In still other cases, the outlier is a legitimate data point 
and, while uncommon, might be considered within the normal range of 
conditions. Because of this uncertainty, your Beach Team should always try 
to identify the reason for or cause of an outlier. 

Legitimate outliers can be displayed in the box plot as data points that 
extend beyond a reformulated minimum or maximum line. Basically the 
four quartiles are constructed as usual, but (invisible) “fences” are added at 
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the tails of the distribution. These fences mark the boundaries of what is and 
is not an outlier. The fence is usually defined as 1.5 times the interquartile 
range. Some analysts like to further categorize outliers as either mild or 
extreme. To do this, the analyst calculates an outer fence beyond the initial 
(now inner) fence that is defined at 3.0 times the interquartile range. Any 
data point that lies between the inner and outer fences is designated as a mild 
outlier and any point beyond the outer fence is considered an extreme outlier. 

Comparing Data Distributions among Variable Subsets 
As mentioned in the introduction to this step, a fundamental assumption 
of predictive models is that the data used to build the models represent 
normal conditions that are expected to extend into the future. One way to 
confirm this assumption, at least for the collected data, is by constructing 
a time-series plot (Figure 5). If data levels seem to change in certain time 
periods, your Beach Team might also want to prepare box plot presentations 
for temporal subsets of the data set to better analyze year-to-year 
variations and/or season-to-season data variations. By making side-by-side 
comparisons of box plots, the team might note a significant shift of one 
subset compared to the others. 

Figure 5. Comparison of E. coli density over a four-year period. 

If your Beach Team notes a significant shift of one data subset compared 
to the others, it should investigate why this is occurring. In some cases, 
this exercise could lead to the development of different predictive models 
for spring and summer seasons or even the incorporation of a “time of 
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season” variable into the predictive model. In other cases, examining subset 
distributions might indicate that one entire season’s data might be suspect 
because of the use of different sample collection protocols or equipment or 
because an important change in environmental conditions occurred that 
created a new normal for that time period. 

Examine the Relationship between FIB and 
Independent Variables 
Once your Beach Team is familiar with the data sets, outliers are explained, 
and bad data have been removed, the team can begin examining the 
relationship between FIB concentrations and independent variables. The 
main purpose of this exercise is to document linear correlations between 
FIB density and independent variables—another key assumption of 
statistical predictive models. 

Scatterplots 
The “scatterplot” is a graphical technique that portrays the one-to­
one relationship between a dependent variable (FIB densities) and an 
independent variable. A clustering of data points in a nonrandom pattern 
along an imaginary line indicates that a linear relationship exists. The 
strength of the linear association is measured by the Pearson’s Correlation 
Coefficient (r). Its value can range from -1.0 to 1.0—where -1.0 is a perfect 
inverse correlation, 0.0 is no correlation, and 1.0 is a perfect correlation. The 
closer the absolute value is to 1.0, the stronger the association is between the 
two variables. 

Your Beach Team should keep in mind 
that, even though a scatterplot might 
reveal a strong association between 
dependent and independent variables, it 
does not automatically mean that there is 
a cause-and-effect mechanism at work. A 
definitive connection of this nature must 
be made through other means. The only 
finding from the scatterplot analysis is the 
correlation between the two data sets. 

Credit: Ryan Hagerty/USFWS 
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Variable Transformation 
If the relationship is nonlinear, your Beach Team should 
consider transforming the data to try to improve linearity. 
FIB data, for example, are almost always transformed 
to a logarithmic scale. Figure 6 illustrates how a Log10 
transformation of E . coli data improves linearity. VB 
provides several transformation options, including base 10 
logs, natural logs, square, and square root. 

Creation of New Variables 
Your Beach Team might want to explore manipulating or 
combining variables to improve linearity or to enhance the 
meaning of the variable. This might include: 

• Creating a new composite variable by summing, 
multiplying, or averaging data when multiple sites 
are measuring the same variable (e.g., multiple FIB 
sampling sites in the swimming area or multiple rain 
gauges in the drainage area). 

• Creating a new composite-weighted variable by 
including additional weight to select components of the 
same variable (e.g., creating a cumulative 3-day rainfall 
total but manipulating the equation so that the more 
recent 24-hour period receives a higher weight than the 
preceding 24-hour period). 

VB allows you to create new variables using sum, maximum, 
minimum, mean, or products; it also allows you to define 
beach orientation and break down wind, current, wave 
direction and magnitude (speed or height) data into 
alongshore and offshore and onshore components. These 
types of data are often valuable independent variables in 
situations in which a major outfall is located near the beach. 

Correlation among Independent Variables 
Sometimes combinations of independent variables do not work well together 
in the context of a predictive model. This frequently occurs when two 
independent variables correlate highly with each other. Therefore, your 
Beach Team should examine relationships among independent variables 
during EDA and identify any strong correlations. The correlations might be 

Figure 6. Scatterplots of E. coli vs. rainfall 
without transformation (A) and with a 
log-transformation (B) 
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important in step 4 of the model development phase. Where there is a strong 
correlation, your Beach Team might consider picking one variable and 
discarding the other—a decision made easier if data for one of the variables 
is more convenient and/or less expensive to collect. 

Analysis of Variance for Categorical Variables 
The relationship between an independent categorical variable and FIB 
density cannot be represented in a scatterplot with r values calculated in 
the same manner as continuous data. As noted above, you can visually 
detect categorical influences on density by using categorical box plots of 
FIB density. Your Beach Team can use the analysis of variance (ANOVA) 
statistical technique to determine if the means of the categorized data as 
they relate to FIB density are significantly different. 
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Step 4: Develop and Test a Predictive 
Model 

After your Beach Team has completed the EDA and selected a set of 
independent variables that correlate with FIB density, they can proceed to 
developing and testing the predictive model. 

Introduction to Step 4 
Most predictive models in use today are based on linear regression, a 
statistical method that assumes a linear—or straight-line—relationship 
between variables. Linear regression can be used to predict a dependent 
variable measurement (in this case, FIB density) using one or more 
independent variable measurements. 

A model that uses only one independent variable is generally described as 
a “simple linear regression” model. A model using two or more variables is 
called a “multivariable linear regression” (MLR) model. In either case, the 
model itself is nothing more than an equation with the dependent variable 
on one side of the equal sign and independent variable coefficients on the 
other side. Conceptually, you plug in the appropriate measured independent 
variable values and calculate a predicted FIB density. You can then compare 
the FIB density to a state water quality standard or other threshold value 
and make a decision concerning beach notification actions (e.g., to issue a 
swimming advisory or close the beach). 

Three key elements are necessary for producing an effective predictive model: 

• Using high-quality data sets to develop and test candidate models. 

• Reducing error and increasing predictive power of the model as much 
as possible. 

• Choosing an appropriate software package. 

Data Sets 
The importance of using high-quality dependent and independent variable 
data sets for model development and testing cannot be overemphasized. A 
sufficient amount of good empirical data is necessary for an effective and 
reliable model. As mentioned in step 2, a rule of thumb is to collect at least 
three years’ worth of historical data that represent conditions that are likely 
to occur in the future. Then, use two of those years’ data to develop the 
model (training data set) and one year’s data to assess the model’s predictive 
accuracy (testing data set). 
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Reducing Errors 
Recall that the correlation coefficient r was used in context of EDA 
scatterplots to measure the linear association of one independent variable 
and FIB density. In the context of modeling, r also represents a measure of: 
(1) the scatter (variability) of the data points from the regression line, and 
(2) the power of the independent variable to correctly predict the value of the 
dependent variable. Variability can often be reduced if more independent 
variables are added to the mix. This makes sense thinking back to how 
bacteria moves from land-based sources, through the drainage network and 
the receiving water, and to the beach. Rainfall, wind, currents, sunlight, and 
other factors work in combination to influence both the journey and the fate 
of bacteria cells. While the complexity of model development increases with 
the addition of more independent variables, the result is usually increased 
accuracy in predicting FIB density. 

Virtual Beach 
The material presented in this section focuses on VB’s traditional MLR 
method of model-building. The current version of VB software is version 3 
(VB3), which was released in December 2014. 

For more complete information about MLR as well as other modeling 
methods available in VB3, consult Virtual Beach 3 .0 .4: User’s Guide 
(http://www.epa.gov/sites/production/files/2015-02/documents/vb3_ 
manual_3.0.4.pdf) (Cyterski et al. 2013). 

In general, the model-building process in VB3 involves searching for the 
combination of independent variables that produces the most accurate 
FIB density predictions. Although the VB3 software processes for building 
predictive models are automated, you must make important decisions 
concerning model construction and testing, including choosing the method 
used to build the model, number of variables to include in the model, and 
evaluation criteria used to judge model fitness. Unless you or another 
member of the team is familiar with VB3, you will probably need to consult a 
person who has used it before to help you with these decisions. You can also 
visit http://www.seagrant.wisc.edu/home/Default.aspx?tabid=646#Training 
for predictive modeling workshop presentations, webinars on accessing 
online data, and step-by-step modules on VB. 

Model Building 
VB3 offers two general methods for selecting variables for the model. One 
is called the “genetic algorithm.” It is a stepwise procedure that adds or 

Credit: Jama Beasley/USFWS 
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subtracts independent variables from the model based on their level of 
statistical significance. The software retains the most significant variables 
and discards the least significant. 

A more comprehensive approach to model building is called “exhaustive 
search.” It involves measuring the goodness of fit for all possible 
combinations of the chosen independent variables, beginning with models 
with a single variable and working up to models with all the variables 
incorporated. The best model for each number of variables, up to a defined 
maximum, is then identified based on goodness of fit statistics (e.g., the best 
2-variable model, the best 3-variable model). 

VB3 provides a variety of criteria for evaluating model fitness. In addition, 
the software can recommend how many variables are optimal for the model 
and determine if collinearity among independent variables is a problem. 
Once model-building is completed in VB3, the software presents you with 
the 10 best models based on your chosen evaluation criteria. You then 
evaluate these candidates using one or more metrics described in detail in 
the Virtual Beach 3 .0 .4: User’s Guide (Cyterski et al. 2013). Based on the 
results, you select a final model and begin the process of model validation. 

Model Validation 
The objective of model validation is to determine whether your final model is 
good enough to use in your beach program. Keep in mind that your model’s 
output is used to help officials make timely beach management decisions, 



Forecasting 

Future directions that EPA 
considers likely for predictive 
tools for beach notification 
include forecasting beach 
water quality conditions a day 
or more ahead. Researchers 
are also attempting to develop 
models applicable to more than 
one beach or to a region of 
shoreline. 

including issuing a swimming advisory or closing the beach. These decisions 
are not taken lightly because they affect public health and safety and a variety 
of related community concerns pertaining to economic prosperity and public 
perceptions about the safety of local recreational waters. 

How you determine if your model is good enough to use in your program 
is up to you. If you have been relying on previous day sampling results 
for making your beach notification decisions, you probably want your 
predictive model to at least perform better than this “persistence model” 
approach. You can define “how much better” be setting performance goals 
and testing to see if your predictive model meets or exceeds those goals. If it 
passes this test, you can consider the model validated and acceptable to use. 

Discussed below is a four-step method for validating a model using a 
performance goals approach: 

1. Generate evaluation statistics for the persistence model using a testing 
dataset. Common evaluation statistics are overall accuracy, specificity, 
and sensitivity (described in more detail below). They are defined 
and generated in this first step for the persistence model and then 
generated again in the third step for the predictive model. 

2. Set performance goals for your predictive model based on the 
persistence model’s evaluation statistics. 

3. Generate evaluation statistics for the predictive model using the 
testing dataset. 

4. Compare the evaluation statistics of the two models and determine 
the percentage point increase (or decrease) of the predictive model 
compared to the persistence model. 

This approach to model validation is illustrated using the work of 
Francy and Darner (2006). They developed an MLR predictive model 
for Huntington Beach, Ohio, a beach located on Lake Erie, using a 
training dataset collected during the 2000–2004 beach seasons. The beach 
notification threshold value is an E . coli density of 235 CFU/100ml. The 
explanatory variables incorporated into their model were wave height, 
weighted rainfall in the previous 48 hours, and log10 turbidity. Data 
collected in the 2005 beach season were used as the testing dataset. 

Generate evaluation statistics for the persistence model 
Using Francy and Darner’s testing dataset, Figure 7 is a plot of the 
persistence model results; that is, observed E . coli densities (X-axis) vs. 
E . coli densities measured the previous day (Y-axis). The quadrants displayed 
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in the graph are defined by the vertical and horizontal lines set at the 
beach notification threshold value of 235 cfu/100mL. The numbers in the 
parentheses are the number of plot points that appear in the quadrant. 
Listed below are the distinguishing characteristics of each quadrant: 

• Upper left quadrant. Data points that fall in this quadrant have 
observed E . coli densities below the threshold value, but the model 
predicts that they will exceed the threshold value. This is known as a 
“false positive,” or Type 1 error. 

• Upper right quadrant. Data points that fall in this quadrant 
have observed E . coli densities above the threshold value, and the 
model correctly predicts that they will exceed the threshold value. 
“Sensitivity” is the percentage of all the observed exceedance data 
points that fall in this quadrant. 

• Lower left quadrant. Data points that fall in this quadrant have 
observed E . coli densities below the threshold value, and the model 
correctly predicts that they will not exceed the threshold value. 
“Specificity” is the percentage of all the observed non-exceedance data 
points that fall in this quadrant. 

• Lower right quadrant. Data points that fall in this quadrant have 
observed E . coli densities above the threshold value, but the model 
predicts that they will not exceed the threshold value. This is known as 
a “false negative,” or Type 2 error. 

Figure 7. Plot of persistence model results of 2005 data (adapted from Francy and 
Darner 2006.) 
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Of the four quadrants, plot points that fall in the lower right quadrant 
below the horizontal line (Type 2 errors) are the most troubling because 
the persistence model is predicting the water is safe for swimming when, in 
fact, the water is unsafe because FIB densities exceed the beach notification 
threshold value. 

The performance statistics for the persistence model are: 

• (Overall) Accuracy = 75.6% 

• Specificity = 88.6% 

• Sensitivity = 0.0% 

Set performance goals for the predictive model 
There is no standard formula for setting performance goals; you must use 
your judgment in context of the goals and objectives of your beach program. 
Assuming you have been relying on the persistence model approach for 
making notifications decisions, you will want your predictive model to 
perform better than the persistence model. Francy et al. (2013a) suggest a 
goal of at least 5 percentage points better for accuracy, specificity, and/or 
sensitivity. 

As discussed above, the sensitivity statistic is especially important because it 
characterizes Type 2 errors. Consequently, if you want to take a conservative 
approach in protecting public health, you may want to set your sensitivity 
performance goal as high as practicable. 

For this Huntington Beach example, using the persistence model evaluation 
statistics as a baseline, Francy and Darner chose the following performance 
goals for model validation purposes: 

• Accuracy goal ≥ 81% 

• Specificity goal ≥ 94% 

• Sensitivity goal ≥ 50% 

Generate evaluation statistics for the predictive model and determine if 
your performance goals are met 
Once you have established performance goals, you can test your predictive 
model to see if it meets those goals. Again using Francy and Darner’s 2005 
testing dataset, Figure 8 is a plot of observed E . coli densities vs. 
E . coli densities predicted by the 2000–2004 model. The evaluation statistics 
derived from this plot are: 

• Accuracy = 88.0% (exceeds performance goal) 
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• Specificity = 95.2% (exceeds performance goal) 

• Sensitivity = 50.0% (meets performance goal) 

In this example, the Francy and Darner 2000–2004 model passes our 
performance goal test and can be considered good enough to use in a beach 
notification decision support system. 

Figure 8. Plot of predictive model results of 2005 data (adapted from Francy and Darner 
2006.) 

Models that Do Not Meet Performance Goals 
Throughout this guide, we have been optimistically moving forward 
assuming that you are on the path toward creating a successful model. 
Unfortunately, this is not always the case. If your model does not meet your 
performance goals, there are some things you can do to try to improve 
it. For example, you could revisit Step 2 and identify new independent 
variables and try rebuilding your model, or segregate your dataset and 
create sub-models that may individually offer better predictive capabilities 
than one overall model. Another approach is to consider one or more of the 
alternative predictive tools described in the text box titled Alternatives to 
MLR Modeling. 
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Exceedance Probability Threshold 
VB3 provides the ability to express a FIB density prediction in terms of a 
probability that a defined notification threshold value will be exceeded. 
Predictions in this form have some advantages over a FIB density output: 

• They explicitly convey that there is uncertainty associated with the 

model prediction.
 

• They give you the flexibility to select a specific exceedance 

probability—rather than a density number—to function as the beach 

notification threshold value.
 

If you choose exceedance probability as your model output, you must define 
a specific probability percentage to function as a notification threshold 
value. In general, try to select the lowest (most conservative) exceedance 
probability threshold that produces the most correct responses and the 
fewest false negative responses. Recall that false negatives (Type 2 errors) 
are especially troubling because the model is predicting the water is safe for 
swimming when, in fact, the water is unsafe. 

Continuing with the Huntington Beach 2000–2004 model example, Francy 
and Darner (2006) concluded that a threshold probability of 29 percent 
would provide the best balance of correct responses and false negative 
responses. Figure 9 is a plot of threshold exceedance prediction and 
observed E . coli density using the 2005 testing data set. The quadrants in the 
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chart are defined by the state standard of 235 CFU/100mL (vertical line) and 
the probability of exceedance threshold of 29 percent (horizontal line). The 
performance statistics from this plot are: 

•  Accuracy = 82.0 percent 

•  Specificity = 88.1 percent 

•  Sensitivity = 50.0 percent 

Credit: Chelsi Hornbaker/USFWS 

Figure 9. Plot of predictive model results of 2005 data expressed as exceedance 
probability threshold (adapted from Francy & Darner 2006.) 

Using this approach, you can establish a beach management protocol that 
requires the issuance of a notification if the model predicts a probability of 
exceedance of 29 percent or greater. 
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Alternatives to MLR Modeling 
MLR models are a popular predictive tool used by beach programs, but they are not useful or appropriate 
for all beaches. If for some reason MLR modeling is not right for your beach, you can explore other 
alternatives, including: 

Rainfall Alerts 
This predictive tool is based exclusively on the positive correlation that sometimes exists between rainfall 
and FIB densities: As rainfall totals increase and contaminated runoff reaches the receiving water, there 
is a predictable corresponding increase in FIB density at the beach. By factoring in a beach notification 
threshold, you can predict exceedances of the threshold using a combination of storm duration and 
cumulative precipitation data. Rainfall-based thresholds are derived by simple regression or a frequency of 
exceedance analysis. They represent the oldest approach to predictive modeling and are actively used at 
many beaches in the U.S. 

Partial Least Squares Models 
Partial least squares (PLS) regression models can be used as an alternative to MLR models if there is a 
large number of independent variables that are not well understood; have poor linear correlation with the 
response variable; or have problems with multicollinearity among the independent variables. The primary 
objective of PLS regression remains the same as MLR: a model that accurately predicts FIB concentration 
given a set of independent variables. The system for selecting the variables is what makes this modeling 
different. VB3 includes PLS regression as an optional modeling approach, and it is described in detail in 
Virtual Beach 3.0.4: User’s Guide (Cyterski et al. 2013). 

Decision Trees 
In general, decision trees work best when FIB levels are primarily influenced by only a few factors. They 
are basically a series of yes/no questions concerning conditions that influence FIB density. The “tree” is 
typically portrayed visually as a flow chart with binary decision node “branches.” The questions with the 
highest importance generally appear at the top of the tree. By moving down the tree and answering the 
set of ordered questions, you are ultimately led to a beach notification classification in the simplest form, 
either “issue a notification” or “don’t issue a notification.” Decision trees range from simple to complex, 
depending on the number of decision nodes and classification endpoints. 

Gradient Boosting Machine 
The “gradient boosting machine” (GBM) is a computerized approach to constructing a large hierarchical 
set of simple decision trees for making FIB predictions. Similar to PLS regression, it is an alternative to 
MLR if there are a large number of independent variables that might not be well understood; have poor 
linear correlation with the response variable; or have problems with multicollinearity among independent 
variables. VB3 includes GBM as an optional modeling approach, and it is described in detail in Virtual Beach 
3.0.4: User’s Guide (Cyterski et al. 2013). 

Artificial Neural Network 
An “artificial neural network” is software that attempts to mimic the working of the biological neural 
network. Still in the research phase, it presents potentially another alternative for dealing with a large 
amount of independent variables that might not be well understood; have poor linear correlation with the 
response variable; or have problems with multicollinearity among independent variables. The technique 
incorporates an algorithm that allows it to “learn” relationships between inputs and outputs. 
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Introduction to Step 5 
Once your Beach Team has developed the predictive tool, they have to 
integrate it into their beach monitoring and notification program. Model 
outputs will typically be either estimated FIB levels or a probability that the 
beach notification threshold will be exceeded. The method your Beach Team 
selects to use to integrate the model will depend on several things, including 
the model’s accuracy and the availability of resources. Some questions to ask 
as you consider an integration strategy include: 

• How will you use model results to determine beach notifications? 

• Will advisories be posted based solely on model results or on a 
combination of models and sampling? 

• What do you do if the model predicts an exceedance? 

• What do you do if sampling results and model results conflict? 

• Will you verify model results before posting advisories? 

• Will you use a model to remove an advisory or reopen a beach? 

• How often will the model be used during the beach season? 

• Will you run the model on weekdays and weekends? 

• What time of day will you run the model? 

As you can see, you must consider many factors when deciding how best 
to integrate predictive tools into your beach monitoring and notification 
program. EPA recommends that you use a predictive tool to complement 
traditional monitoring. A predictive tool cannot completely replace 
sampling, but it might allow you to reduce the frequency of sampling. Data 
from culture samples can be used as a basis for models that provide timely 
results in a cost-effective manner. Predictive tools might also be useful in 
developing or adapting routine monitoring programs to focus sampling 
efforts when conditions (e.g., rain events) correlate with high FIB levels. 

You might choose to issue a beach notification if the model predicts an 
exceedance of a beach notification threshold, if sampling results are above 



the threshold, or both. If you occasionally use model results in conjunction 
with sampling results, consider what to do if the model predictions and 
sampling results conflict. 

Once you have issued a beach notification, you must decide the process for 
removing an advisory. Will you rerun the model with more current data? 
Will you collect additional samples? The National Beach Guidance (USEPA 
2014) recommends lifting actions that were imposed based on the output 
of a predictive model after an additional model run estimates that water 
quality conditions have improved to within acceptable parameters. 

Frequency of Running the Model 
Your Beach Team must decide how often to run the model. Consider 
resources available to collect data, run the model, and post results. Running 
the model daily might be ideal, but is not always practical. You might want 
to have the results available on the weekends when the most people are using 
the beach; however, you might not have staff available to collect the data and 
run the model. Many beach programs that use predictive models run them 
on weekdays while some also run them on weekends. 

Notification Protocols 
As you consider all the factors that are important in determining beach 
notifications, you will use them to develop a protocol for making beach 
notification decisions. “Notification protocol” is a general term used 
to describe a set of questions or decision points that a beach manager 
routinely uses to determine whether to issue a notification or close a beach. 
Notification protocols can be simple or complex, but should include all of 
the decisions that your Beach Team needs to make after collecting samples 
or running a predictive model. The protocol can include the necessary 
decisions after a pollution event (CSO or SSO discharge) or hazardous 
conditions are discovered (e.g., strong rip currents, red tide) that might 
affect whether the beach should be open, closed, or under an advisory. An 
example of a notification protocol for a beach that uses sampling results and 
a predictive model is shown in Figure 10. 
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Figure 10. Notification protocol for a beach program that uses sampling results and a 
predictive model to make notification decisions. 

Some beach program managers might choose to use the predictive model 
alone to make decisions on notification actions, without considering 
sampling results when making those decisions. In that case sample results 
might be used only to verify the model is making accurate predictions and 
to recalibrate or update the model over time. An example of a notification 
protocol for this approach is shown in Figure 11, which is much simpler than 
the protocol shown in Figure 10. 

Figure 11. Notification protocol for a beach that uses only model results to make 
notification decisions. 
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You should also explore whether you need different notification protocols 
for different seasons or for different parts of the beach season (e.g., if there 
is a dry part and a wet part to the beach season). In the case study for the 
South Shore model, the MHD found that their Environmental Monitoring 
for Public Access and Community Tracking (EMPACT) model was less 
accurate as the beach season progressed, suggesting there was some level 
of seasonality or unidentified influences to water quality between the 
beginning and the end of the beach season. 

Types of Beach Notifications 
A beach advisory is the most common beach notification based on the use 
of a predictive tool. However, the following types of notifications might be 
appropriate at certain times. 

Beach Advisories 
When a model predicts the exceedance of a water quality standard, many 
beach managers issue a beach advisory, which warns beach goers that the 
FIB density is above the water quality standard and swimming and wading 
are not recommended. 

Beach Closings 
Modeling results might lead you to decide that water quality conditions are 
poor enough to warrant closing the beach rather than issuing an advisory. 
If you close your beach, you might choose to continue running your model 
regularly to determine when FIB 
levels are low enough to reopen, 
thereby minimizing the number of 
closure days. 

Preemptive Advisories 
The exploratory data analysis will 
give you a good idea of what events 
(such as heavy rainfall or CSOs) are 
correlated with higher FIB levels at 
your beach; as a result, you might 
decide to issue preemptive advisories 
or closures based on those events. 
For example, if you know that a 
1-inch rainfall generally causes an 
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exceedance of the notification threshold and the weather forecast is calling 
for more than 1 inch of rain overnight, a preemptive advisory could be 
issued based on what you already know about rain events and exceedances. 
You would not need to run the model to issue a preemptive advisory or 
closure. 

Permanent Advisories 
Some beach managers issue permanent advisories when a certain type of 
event is highly correlated with elevated FIB levels. A predictive tool can help 
determine whether a permanent advisory is necessary. An example of using 
this type of advisory is when FIB levels often exceed water quality standards 
after almost any amount of rainfall. In that case, you might choose to issue 
a permanent advisory that swimming should be avoided for a certain period 
after any rainfall has occurred. 
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The Ohio Nowcast webpage 
http://www.ohionowcast.info/ 
index.asp is a great example 
of an outreach website and 
includes detailed information 
for the public, such as: 

• Where Nowcast is used — 
detailed maps. 

• How Nowcast works. 

• How Nowcast performs. 

• Accuracy of Nowcast for 
each beach. 

• List of variables used to 
make predictions. 

• List of current advisories. 

• FAQs. 

Public Communication 
The predictive tool development process does not necessarily indicate a 
need for public involvement. Much of the process involves scientific and 
technical expertise and centers around the staff and resources of state and 
local agencies and public health departments. Although much of the process 
involves experts, predictive modeling stems from the need to protect public 
health and much can be gained from involving the public. 

Public Education 
Public education is an important part of the outreach process. Outreach 
often involves teaching the public about beach health and safety—what an 
advisory means, what health risks exist, and what precautions should be 
taken. When you are using a predictive model, you need to also explain the 
use of the model to the public. Some general questions and answers useful 
for public education include: 

What is a predictive model? Predictive models are a means of predicting 
or forecasting water quality conditions in the absence of a current water 
sample. Beach managers assess previous sampling data to determine 
which factors affect water quality. The model uses these factors to 
estimate water quality under current conditions.  

Why use a model? Predictive models are most useful in increasing the 
timeliness of beach notifications, conserving resources by reducing 
sampling, and improving the accuracy of identifying notification days by 
adding to the existing monitoring program.  

How accurate are models? The accuracy of a model depends on the data 
on which it is based and local conditions. A thorough understanding of 
the beach environment and a strong data set can support accurate and 
reliable models. Models should be routinely verified and validated by 
sampling and laboratory analysis, and continuously updated based on 
sampling results. 

How does the model change postings and advisories? With the use of 
a model, postings and advisories can be updated more frequently and 
provide real-time estimates of water quality at beaches. 

Does this mean samples are no longer collected and analyzed? Water 
samples are still collected regularly and analyzed for FIB, both to 
determine the water quality and to verify and update the model. 
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How does this improve public health protection? Beach managers 
are able to predict water quality and post advisories in a more timely 
manner to prevent illnesses associated with recreating in waters with high 
densities of bacteria or pathogens.  

Public Outreach 
Public outreach involves directly communicating with the public about 
beach health and safety. You should consider whether notifications 
and advisories are easily accessible and whether you are effectively 
communicating key information. The National Beach Guidance (USEPA 
2014) discusses a number of possible formats for conducting outreach. The 
Chicago Parks Department has an especially good outreach program, which 
includes a public education campaign and a Beach Ambassadors program 
(see the case study for more information). 

Other Uses for Predictive Models 
A predictive model might provide other benefits to a beach program besides 
being used for notifications. For example, the Michigan Department of 
Natural Resources uses beach models as a tool to identify and remediate 
sources of contamination to assist with Total Maximum Daily Load (TMDL) 
development for beaches. 
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Introduction to Step 6 
You should plan to evaluate your model periodically to verify that the 
performance goals are being met. Many programs choose to assess model 
accuracy at the end of the beach season. Any significant decreases in 
performance might signal that environmental conditions that affect FIB 
density have changed. For example, the season might have been unusually 
wet or dry. In this case you might want to conduct more exploratory data 
analysis (Step 3) and build a new model (Step 4) using the past season’s data 
as part of the historical database. Your “rebuilt” updated model may or may 
not include the same explanatory variables. The overall goal is to keep the 
model current with the environmental conditions that affect FIB density at 
the beach. 

Several of the case studies at the end of this guide describe situations that 
required officials to adjust their model in response to changing conditions or 
circumstances. 

• South Carolina Department of Health and Environmental Control 
updated their stormwater model by using radar data from NexRad 
instead of the data they previously obtained from rain gauges. 

• Milwaukee Health Department is updating their Nowcast model by 
collaborating with a new partner for their local expertise and using 
improved data at three beach sites instead of at the one beach where 
the model was initially used. They hope to automate data integration, 
translation, and loading to improve the efficiency of their model. 

• The City of Racine plans to update their model every year to ensure it 
is still predictive. They also will continue to evaluate whether they can 
decrease monitoring frequency. 

• Charles River Watershed Association has continued to enhance its 
model over the past 15 years, is always looking at other parameters 
that may improve model predictions to add to the model, and has a 
future goal of real-time data collection for a real-time model. 

Changes to the Fate and Transport of FIB 
The predictive tools described in this guidance assume that the relationships 
between FIB and the environmental conditions associated with the 
explanatory variables remain constant over time. This is almost never the 
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case, however, because landscapes and human activities change over time 
and may affect bacteria sources and their movement through the drainage 
area. An annual sanitary survey of your beach would likely capture many 
of these changes. Some of the factors that affect FIB movement include the 
following: 

•  Land use alterations. 

• Infrastructure changes (e.g., repairs to leaky sewer lines). 

• Changes to bounding structures (e.g., jetties, breaker walls, piers). 

• Changes in pollutant sources (e.g., increase or decrease in algal blooms 
or presence of wildlife). 

All of these factors can cause shifts in the underlying processes influencing 
FIB densities at your beach. 

Changes to Data Sources 
Step 2 included a discussion of some of the key attributes of the data 
needed to build and operate the model to make same-day FIB predictions. 
In general independent variable data need to be collected in a manner 
consistent with the historical data used to build the model. Additionally, 
data collected locally are preferred over data obtained from external or 
online sources, primarily because your model is site-specific. In reality, 

however, your choice of data 
sources is often driven by the 
availability of funding and 
resources Using data readily 
available online is much 
less expensive and resource 
intensive to obtain than 
deploying and maintaining 
your own system of rain 
gauges, weather stations, water 
quality sondes, and other 
equipment. For example, 
USGS is working with VB 
developers to make a variety of 
explanatory data collected by 
Federal agencies easier for users 
to access and process using the 
EnDDaT online system. As 

Ozaukee County, Wisconsin 
The Ozaukee County Public Health Department developed a model 

for a lake. In 2012, they experienced unusual weather conditions—no 

rain fell, and the lake temperatures were very warm. The biology and 

ecology of the lake changed, and the nearshore environment became 

the source of high FIB densities. Advisories were issued for about one 

third of the 2012 

beach season, and 

the model was found 

to be only 60 percent 

accurate. A revised 

model would only 

be useful if these 

conditions become a 

trend. 



 

Six Key Steps for Developing and Using Predictive Tools at Your Beach	 53 

Step 6: Evaluate the Predictive Tool over Time 

described in the Stormwater Model (Horry County, South Carolina) case 
study, the SCDHEC initially used rainfall data collected at local rain gauges 
for their predictive models, but over time they switched to using NexRad 
data, which eliminated the need for updates to and maintenance of the rain 
gauges, while also improving timeliness and accuracy of the model. In other 
cases, a beach program might have originally used data from NWS but 
plans to install local rain gauges to get more accurate rainfall measurements 
for their beach. The MHD initially collected data for its predictive model 
using a sonde, but because of high maintenance costs, they chose to use 
NWS rainfall data and the previous day’s E . coli concentrations—along with 
sanitary survey data, which provided additional insight on weather, rainfall, 
algae content, litter, and wildlife. 

If the data source changes, you will need to collect enough data to rebuild 
your model (see the recommendations on amount of data in step 1), as the 
relationships between the independent variables and FIB will change from 
the relationships in the original model. 

Changes to Your Beach Program 
The needs of your beach program and the availability of resources can also 
change over time. You will need to reevaluate your beach program and its 
need for a predictive tool and assess whether you have the resources to meet 
that need. 

You also should evaluate your notification protocol over time to make sure 
it is still appropriate for making the best decisions about beach notifications. 
For example, if model results are highly accurate, a beach program that 
initially used both sampling results and modeling results to make beach 
notification decisions might decide to rely solely on modeling results for 
their beach. In that case, they might limit sampling to the days on which 
the model predicts an exceedance of the water quality standard or other 
notification threshold. 

Credit: Ryan Hagerty/USFWS 



 

 

 

 

 

 

 

Six Key Steps for Developing and Using Predictive Tools at Your Beach54 

Bibliography 
Alm, E.W., J. Burke, and A. Spain. 2003. Fecal indicator bacteria are 

abundant in wet sand at freshwater beaches. Water Research 37(2003) 
3978–3982. 

APHA (American Public Health Association). 1998. Standard Methods for 
the Examination of Water and Wastewater, 20th ed. American Public 
Health Association, Washington, DC. 

Biedrzycki, Paul, Disease Control and Environmental Health, City of 
Milwaukee Health Department. 2012–2013. Personal communication. 

Boehm, A.B., R.L. Whitman, M.B. Nevers, D. Hou, and S.B. Weisberg. 
2007. Nowcasting recreational water quality. In Statistical Framework 
for Recreational Water Quality Criteria and Monitoring, ed. L. Wymer. 
Wiley-Interscience, Chichester, West Sussex, England. 

Breitenbach, Cathy, Chicago Parks District. 2012. Personal communication. 

Briggs, Shannon, Michigan Department of Environmental Quality. 2012. 
Personal communication. 

Brooks, W.R., Fienen, M. N., and Corsi, S.R. 2013. Partial least squares 
for efficient models of fecal indicator bacteria on Great Lakes beaches: 
Journal of Environmental Management 114:470–475. 

Charles River Watershed Association. Charles River Water Quality 
Notification Flagging Program. 
http://www.crwa.org/field-science/water-quality-notification. 

Chicago Park District. 2012. Chicago Park District Improves Beach 
Monitoring for 2012 Season. http://www.chicagoparkdistrict.com/ 
chicago-park-district-improves-beach-monitoring-for-2012-season. 

Cicero, K. The 10 Best Beaches for Families: 2011. Parents Magazine. June 
2011. Accessed January 22, 2013. http://www.parents.com. 

Clark, J., Hortobagyi, M., and Yancey, K.B. Just for Summer: 51 Great 
American Beaches. USA Today. March 27, 2012. Accessed January 22, 
2013. http://travel.usatoday.com. 

http://www.crwa.org/field-science/water-quality-notification
http://www.chicagoparkdistrict.com/chicago-park-district-improves-beach-monitoring-for-2012-season/
http://www.chicagoparkdistrict.com/chicago-park-district-improves-beach-monitoring-for-2012-season/
http://www.parents.com
http://travel.usatoday.com


55 Six Key Steps for Developing and Using Predictive Tools at Your Beach	

 

 

  

 

Bibliography 

Converse, R.R., J.L. Kinzelman, E.A. Sams, E. Hudgens, A.P. Dufour, H. 
Ryu, J.W. Santo-Domingo, C.A. Kelty, O.C. Shanks, S.D. Siefring, R.A. 
Haugland, and T.J. Wade. 2012. Dramatic Improvements in Beach Water 
Quality Following Gull Removal. Environmental Science and Technology 
46:10206−10213. 

Cyterski, M., W. Brooks, M. Galvin, K. Wolfe, R. Carvin, T. Roddick, M. 
Fienen, S. Corsi. 2013. Virtual Beach 3.0.4: User’s Guide. National 
Exposure Research Laboratory, U.S. Environmental Protection Agency, 
Athens, GA and U.S. Geological Survey, Middleton, WI. 

Eleria, A. and R.M. Vogel. 2005. Predicting fecal coliform bacteria levels in 
the Charles River, Massachusetts, USA. Journal of the American Water 
Resources Association. No. 03111. October 2005. 

Francy, D. 2009. Use of predictive models and rapid methods to nowcast 
bacteria levels at coastal beaches. Aquatic Ecosystem Health and 
Management 12(2):177–182. 

Francy, D.S., and Darner, R.A. 2006. Procedures for Developing Models to 
Predict Exceedances of Recreational Water Quality Standards at Coastal 
Beaches: U.S. Geological Survey Techniques and Methods 6–B5, 34 p. 

Francy, D.S., A.M.G. Brady, R.B. Carvin, S.R. Corsi, L.M. Fuller, J.H. 
Harrison, B.A. Hayhurst, J. Lant, M.B. Nevers, P.J. Terrio, and T.M. 
Zimmerman. 2013a. Developing and Implementing Predictive Models for 
Estimating Recreational Water Quality at Great Lakes Beaches . Scientific 
Investigations Report 2013-5166. U.S. Geological Survey, Reston, VA. 
Accessed March 2015. http://pubs.usgs.gov/sir/2013/5166/pdf/sir2013­
5166.pdf. 

Francy, D.S., E.A. Stelzer, J.W. Duris, A.M.G. Brady, and J.H. Harrison. 
2013b. Predictive Models for Escherichia coli Concentrations at Inland 
Lake Beaches and Relationship of Model Variables to Pathogen Detection. 
USGS Staff–Published Research. Paper 706. 

Fulton, Jeff. No date. Public Beaches in Chicago. USA Today. 
http://traveltips.usatoday.com/public-beaches-chicago-53741.html. 

Hansen, D.L., S. Ishii, M.J. Sadowsky, R. E. Hicks. 2011. Waterfowl 
abundance does not predict the dominant avian source. Journal of 
Environmental Quality 40:1924–1931. 

http://pubs.usgs.gov/sir/2013/5166/pdf/sir2013-5166.pdf
http://pubs.usgs.gov/sir/2013/5166/pdf/sir2013-5166.pdf
http://traveltips.usatoday.com/public-beaches-chicago-53741.html


Hartmann, J.W., S.F. Beckerman, R.M. Engeman, and T.W. Seamans. 2013. 
Report to the City of Chicago on Conflicts with Ring-billed Gulls and the 
2012 Integrated Ring-billed Gull Damage Management Project. USDA 
National Wildlife Research Center, Staff Publications. Paper 1145. 

Helsel, D.R. and R.M. Hirsch. 2002. Statistical Methods in Water Resources. 
Elsevier Publishing. 

Hou, D., S.J.M. Rabinovici, and A.B. Boehm. 2006. Enterococci Predictions 
from Partial Least Squares Regression Models in Conjunction with a 
Single-Sample Standard Improve the Efficacy of Beach Management 
Advisories. Environmental Science and Technology (40)6: 1737–1743. 

Kesteloot, K., A. Azizan, R. Whitman, and M. Nevers. 2012–2013.New 
recreational water testing alternatives. Park Science 29(2). 

Kinzelman, Julie, City of Racine. 2012–2013. Personal communication. 

Kurdas, Stephan, City of Racine. 2012–2013. Personal communication. 

Mas, D.M.L., and K. Baker. Fuss and O’Neill. EIT Guidance for Developing 
Predictive Models for Ontario Beaches. Ontario Ministry of the 
Environment. Toronto, Ontario Canada. February 2011. 

Mednick, A.C. 2009. Accessing Online Data for Building and Evaluating Real-
Time Models to Predict Beach Water Quality. Publication PUB-SS-1063. 
Wisconsin Department of Natural Resources, Madison, WI. Accessed 
March 2015. http://dnr.wi.gov/files/PDF/pubs/ss/SS1063.pdf. 

Mednick, Adam, Wisconsin Department of Natural Resources. 2012. 
Personal communication. 

NRDC (Natural Resources Defense Council). Testing the Waters: South 
Carolina. http://www.nrdc.org/water/oceans/ttw/sc.asp. 

Seltman, H.J. 2013. Experimental Design and Analysis, Chapter 4 
Exploratory Data Analysis. June 10, 2013. 

Olyphant, G.A., and R.L. Whitman. 2004. Elements of a predictive model 
for determining beach closures on a real time basis: The case of 63rd 
Street Beach Chicago. Environmental Monitoring and Assessment 
98(1–3):175–190. 

56 Six Key Steps for Developing and Using Predictive Tools at Your Beach

 

  

 

Bibliography 

http://dnr.wi.gov/files/PDF/pubs/ss/SS1063.pdf
http://www.nrdc.org/water/oceans/ttw/sc.asp


57 Six Key Steps for Developing and Using Predictive Tools at Your Beach	

   

  

 

Bibliography 

Our 7 Top Midwest City Beaches. Midwest Living Magazine. July-August 
2010. Accessed January 22, 2013. http://www.midwestliving.com. 

Porter, Dwayne, University of South Carolina. 2012. Personal 
communication. 

Rockwell, D., K. Campbell, G. Lang, D. Schwab, G. Mann, and R. 
Wagenmaker. 2013. Beach Water Quality Decision Support System . 
Technical Memorandum GLERL-156. National Oceanic and 
Atmospheric Administration, Ann Arbor, MI. Accessed March 2015. 
http://www.glerl.noaa.gov/ftp/publications/tech_reports/glerl-156/ 
tm-156.pdf. 

Rockwell, David, University of Michigan. 2012. Personal communication. 

Schwab, D.J., and K.W. Bedford. 1994. The Great Lakes Forecasting System. 
In Coastal and Estuarine Studies: Coastal Ocean Prediction, ed. C.N.K. 
Mooers. American Geophysical Union, Washington, DC. 

South Carolina Department of Health and Environmental Control. Beach 
Monitoring Program. 
http://www.scdhec.gov/HomeAndEnvironment/Pollution/
 
DHECPollutionMonitoringServices/BeachMonitoring/.
 

Southeast Coastal Ocean Observing Regional Association. Water Quality 
Observations and Models Help Managers Make Decisions on Issuing 
Swim Advisories. www.secoora.org. 

Torrens, Sean, South Carolina Department of Health and Environmental 
Control. 2012–2013. Personal communication. 

USEPA (U.S. Environmental Protection Agency). 1999. Action Plan 
for Beaches and Recreational Waters. EPA 600/R-98-079. U.S. 
Environmental Protection Agency, Office of Research and Development 
and Office of Water, Washington, DC. 

USEPA (U.S. Environmental Protection Agency). 1999. Review of Potential 
Modeling Tools and Approaches to Support the BEACH Program. EPA­
823-R-99-002. U.S. Environmental Protection Agency, Office of Science 
and Technology, Washington, DC. 

http://www.midwestliving.com
http://www.glerl.noaa.gov/ftp/publications/tech_reports/glerl-156/tm-156.pdf
http://www.glerl.noaa.gov/ftp/publications/tech_reports/glerl-156/tm-156.pdf
http://www.scdhec.gov/HomeAndEnvironment/Pollution/DHECPollutionMonitoringServices/BeachMonitoring/
http://www.scdhec.gov/HomeAndEnvironment/Pollution/DHECPollutionMonitoringServices/BeachMonitoring/
http://www.secoora.org


USEPA (U.S. Environmental Protection Agency). 2002. Time-Relevant Beach 
and Recreational Water Quality Monitoring and Reporting. United States 
Environmental Protection Agency, Office of Research and Development, 
National Risk Management Research Laboratory. EPA/625/R-02/017. 
October 2002. Cincinnati, Ohio. 
http://www.scdhec.gov/HomeAndEnvironment/Water/SwimSafety/ 

USEPA (U.S. Environmental Protection Agency). 2007. Report of the Experts 
Scientific Workshop on Critical Research Needs for the Development of 
New or Revised Recreational Water Quality Criteria. EPA 823-R-07-
006. U.S. Environmental Protection Agency, Office of Water, Office of 
Research and Development. Airlie Center, Warrenton, Virginia. 

USEPA (U.S. Environmental Protection Agency). 2010a. Predictive Tools 
for Beach Notification . Volume I: Review and Technical Protocol. EPA-
823-R-10-003. U.S. Environmental Protection Agency, Office of Water, 
Washington, DC. 

USEPA (U.S. Environmental Protection Agency). 2010b. Predictive 
Modeling at Beaches . Volume II: Predictive Tools for Beach Notification. 
EPA-600-R-10-176. U.S. Environmental Protection Agency, National 
Exposure Research Laboratory, Athens, Georgia. 

USEPA (U.S. Environmental Protection Agency). 2010c. Sampling and 
Consideration of Variability (Temporal and Spatial) for Monitoring of 
Recreational Waters. EPA-823-R-10-005. U.S. Environmental Protection 
Agency, Office of Water, Washington, DC. Accessed March 2015. 
http://www.epa.gov/sites/production/files/2015-11/documents/sampling-
consideration-recreational-waters.pdf. 

USEPA (U.S. Environmental Protection Agency). 2012 . Recreational Water 
Quality Criteria. EPA 820-F-12-058. U.S. Environmental Protection 
Agency, Office of Water, Washington, DC. 

USEPA (U.S. Environmental Protection Agency). 2014. National Beach 
Guidance and Required Performance Criteria for Grants. EPA-
823-B-14-001. U.S. Environmental Protection Agency, Office of Water, 
Washington, DC. 

Whitman, R.L. and M.B. Nevers. 2003. Foreshore Sand as a Source of 
Escherichia coli in Nearshore Water of a Lake Michigan Beach. Applied 
and Environmental Microbiology 69(9): 5555–5562. 

58 Six Key Steps for Developing and Using Predictive Tools at Your Beach

 

 

 

 

Bibliography 

http://www.scdhec.gov/HomeAndEnvironment/Water/SwimSafety/
http://www.epa.gov/sites/production/files/2015-11/documents/sampling-consideration-recreational-waters.pdf
http://www.epa.gov/sites/production/files/2015-11/documents/sampling-consideration-recreational-waters.pdf


59 Six Key Steps for Developing and Using Predictive Tools at Your Beach	

Bibliography 

Whitman, R.L., D.A. Shively, H. Pawlik, M.B. Nevers and M.N. 
Byappanahalli. 2003. Occurrence of Escherichia coli and Enterococci in 
Cladophora (Chlorophyta) in Nearshore Water and Beach Sand of Lake 
Michigan. Applied and Environmental Microbiology 69(8):4714–4719. 

Whitman, R.L., V.J. Harwood, T.A. Edge, M.B. Nevers, M. Byappanahalli, 
K. Vijayavel, J. Brandao, M.J. Sadowsky, E.W. Alm, A. Crowe, D. 
Ferguson, Z. Ge, E. Halliday, J. Kinzelman, G. Kleinheinz, K. Przybyla-
Kelly, C. Staley, Z. Staley, and H. Solo-Gabriele. 2014. Microbes in beach 
sands: integrating environment, ecology and public health. Rev Environ 
Sci Biotechnol 13:329–368. 

Wood, Julie, Charles River Watershed Association. 2012–2013. Personal 
communication. 

Ziegler, Dan, Ozaukee County Public Health Department. 2012. Personal 
communication. 



This page intentioanlly left blank.
­



Case Study

 

 

 

 

61 

The South Shore Beach Model (Milwaukee, Wisconsin)
 

Introduction 
South Shore Beach is in Milwaukee, Wisconsin’s 
South Shore Park on the western shore of Lake 
Michigan. South Shore Beach is a public beach with 
150 meters of sandy shoreline within the South Shore 
Marina (owned and operated by the South Shore 
Yacht Club). A 20-meter embankment separates the 
sandy beach area from a cobble/pebble beach area 
that has a high-sloping shore (South Shore Rocky 
Area). The entire beach and marina area is partially 
enclosed by a breakwall, approximately 300 meters 
offshore, which limits wave action, water circulation, 
and exchange with the outer harbor. The beach is a 
few kilometers south of Milwaukee Harbor and the 
Milwaukee Metropolitan Sewerage District Jones 
Island Water Reclamation Facility. Three rivers— 
Milwaukee, Menomonee, and Kinnickinnic—reach 

a confluence prior to discharging to Lake Michigan 
inside the Milwaukee Harbor breakwall. 

Visitors to Milwaukee’s beaches on hot summer 
weekend days exceed 1,000 persons for all three 
public beaches combined: Bradford Beach, McKinley 
Beach, and South Shore Beach. South Shore Beach is 
home to a number of waterfowl and shore birds given 
its proximity to a public park and related greenspace. 
South Shore Beach also experiences algal blooms of 
cladophora, which is native to Lake Michigan and 
nearshore environments. 

In 1998 the City of Milwaukee Health Department 
(MHD) decided to develop a beach water quality 
predictive model for purposes of (1) improving 
water quality forecasting at the public beaches and 
(2) improving water quality advisories and related 

messaging to public beachgoers when 
water quality is unsafe for public 
swimming or contact because of 
elevated bacteria levels. In 2005 MHD 
implemented a different predictive 
model, and variations of the model are 
still in use today. 

Water Quality 
South Shore Beach has a history of 
poor water quality due to elevated fecal 
bacteria levels. Potential sources of 
fecal bacteria contamination include 
combined sewer overflows (CSOs); 
urban/suburban and agricultural 
runoff from the Milwaukee River 
Basin; runoff from impervious surfaces, 
including South Shore Park parking lots, 
pedestrian sidewalk and roadways, and 
marina infrastructure including docks, 
slips, and boats; and domestic and wild 
animal populations including Canadian 
geese, seagull, and other waterfowl 
flocks. The beach is directly adjacent to 
the South Shore Yacht Club and a small 
paved parking area that drains into the 
lake. 



The Natural Resources Defense Council has included 
South Shore Beach several times on its list of the top 
10 dirtiest beaches in the United States. A possible 
contributor to the water quality problem might 
be an offshore breakwall (stone jetty), designed to 
block wave action and protect the lakefront from 
erosion. Unfortunately, it also limits the circulation 
of freshwater into the shallow-depth beach area. 
Pollution that enters the relatively stagnant lake 
through runoff near or around the beach area is 
therefore not readily turned over. To reduce pollution 
entering the lake, Milwaukee County installed a 
trench drain and rain garden along a parking lot 
near the beach. These practices were ineffective. 
The county is considering relocating the beach 100 
yards south—to the other side of the breakwall—as a 
possible long-term solution to improving beach water 
quality conditions during the summer season. 

Model Development 
MHD used two different models over time—the 
EMPACT model and the Nowcast model. Both are 
described here in separate subsections. 

EMPACT Model 
In 1998 MHD developed a statistical model for three 
of its public beaches using funding awarded through 
the U.S. Environmental Protection Agency (EPA) 
Environmental Monitoring for Public Access and 
Community Tracking (EMPACT) grant. The model is 

based on 24-hour rainfall data and previous 24-hour 
bacterial sampling data (E. coli MPN/100mL), 
which are the two most predictive variables. The 
University of Indiana and U.S. Geological Survey 
(USGS) assisted MHD in developing the model. 
Key factors when selecting which beach model 
to further develop and refine were the amount of 
funding and availability of technical support (both 
data management and model development) that 
could be leveraged to achieve improved predictive 
water quality outcomes. The EMPACT program 
significantly helped MHD take advantage of new 
technologies to provide environmental risk-related 
information to the public in a reliable and accurate 
near real-time context. 

When developing the model in 1998, the MHD 
was initially excited for the opportunity to try new 
technology for improving the accuracy of water 
quality advisories; however, the project posed many 
unanticipated technical and maintenance challenges. 
To collect data for the model, USGS used a sonde. 
A sonde is a water quality monitoring instrument 
that can measure numerous parameters including 
temperature, conductivity, salinity, dissolved oxygen, 
pH, turbidity, and depth. The harsh lake environment 
was unsuitable for long-term deployment of 
instrumentation. Furthermore, MHD did not 
have sufficient internal capability or resources to 
adequately manage the myriad of sampling, data 
analysis, and routine equipment maintenance. In 
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Milwaukee Harbor. (USACE) E. coli. 



addition, budget and staff cuts made the model too 
complex to sustain by a local public health agency 
with limited environmental health fiscal resources. 
Eventually MHD exhausted all funding and related 
external agency technical support, and stopped using 
the EMPACT model as its primary predictive model 
at the end of the 2004 beach season. The EMPACT 
project provided valuable insight, however, into the 
challenges of developing cost-effective and sustainable 
predictive water quality models at the local level and 
in the context of the Lake Michigan public beach 
environment. 

Nowcast Model 
After the 2004 beach season, MHD decided that 
a simpler Nowcast model would be more effective 
and discontinued use of the EMPACT model. For 
the Nowcast model, the development team selected 
a single public beach in Milwaukee (South Shore 
Beach), where the monitoring equipment could be 
located near a secure power source, protected against 
vandalism, and shielded from harsh environmental 
conditions. South Shore Beach also traditionally 

recorded the highest fecal indicator bacteria counts 
and, therefore, represented the highest potential 
health risk to the public during the typical beach 
season (June–August). 

It took MHD approximately 6 to 8 months to develop 
the Nowcast model, which was ready for use by the 
start of the 2005 beach season. If developed today, 
MHD could have done it more efficiently because 
better statistical and modeling software is more 
widely available and less costly to the end user. 

Data and Variables 
EMPACT Model 
The initial variables MHD considered for the 
EMPACT model included total rainfall for the 
previous 24 hours, pH, conductivity, wave height, 
water temperature, and Escherichia coli densities 
from the previous 24-hour sampling period. The 
MHD deployed a sonde in the water near the beach to 
collect real-time water quality data. National Weather 
Service (NWS) was utilized to derive daily rainfall 
data, which relies on geographically dispersed city 
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weather stations and gauges. In addition, sanitary 
surveys (typically conducted annually by the MHD) 
were useful in identifying and describing site-specific 
attributes and pollution influences to each of the 
Milwaukee public beaches. The MHD used regression 
analysis to determine which independent variables 
of interest might be most highly associated with or 
predictive of elevated E. coli counts at public beaches 
on a seasonal basis. 

Predictive variables differed between beaches, but 
rainfall data were used in determining water quality 
advisories at all three. Total rainfall over a previous 
24-hour period was determined to be an important 
predictive variable in all three beach models primarily 
due to contributions of: (1) wastewater treatment 
plant induced CSOs and diversions, (2) sanitary sewer 
cross-connections and infiltration, and (3) stormwater 
runoff. MHD continued collecting select physical and 
chemical water quality data to integrate within beach 
water quality modeling through 2004. 

Design of beaches varies greatly and can determine the 
magnitude of impact, as well as duration of a pollution 
event (how much pollution input and time interval 
required for a beach to naturally recover). More 
specifically, for Milwaukee beaches, total rainfall was 
most highly correlated with bacterial contamination 
and predictive of water quality exceedances when 
it exceeded one-half inch along with temporal 
occurrence early in the beach season (June). 

Raw and summarized data were available daily or 
by request through a public website. MHD collected 
the data electronically via the sonde and transmitted 
it to the website, after review and analysis, for use 
by academic and research entities, the general 
public, and other interested parties (e.g., media and 
environmental groups). 

Nowcast Model 
The Nowcast model that MDH developed after 
the 2004 beach season is primarily dependent and 
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based on regional precipitation, using the previous 
24-hour rainfall total. The MHD model development 
team continues to explore and identify markers for 
nonpoint sources of pollution including chemical 
biomarkers in stormwater discharge (e.g., caffeine 
and triclosan derivatives). Avian and waterfowl 
populations, as well as algal impact, are noted 
but have not been particularly predictive of beach 
water quality in terms of contributions to microbial 
contamination of public health significance. 
Cladophora blooms, however, have increased in the 
past decade at each public beach, causing primarily 
nuisance and aesthetic concerns (e.g., objectionable 
odor and water discoloration). USGS and the 
Wisconsin Department of Natural Resources support 
all data collection and statistical analyses needed to 
develop and implement the Nowcast model. Most 
recently, the MHD partnered with research faculty 
at the newly formed Zilber School of Public Health 
at the University of Wisconsin–Milwaukee (UWM) 
to improve Nowcast modeling and identify other 
indicators of water contamination predictive of or 
directly associated with adverse public health impact. 

Model Implementation 
MHD exclusively used the EMPACT model for 
beach water quality advisory decision making 
from 1998–2004. However, the model expressed 

predicted exceedances with a maximum accuracy of 
60 percent–70 percent at only one beach and often 
approached only 50 percent accuracy at the remaining 
two beaches. MHD also noted that the model’s 
predictive accuracy tended to wane at each beach as 
the summer progressed, which suggests some level 
of seasonality or unidentified influences to water 
quality between early season and late season beach 
monitoring periods. As a result, MHD confidence in 
sustaining the model diminished over time. MHD 
assessed the effectiveness of the model by examining 
the degree of sensitivity and specificity. The criterion 
for issuing advisories was the exceedance of EPA’s 
single sample maximum or geometric mean threshold 
for E. coli as expressed in MPN/100ml. 

MHD uses the Nowcast model output for beach 
advisories. Because model results continue to be less 
than optimal in terms of predictive value, MHD 
relies on long-term trending of data and overall 
environmental conditions (i.e., water temperature, 
multiple day bacterial sampling results, and heavy 
rainfall) to refine the issuance of water quality 
advisories. MHD posts advisories for 24-hour 
intervals and uses the model and trending to 
determine when the advisories can be lifted. MHD 
would like to see more readily visible, meaningful, 
and informative public signs posted on each of the 
beaches including explicit illness risk and prevention 
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messaging. However, some key community 
policymakers and associated stakeholders (beach 
operators) are concerned that signs would interfere 
with the beach ambiance, tourism, and patron 
use. Current beach water quality advisory signage, 
therefore, remains limited in size, posting, location, 
and level of content. 

Model Cost 
The overall cost to develop the EMPACT model was 
initially in the range of $50,000–$75,000. The most 
costly aspects were siting, maintaining, and refining 
the beach sonde because of the harsh Lake Michigan 
environment and lack of MHD in-house capacity 
and expertise in this regard. Overall, the model did 
not prove to be cost effective due in large part to the 
cost of maintaining the sonde. Annual maintenance 
costs for the sonde ranged from $5,000–$10,000. 
New equipment replacement and upgrades cost an 
additional $20,000–$50,000 every 2 years. 

Milwaukee’s beach program currently has a budget of 
around $50,000. MHD is no longer using the sonde 
and has saved additional money by partnering with 
the Zilber School of Public Health at UWM, whose 
graduate students do some of the sampling and data 
collection. They have even been able to increase the 
sampling frequency to 5 times per week at each public 
beach over the season. This represents a marked 
improvement from 1–2 times per week since 2006. 

Issues Encountered 
For the EMPACT model, the sonde equipment was 
placed in a very harsh environment. It required 
weekly maintenance. Security and data feed issues 
contributed to the challenges encountered. MHD 
relied on external sources to provide the maintenance 
and replaced equipment on a more frequent basis 
than originally anticipated. 

In addition to the issues MHD had with the sonde, 
they did not have sufficient funding for refining and 
sustaining the model use. The only statistical software 
they had in-house (Epi-Info) was primarily directed 
toward use in tracking the spread of communicable 

disease and outbreak management, which was not 
useful for developing an environmental predictive 
model for a beach water quality monitoring program. 

MHD needed software that is readily available 
and easy to use with basic comparison analysis 
capabilities. Most public health agencies do not have 
these resources in-house, and they do not have the 
technical familiarity and capabilities to effectively use 
the resources. This often creates a knowledge gap and 
vulnerability with regard to environmental statistics 
collection, analysis, trending, and interpretation. 

The EMPACT model was not piloted or tested before 
implementation. In hindsight, MHD should have 
presented the model to the regional beach stakeholder 
group for reaction and feedback, as well as to conduct 
beta testing. Moreover, conducting a more thorough 
comparative analysis with other available models 
and methodologies as part of model implementation 
would have been helpful. In hindsight, the MHD staff 
did not have sufficient knowledge and expertise to 
design, develop, implement, and evaluate a model that 
could be cost effective and sustained. 

Moving Forward 
MHD has developed Nowcast models for each of the 
three public beaches located in Milwaukee. MHD 
developed the Bradford beach Nowcast model in 
partnership with the Zilber School of Public Health 
at the UWM and is working with Dr. Todd Miller 
and graduate students to conduct field sampling and 
monitoring on a seasonal basis. The MHD/UWM 
team collected water samples from Lake Michigan 
at three beach sites (Bradford, McKinley, and South 
Shore) from early June until late August 2015. UWM 
and MHD assessed these water samples for E. coli 
levels. UWM also investigated fecal coliform levels. 
In addition to fecal indicator bacteria, Dr. Miller’s 
study is looking at chemical markers in wastewater, 
specifically the identification of wastewater bacteria 
involved in the degradation of triclocarban. This has 
been shown to be very effective in predicting FIB 
exceedances at beaches. Dr. Miller is also looking at 
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temporal fluctuations in E. coli sampling; morning 
and afternoon results might be markedly different. 

This collaboration has yielded benefits in both the 
leveraging of available local expertise and improving 
the understanding of beach water quality as related 
to the protection of community health. The MHD/ 
UWM team also recorded environmental conditions, 
including weather, rainfall, algae content, litter, 
and wildlife, for each beach on every date that 
they collected water samples. They will continue to 
translate and load the data into a database for long-
term storage, analysis, and prediction forecasting. 

Further work will automate data integration, 
translation, and loading. The team will explore 
development of a website and an appropriate secure 
interface to provide access to elements from the 
database and forecasting framework to researchers, 
other government agencies, and members of the 
public. The team continues to use USGS EndaTT 
service, NWS data and sanitary surveys periodically 
conducted by the MHD. They believe that these types 
of readily available inputs will result in a more cost-
effective model for use by the MHD in determining 
seasonal water quality advisories at each of the 
public beaches. The team is no longer using the 
sonde equipment, which has significantly reduced 
maintenance costs. They are currently using rainfall 
data and the previous day’s E. coli concentrations. 
The focus of the new modeling efforts was expanded 
to all three beaches in 2014, although significant 
attention continues to be spent on water quality 
conditions at Bradford Beach. Bradford Beach is very 
popular and supports various recreational activities, 
including national volleyball tournaments, and was 
numerous beachfront attractions including a pavilion, 
beachfront tiki bars, and recreational equipment. 

Finally, the team hopes to refine the predictive model 
and generate more hypotheses on the contribution 
of various sources of intermittent pollution at each 
public beach. For example, they have determined that 
birds and algal blooms were not particularly relevant 
factors at every beach and that chemical markers 

in wastewater, along with sub-daily fluctuations 
of E. coli concentrations, may be more important 
in future predictive modeling initiatives. In 2016, 
MHD is planning to pilot the implementation of 
buoy equipped with various water quality sensors at 
each beach by partnering with Dr. Todd Miller. They 
will evaluate the ability to more rapidly collect data 
relevant to beach water quality conditions and refine 
existing models to improve predictive accuracy. 

Advice and Lessons Learned 
In 1998 the EMPACT beach predictive model 
developed and used by MHD was cutting-edge 
because it attempted to identify key environmental 
variables other than rainfall that would help predict 
elevated E. coli levels at three public beaches in 
Milwaukee. It also pioneered the collection and 
analysis of select and real-time physical and chemical 
characteristics of beach water quality for use by local 
public health authorities in determining the need for 
posting of beach water quality advisories. However, 
the model did not readily improve predictive accuracy 
as compared to simple use of previous 24-hour 
rainfall measurements, nor was it cost effective. The 
project did, however, provide valuable information 
about the unique characteristics and attributes of 
each beach site in Milwaukee and it allowed MHD 
to consider continued exploration of more scientific 
and evidence-based approaches important to the 
successful development, testing, implementation, and 
evaluation of future predictive models. 

Overall, the struggles with the initial EMPACT model 
had a major impact on MHD’s beach monitoring 
program. They do not regret going through the 
process because of how much they learned. MHD 
understands that citizens expect them to protect 
public health; therefore, they need the tools to provide 
the best available information and meet the needs of 
each community. The model used must be a good fit 
for the local public health department—in MHD’s 
case, this meant a simple, low-maintenance, user-
friendly model that allows them to share accurate 
health information with the public. It is very 
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important to earn and keep the public’s trust. False 
positives and errors must be minimized. 

Paul Biedrzycki of MHD also offers the following 
advice to fellow beach managers: 
1. Conduct a broad stakeholder planning and review 

process. 

2. Review evidence-based best practices from other 
jurisdictions and research studies. 

3. Build “buy-in” from local policymakers for 
resource allocation (program funding). 

4. Develop quality assurance and quality control 
criteria. 

5. Anticipate resources needed for sustainability. 

6. Conduct independent evaluation and review. 

7. Conduct thorough piloting/testing phase before 
implementation. 

In general, local public health departments have 
increasingly limited resources to conduct either 
extensive or comprehensive environmental health 
assessments. It is anticipated that the public health 
sector will continue to experience significant budget 
cuts at the local, state, and federal levels in the near 
future. While sustainability and green movements 
have provided some moderate assistance in terms 
of additional community resource availability, 
governments are not growing and state agency budget 
and revenue sharing with locals is being reduced. 
Therefore, collaboration and information sharing 
between entities is essential if recreational water 
quality monitoring programs are to remain in the 
future. Partnerships between states and within states, 
as well as between a diverse group of stakeholders 
(e.g., environmental groups, universities, community 
organizations, and federal agencies), must be fostered 
and encouraged. 
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Charles River Watershed Association Flag Program 

(Boston, Massachusetts) 

Introduction 
The Charles River, flowing about 80 miles from 
Hopkinton, Massachusetts, to its terminus in Boston 
Harbor, is one of the busiest recreational rivers in 
the country. On a typical summer weekend, the river 
will attract tens of thousands of people in a large 
and often colorful array of vessels including canoes, 
kayaks, dragonboats, sailboats, fishing boats, and 
rowing shells. Unfortunately, given the urban nature 
of development along the river (it runs through 23 
cities and towns), a variety of sources of pollution, 
including combined sewer overflows (CSOs), cause 
water quality problems, especially in the Lower 
Basin—the approximately 9-mile stretch from the 
Watertown Dam to the New Charles River Dam. 

In 1998, the Charles River Watershed Association 
(CRWA) initiated a flag program, flying color-
coded flags to alert people about water quality 
conditions in the Charles River Lower Basin. This 
case study explores the efforts of the CRWA to build 
the scientific foundation of the flag program by 
developing a water quality model. 

Water Quality 
In 1995 the U.S. Environmental Protection Agency 
(EPA) established the Clean Charles Initiative with 
the purpose of restoring the Charles River and 
making it fishable and swimmable. Much progress 
has been made, thanks to the collaborative efforts 
of EPA; other federal, state, and local government 
agencies; nonprofit groups; private institutions; and 
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Charles River Watershed Association Flag Program (Boston, Massachusetts) (continued)
 

The Charles River. 

the public. However, more work remains. Stormwater 
runoff and CSOs remain a special concern and, while 
water quality is usually sufficient for boating and 
other secondary contact water activities, swimming 
and other activities involving continuous full-body 
contact are not recommended because of bacterial 
levels that exceed primary contact standards. 

Model Development 
CRWA was founded in 1965 for the purpose of 
spearheading projects aimed at cleaning up the 
Charles River. Conditions improved over time, 
allowing more people to safely use the river for 
secondary recreation use; however, the river remained 
impaired for bacteria, especially during wet weather. 
Therefore, in 1998 CRWA, in a joint project with Tufts 
University and funding from EPA, began developing 
a statistical model that predicts the likelihood of a 
violation of the state boating standard in the Lower 
Charles River Basin. One of the project’s goals was to 
be able to forecast and publicize daily water quality 
conditions. The Lower Charles River Basin does not 
have a swimming beach, but it is the busiest section 
of the river and secondary recreational activities 

continue to expand. CRWA initially developed two 
different statistical models, adopting the one with 
the best performance. It took a few years to build up 
a data set of indicator bacteria sample results large 
enough to use to develop the model. 

A former staff member developed the original model 
as part of their master’s thesis at Tufts University. To 
select the model’s variables, the project team conducted 
a literature review of similar projects, with the major 
limitation that data used had to be readily available on 
a daily basis. The best predictive variables were rainfall 
volume, river flow, and wind. The project team used 
the ordinary least squares (OLS) method in Minitab® 
to develop the regression model, and they used 
Microsoft Excel to run the equation on a daily basis. 

An intern at CRWA who had recently received a 
master’s degree, overseen by Julie Wood, updated the 
model in 2009 to account for changes in availability 
of real-time data and a switch from fecal coliform to 
Escherichia coli as the primary indicator bacteria for 
state water quality standards. 
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Charles River Watershed Association Flag Program (Boston, Massachusetts) (continued)
 

Model Implementation 
In 1998 CRWA began flying color-coded flags to alert 
people about water quality conditions in the Charles 
River Lower Basin. Flown from July through October 
at select shore locations between Watertown and 
Boston Harbor, CRWA flags informed boaters about 
E. coli bacteria levels and blue-green algae blooms. 
Specifically: 
• A blue flag indicates CRWA’s forecast that the 

likelihood of bacteria exceeding the boating 
standard is less than 50 percent and a blue-green 
algae bloom is not present. 

• A yellow flag indicates that health risks are 
possible, but data are inconclusive to predict risks 
with certainty. Yellow flags are flown when signs of 
a blue-green algae bloom are present but the actual 
human health risk is unconfirmed or unknown. 

• A red flag means that the probability of the river 
exceeding boating standards is equal to or greater 
than 50 percent, or that a health risk is present 
because of a confirmed blue-green algae bloom. 
Red flags are also flown for 48 hours following a 
reported1 CSO. 

The decision on which color flag to fly is based on 
the results of a mathematical model that uses rainfall 
and other weather factors along with river conditions 
to estimate the probability of the river exceeding the 
state secondary contact recreation (boating) standard 
of 630 E. coli colony forming units per 100 milliliters 
of water (cfu/100 mL). In addition to the model, 
CRWA collects weekly water samples to help verify 
model predictions and to add to the database of water 
quality information. 

Over the past 15 years, CRWA has continued to 
enhance the model; water sampling has confirmed 
an accuracy rate of about 90 percent for predicting 
water quality violations. The program provides daily 
advisory information and allows river users to make 
more informed decisions about recreating on the river 

1 Unfortunately, only 1 of the 11 active CSOs in the Charles River 
Lower Basin provides real-time overflow notifications. 

Red advisory flag indicating potential health risks. 

Charles River Watershed Association Flag Program 
website. 
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Charles River Watershed Association Flag Program (Boston, Massachusetts) (continued)
 

on that day. The program is not used for enforcement 
actions, and the river is never closed to the public on 
the basis of model results. 

The model-generated advisory information continues 
to be communicated to the general public through 
the posting of color-coded flags and through email, 
CRWA’s website, Twitter, and a telephone hotline. 
Eleven facilities fly the color-coded flags along the 
river, providing a valuable public service. These 
facilities include yacht clubs, boating centers, canoe 
and kayak outfitters, and Harvard University’s famed 
Weld Boathouse. 

Model Costs 
Key costs for model development included labor 
costs and sample analyses. Labor to collect and 
compile online data was the most significant cost. In 
some cases, older weather data had to be purchased. 
Collecting and organizing free data into a usable 
format, especially when it must be formatted to work 
with a specific statistical software package, can be 
time-consuming. Collecting and analyzing E. coli 
samples also required staff time and lab costs of about 
$30 per sample. CRWA collects four samples, once 
or twice each week to verify its model predictions. 
Before implementing the model, monitoring occurred 
at least twice a week up to as often as daily. Since 
implementation, CRWA has been able to reduce 
monitoring frequency to weekly when funding is 
limited. CRWA believes that the cost of the model 
is offset by the value of the daily water quality 
notifications for public health and safety. 

Issues Encountered 
Challenges associated with model development 
included the following: 
• Choosing input variables that were easily available 

daily. These include rainfall volume (previous 24, 
48, 72, and 168 hours), wind speed, time since 
specific rainfall volume (more than 0.01 inch; 
more than 0.1 inch), flow, and solar radiation. 
These data are available from the National Oceanic 

and Atmospheric Administration or the U.S. 
Geological Survey. 

• Building a database of E. coli concentrations for 
model calibration and verification. 

• Meeting the needs of all users. 

• Working with a limited budget. 

The biggest challenge that CRWA faced in the 
development phase was the availability of data to test 
predictive factors. The CRWA did not collect any real-
time data, so it could use only what was available on 
the Web. Consequently, CRWA had to rely on other 
organizations to continue to collect the data and 
publish it in a timely manner. 

Data availability continues to be a challenge in 
the implementation phase. The model is run every 
morning at 8 a.m. in the recreational season when 
data are available. Usually CSO discharge data are 
not collected, but while CSOs are not a part of the 
statistical model, any existing discharge information 
is incorporated in the notification protocol. 

It is a time-consuming process to develop and 
employ a model. CRWA runs its model Monday 
through Friday from July through October. On Friday 
afternoons, CRWA provides a weekend forecast using 
model simulations based on weather predictions. 
CRWA has discussed running the model on the 
weekends and has done so on occasion; however, this 
is logistically challenging because most of the staff 
work only Monday through Friday. The model is run 
once a day around 8 a.m. This limits its utility for the 
river users (primarily scullers), of which there are 
many who are out on the river in the early mornings. 
Additionally, the model is not updated throughout 
the day, although in reality water quality conditions 
do change continuously. Finally, since the model is 
not run on weekends, accurate information is not 
available to weekend users. 
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Charles River Watershed Association Flag Program (Boston, Massachusetts) (continued)
 

Weld Boathouse at Harvard University flying a blue flag indicating suitable boating conditions. 

Moving Forward 
In 2012 CRWA added two additional boathouse 
locations where flags are flown (12 sites total) to 
provide more complete coverage of the area. 

CSOs are a major challenge to maintaining the river’s 
water quality. Under the CSO control plan for Boston, 
some CSOs may remain in the long term. Under 
the control plan, some CSOs have added primary 
treatment and notification, but several have not. A 
goal and priority for CRWA is to continue to reduce 
CSOs significantly and notify the public in a timely 
manner in the event that CSO discharges occur. 

Recreation continues to expand in the watershed 
and might include swimming in the future if water 
quality improves. Real-time modeling is expected to 
help document improving water quality and serve 
as a notification tool for water-based activities in the 
Charles River. 

The CRWA is collaborating with Coastal 
Environmental Sensing Network (CESN) at the 
University of Massachusetts in Boston. CESN 
established a real-time weather station and wrote a 
program that allows data from the weather station to 
be continuously fed into the model, along with flow 
data. The station went online in August 2012; the 
group has verified data starting in September 2012. 
So far, the group has eight overlapping sampling 
points with weather station data for October and 
three overlapping sampling points for September. 
The group completed the analysis of overlapping data 
during the 2013 season. Running the model using 
data inputs from this new weather/water quality 
station is working well. The accuracy of the model 
using inputs from this station has improved when 
compared to the current system because the model is 
automatically updated every hour based on the most 
recent data. 
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Charles River Watershed Association Flag Program (Boston, Massachusetts) (continued)
 

Although CRWA does not have additional resources 
to put toward the real-time data collection, the group 
would like to develop a real-time model; continuing 
to collaborate with the university will make this 
goal more realistic. CRWA also hopes to add other 
parameters, such as turbidity, to the model. A real-
time model would be more effective for quickly 
notifying the public of water quality conditions 
because the Charles River hosts a wide variety of 
recreational activities. For example, water quality 
forecasts go out at 9 a.m. (based on NOAA updates 
at 8 a.m.). However, rowers are out on the water at 
5 a.m.—well before any water quality notifications 
are available. Real-time forecasting capabilities 
would greatly improve the program. 

Unfortunately, the long-term outlook for the project 
depends on the resources CESN and CRWA have 
available to continue to maintain the weather station 
and the real-time data feed to the model. 

Advice and Lessons Learned 
In light of the experience and success of CRWA’s 
modeling efforts, Julie Wood of CRWA recommends 
that beach managers “go for it” with regard to 
developing their own models. The model does not 
have to be complicated—a simple regression model 

can be effective in many systems to broadly predict 
possible risk. In addition, it is important to consider 
the availability of your staff to run the model and 
post notifications, since that affects how often the 
model can be run. It can be especially challenging if 
you want to run the model on the weekends. Overall, 
resources are a major factor when developing and 
implementing predictive models. 

Based on their experience with the CESN station, 
the CRWA team recommends that model developers 
select a model that can be automated and run 
continuously in real-time based on data readily 
available on the Web. You will still need staff to 
collect the samples to verify the forecasts, but you will 
not need staff to run the model. You can run this type 
of automated model every day of the week and early 
in the morning, providing water quality predictions 
based on the most current data. This would help meet 
public expectations for real-time now-casting in very 
fine timescales. 
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Chicago Park District Beach Modeling (Chicago, Illinois)
 

Introduction 
Chicago’s 26 miles of shoreline along Lake Michigan 
provide residents and visitors with many water-based 
recreational opportunities. Especially popular are 
a series of 24 beaches owned and managed by the 
Chicago Park District (CPD). Over 20 million people 
visit these beaches each year between Memorial Day 
weekend and Labor Day to swim and enjoy the sand, 
sun, and scenery. CPD’s mission with these beaches, 
as with all their parks, is to provide a customer-
focused experience that prioritizes and responds to 
the safety and needs of children and families. 

To aid in providing a safe beach environment CPD 
developed a system of colored flags to communicate 
safe swimming status at the beaches. A green flag 
means that weather conditions and water quality 

are good and swimming is permitted. A yellow flag 
indicates that swimming is permitted but beach-
goers are cautioned that weather conditions are 
unpredictable and/or water quality does not meet 
state swimming standards. A red flag indicates that 
swimming is not permitted either because weather 
or water quality is causing unsafe or dangerous 
conditions. 

In general, the lifeguards stationed at each beach are 
responsible for monitoring weather conditions and 
changing swim status when necessary. However, 
while beachgoers can usually relate to unsafe weather 
conditions such as high waves and lightening, unsafe 
water quality conditions are not nearly as obvious. 
Currently, CPD’s decision to change swim status 
due to water quality is based on two complementary 

approaches: (1) analysis of water 
samples and (2) a computer model that 
uses weather and hydrology data and 
water conditions to predict real-time 
water quality. 

Water Quality 
Most water quality problems found 
at CPD’s beaches can be linked to 
nonpoint sources of pollution origi­
nating in the small watersheds along 
the shoreline. Runoff from roadways, 
parklands, and other nearshore land 
areas collects and drains to the lake 
through a network of stormwater 
outfalls. Chicago’s human sewage is 
not directed into Lake Michigan except 
during extreme storm events, when the 
locks that separate the Chicago River 
system from Lake Michigan are opened 
to minimize or prevent flooding. 

CPD believes that the relatively 
large resident gull and Canada geese 
populations are one of the most 
significant contributors to the pollution 
load at the beaches. In response, the 
District has initiated various programs 
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Chicago Park District Beach Modeling (Chicago, Illinois) (continued)
 

Uniformed border collie chasing birds off the beach. 

to discourage their presence, including prohibiting 
feeding and using uniformed border collies to chase 
birds off the beaches. 

Similar to most actively managed freshwater beaches, 
CPD routinely collects water samples and has them 
analyzed in a laboratory for E. coli. Samples are 
collected at each beach every Monday through Friday 
during the swimming season. Additional samples are 
also collected through the weekend if weekday results 
show high levels of E. coli. 

CPD’s sampling program follows U.S. Environmental 
Protection Agency (EPA) guidelines and protocol 
for water collection and laboratory analysis for E. 
coli concentration. The bacteria culture process 
takes 18–24 hours to complete (Colilert method); 
consequently, sample results are not available until 
the day after they are taken. If E. coli levels are found 
to be above the state’s water quality standard of 
235 CFU/100mL, the water is considered unsafe for 
swimming. CPD subsequently notifies the public of 
the threat through their website and other outlets and 

by posting an advisory at the beach and changing the 
swim status flags. 

Fortunately in most instances when E. coli levels are 
found to be above the 235 CFU/100 mL water quality 
standard, the next-day’s sample results are usually 
below the water quality standard. Part of the reason for 
this phenomenon is because the large open shoreline 
encourages water circulation between shore waters 
and deeper offshore waters. Thus, bacteria that enter 
most beach areas during and after storms are dispersed 
and flushed away from near-shore areas fairly rapidly. 
However, beaches that are sheltered in an embayment 
or protected by piers or seawalls often do not circulate 
their beach water as freely and sometimes experience 
more persistent high bacteria levels, with swimming 
advisories lasting multiple days. 

The fact that high FIB levels at most Chicago beaches 
only last a day underscores the problem of having at 
least an 18-hour lag time between sample collection 
and laboratory results. Beachgoers are unknowingly 
swimming in water with high FIB levels the day the 
water sample is collected, and are advised not to swim 
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Chicago Park District Beach Modeling (Chicago, Illinois) (continued)
 

the following day, when levels are usually safe based 
on the analysis of that day’s sample. This lag-time 
problem caused CPD to explore the possibility of 
developing a predictive mathematical model so that 
beach management officials could make more timely 
decisions concerning swim status and thus better 
protect the health of the beach-going public. 

Model Development 
CPD began the predictive modeling project in 2011 
with the assistance of the U.S. Geological Survey 
(USGS) and a $243,000 Great Lakes Restoration 
Initiative (GLRI) grant. Together the agencies decided 
on a group of weather-related parameters that could 
potentially be incorporated into the model. They 
then developed and deployed buoys for in-water 
measurements and pole-mounted weather stations 
near the beaches to monitor atmospheric conditions. 

Given resource limitations, CPD decided to initially 
focus on a set of Chicago beaches that: (1) most 
frequently exceeded the E. coli criteria and (2) 
had the highest beach attendance. Eventually five 
beaches were selected for the modeling exercise. 
The list included the largest beach in size (Montrose 
Beach) to one of the city’s most popular (Oak Street 
Beach). The other three beaches were Foster Beach, 
63rd Street Beach, and Calumet Beach. All the 
beaches are primarily affected by nonpoint sources 
of contamination and have a history of E. coli 
exceedance rates between 8 and 15 percent (percent 
of days when the mean of two samples exceeds 235 
CFU/100 mL) over the last few years. Attendance 
records for the beaches ranged from approximately 
100,000 visitors to several million visitors per 
swimming season. 

Foster Beach. 
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Chicago Park District Beach Modeling (Chicago, Illinois) (continued)
 

Model Development Key 
Components 
Technical and Financial Resources 
The USGS was instrumental in getting the project 
off the ground. They helped select the monitoring 
equipment and trained staff to use and maintain 
it. USGS also provided guidance on developing 
the model and performed statistical analyses. The 
Lake County Health Department, which already 
has experience implementing a predictive model 
program, also provided expertise during model 
development. In addition, several presentations at the 
Great Lakes Beach Association Conferences provided 

Installing monitoring equipment at Chicago beaches. 

CPD staff with options and a variety of potential 
methods for developing the model. 

The models were developed using multivariate 
regression analysis. The USGS selected variables by 
identifying the ones that fit best statistically. USGS 
considered including gull counts, but found that this 
information was difficult to use and implement in the 
context of the model. 

CPD used its own resources to deploy the monitoring 
equipment, including scuba divers, electricians, and 
related heavy equipment such as boats and a bucket 
truck for installing the weather station on light poles. 
If CPD had contracted the installation, costs would 
have increased significantly. 

Currently CPD provides funding for data collection 
and equipment maintenance but continues to rely on 
the USGS to perform statistical analyses. CPD could 
possibly hire contractors to complete this work, but 
few would have the necessary depth of understanding 
of Lake Michigan ecology. 

CPD spent approximately a year and a half developing 
the first models and expects to change and improve 
them with additional data in the future. CPD initially 
anticipated the need for two years of data to have 
working models developed because results depend 
strongly on the weather. The Chicago area has very 
different beach seasons from year to year; therefore, a 
larger data set will help improve the model’s accuracy. 

Data Resources 
When developing the model, CPD relied on daily 
weather and water quality data, along with water 
quality data collected as part of CPD’s existing beach 
monitoring program.  CPD also considered data 
collected during daily sanitary surveys for model 
development purposes. 

USGS explored whether other data sources, such as 
that from the National Oceanic and Atmospheric 
Administration (NOAA), might be useful. They did 
not use NOAA or other external data because these 
data sources did not work as well. For example, 
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Chicago Park District Beach Modeling (Chicago, Illinois) (continued)
 

Chicago Park District Beach Notification website. 

NOAA data comes from further offshore; beaches in 
Chicago are man-made and have many structures in 
place, so they require detailed on-site data. 

Model Implementation 
Public Involvement 
CPD did not involve the public during the 
initial phases of model development because the 
information was too technical. However, CPD 
conducted significant public outreach to inform 
people about implementation efforts. All data were 
made available to the public via the CPD website. 
CPD also posted information about how the model 
worked, how advisories work, what changes would 
occur, and how this would improve public health. 
There was a lot of media interest, which gave CPD the 
opportunity for interviews with numerous papers and 
news stations. 

CPD did not receive much feedback from the public 
even though the public could submit questions and 
comments via website or hotline. CPD received 
occasional feedback, however, when there were 
unusual data or equipment malfunctions. 

Model Output and Validation 
The key variables CPD used for these models include 
the following: 
• Air temperature. 

• 6-hour solar radiation. 

• 4-hour wave period. 

• Longshore (NNW) wind. 

• 6-hour longshore (NW) wind. 

• 6-hour rainfall. 
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Chicago Park District Beach Modeling (Chicago, Illinois) (continued)
 

• 48-hour rainfall. 

• 4-hour log-wave period. 

• Day of year. 

• 4-hour onshore wind. 

• 4-hour log turbidity. 

• 4-hour log wave height. 

Each model used a different combination of these 
variables. 

CPD conducted routine sampling throughout the 
2012 beach season to collect data for validating the 
model. They compared actual sampled results with 
modeled results to ensure the model’s accuracy. CPD 
reports predicted values and will continue to refine 
the models over the next several beach seasons. 
Although model accuracy fluctuated between years, 
CPD is confident that the advisories they issued 
on the basis of modeled results were more accurate 
than they would have been without the model. With 
regard to confidence in model results, CPD remains 
“cautiously optimistic.” 

CPD is assessing the effectiveness of the model by 
evaluating whether more Type 1 and Type 2 errors 
would have been generated relying only on traditional 
water testing and waiting 24 hours for results. 
Currently, if the model predicts a bacteria level over 
235 CFU/100 mL, CPD issues an advisory. CPD also 
posts the most recent lab results from traditional 
water testing at each beach. If the test results and 
the model do not agree, CPD then uses the model to 
determine the advisory status. 

Implementation 
CPD began using the model in 2012 to make manage­
ment decisions on notification actions. They monitor 
all beaches every weekday. They also monitor on 
weekend days following an exceedance on a Friday, or 
if the model predicts an exceedance on the weekend. 
CPD runs the models at 9:00 a.m. and issue advisories 
by 9:30 a.m. If the model shows no exceedance, CPD 
posts a green flag. The public can view both model 

results and sampling values by visiting the beach, 
viewing the website, or calling a hotline. 

Model Costs 
The $243,000 GLRI grant provided the bulk of the 
financial resources for the project. CPD also set aside 
$50,000 in their capital budget to help purchase the 
equipment in the first year (2011), and $25,000 in 
capital funds to increase the amount of equipment in 
2012. 

In addition, CPD spent about $120,000 in 2011 for 
water sampling at all the beaches in Chicago. Most 
of these costs would have been incurred without the 
modeling project. The extra sampling for modeling 
was about $15,000. The most costly aspects of the 
modeling process included the purchase of equipment 
and USGS support. 

Equipment costs were approximately $70,000. 
Monthly bills for cellular data were about $3,000— 
this covers data transmitted by eight cellular modems. 
Obtaining water quality data (FIB testing results) 
did not cost extra because this work would have 
been done regardless of development of the models. 
However, for reference, the lab costs for water quality 
sampling were about $100,000, and the personnel 
costs for water sampling were approximately $20,000 
annually. 

The grant was funded in the fall of 2010 and 
continued through 2013. A large portion of the funds 
was used to purchase and install the equipment 
and for USGS statistical analysis. Some grant funds 
remain; these will be used to offset ongoing costs 
(maintenance, statistical analyses, etc.). Currently, 
CPD relies on internal funding, which could decrease 
in the future. 

When determining overall cost effectiveness of the 
model, CPD concluded that they would save money 
only if sampling is reduced. CPD does not currently 
plan to reduce sampling; however, if the BEACH 
Act funding is cut, this would affect sampling 
significantly because fewer resources would be 
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Montrose Avenue dog beach. 

available. For CPD, the bottom line is, “How do you 
put a price on better information?” 

Issues Encountered 
CPD had their share of issues with field equipment, 
including equipment getting damaged by rough 
weather. They adjusted the anchoring scheme for 
the buoys, which helped, and have eliminated some 
buoys, although some equipment issues continue and 
the buoys are expensive to maintain. Looking back, 
CPD might have selected a different anchoring system 
to ensure that the equipment remained in place. 

Moving Forward 
CPD intends to keep moving forward with their 
models. CPD has already invested over $75,000 of 
department funding into the modeling program, 
which shows confidence in the model’s effectiveness. 
CPD has expanded to other beaches since 2011, 
and for the 2015 season predictive models were 
used at all 24 of the city’s beaches. In addition, they 

have substantial resources going into mitigation 
practices. They are also working on developing 
better information and methods to address non-
anthropogenic sources of bacteria such as shore birds. 

During the initial year of data collection, CPD 
increased sampling frequency to twice per day at 
the modeled beaches. USGS and Michigan State 
University have helped validate and update the 
models annually as of 2015. 

Some beaches with higher exceedance rate have been 
difficult to model. CPD is prioritizing rapid methods 
at these beaches. CPD also conducts public outreach 
about beach water quality. They implemented a 
new texting service that allows beachgoers to text 
the name of their beach to a dedicated number and 
receive an automatic response with the current 
beach conditions. A public education campaign 
encourages people not to litter or feed wildlife, since 
waste from seagulls and geese has been shown to 
be a major source of fecal bacteria in the water. 
The campaign also includes signage on Chicago 
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Chicago Park District Beach Modeling (Chicago, Illinois) (continued)
 

public transit, posters at beaches, and a large mural 
at one of Chicago’s busiest beaches. A new Beach 
Ambassadors program with direct public outreach 
asks beachgoers not to litter or feed wildlife, and 
expanded programming for CPD’s summer day camp 
program educates kids on what they can do to keep 
the water clean.  

Finally, CPD is working to reduce bacteria sources 
directly. New grooming equipment removes debris 
and exposes wet sand to sunlight, killing bacteria. 
At beaches with a history of problems from seagull 
waste, CPD is using dog handlers and trained border 
collies to chase the gulls from the beach. This project 
has significantly reduced the number of days where 
FIB levels exceeded water quality standards. 

Advice and Lessons Learned 
Sanitary survey data were tested in 2010, but it was 
determined that more accurate and timely data 
(buoy-based) was needed for the models. While 
daily sanitary survey data are helpful for monitoring 
operations such as garbage collection and beach 
grooming, and keeping track of pollution sources, 
survey parameters are not included in the models— 
the models are all based on data collected by sensors. 

The success of a model depends on a number of 
factors. For CPD, the most important factor was 
related to the presence of nonpoint versus point 
sources of pollution. You need to have comprehensive 

knowledge about the beach before you can 
successfully develop a predictive model. 

Cathy Breitenbach of CPD noted they are a large 
jurisdiction with many resources. They were able 
to do all equipment maintenance and monitoring 
in-house and did not have to hire or rely on outside 
support. Without this, they would not have been 
as successful, especially considering that Chicago 
is a big city with a large beach-going population to 
protect. Other agencies who want to develop a model 
must have access to funding and technical resources 
necessary to collect data and conduct statistical 
analyses. If their jurisdiction is small, however, they 
can likely develop and implement a predictive model 
at a lower cost. 
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City of Racine Nowcast Model (Racine, Wisconsin)
 

Introduction 
How does a small coastal Wisconsin city of about 
79,000 citizens reel in a “Best Beach in the State” title? 
One reason might be its cutting edge approach to 
staying on top of water quality. The City of Racine, 
on Lake Michigan between Milwaukee and Chicago, 
manages two popular swimming beaches, North 
Beach and Zoo Beach. At 50 acres, North Beach is 
the larger of the two. In 2012, USA Today named 
it the best beach in Wisconsin, joining 50 other 
beaches similarly selected from each of the states and 
the District of Columbia. This honor can be added 
to a long list of accolades for North Beach, which 
includes a Top 10 Family Friendly Beach designation 

by Parents magazine in 2011 and the Midwest Living 
magazine’s Top City Beaches list in 2010. 

North Beach has medium- to fine-grained sand and 
is groomed to remove trash and aerate the sand. The 
swim area has a fairly shallow slope (2 to 5 percent) 
and the beach has a 1 to 1.5 percent slope toward 
the water. A harbor break wall increases swimming 
safety by keeping waves in check. The beach face is 
kept at a steep grade to prevent waves from spilling 
over the berm crest. The city maintains restrooms, 
a bathhouse, a concession stand, and an adjacent 
playground. The city hires lifeguards to ensure public 
safety. Weekend visitor numbers can exceed 11,000; 
daily visitors average up to 2,200 persons per day 
during the swimming season. 

Zoo Beach, adjacent and north 
of North Beach, is smaller, less-
developed, and attracts fewer 
beachgoers than North Beach. So 
named because of the adjacent 
Racine Zoo, it has fewer access 
points and amenities. Lifeguards 
are on duty only on weekends. The 
swim area has a steep drop-off and 
no break wall, so the wave action 
is more intense. Because of these 
contrasts, Zoo Beach offers visitors 
a quality beach experience with 
beautiful views of Lake Michigan 
in a more peaceful, less-populated 
setting. 

Water Quality 
Racine’s beachgoers have not always 
enjoyed the current levels of high 
water quality at their beaches. For 
example, in 2003 North Beach was 
under a no-swimming advisory 
for 34 days because of high fecal 
indicator bacteria counts. On 
several of these days the beach 
was closed entirely. That same 
year, Zoo Beach had notifications 
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City of Racine Nowcast Model (Racine, Wisconsin) (continued) 

issued on 29 days. Since the swimming season in 
Wisconsin is approximately three months long, these 
problems resulted in a loss of almost 40 percent of 
Racine’s potential beach days in 2003. 

In response, the city began a campaign to deal with 
the point and nonpoint sources of fecal pollution that 
were polluting their beaches. Sanitary surveys proved 
to be important tools in helping city officials identify 
pollution sources and plan mitigation projects such as 
wetland construction, dune restoration, and improved 
beach grooming practices. The results of these efforts 
were outstanding, especially in terms of reducing 
the number of beach advisories and closings. In 
2010 North Beach was closed or under a swimming 
advisory on only one day and on only three days in 
2011. Zoo Beach had four notifications in 2010 and 
five in 2011. This increase in safe-swimming days 
provides clear evidence of the power of active beach 
management. 

Model Development 
With beach clean-up efforts underway, Racine 
focused on the lag time problem associated with 
the traditional culture-based method of beach 
monitoring. 

Racine explored two options for dealing with this 
lag-time dilemma. One was testing a new method of 
measuring Escherichia coli (E. coli) concentration— 
quantitative polymerase chain reaction (qPCR). 
Instead of growing and enumerating bacterial 
colonies in cultures, qPCR yields more timely results 
by identifying and quantifying genetic sequences 
of bacteria. qPCR results can be obtained from a 
laboratory on the same day the sample is taken, in 
most cases within three hours of sample collection, 
allowing more rapid determinations of beach water 
quality for swimmers’ safety. 

Racine also explored using mathematical models 
to predict beach water quality. An accurate model 
would provide a basis for issuing preemptive notifi­
cations in advance of water sampling, allowing city 
officials to take an even more conservative approach 

Sampling at North Beach. 
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City of Racine Nowcast Model (Racine, Wisconsin) (continued)
 

to swimmers’ safety. Racine officials believe that 
the daily use of models, supported by daily beach 
survey data and verified by qPCR monitoring, will 
be the cornerstone of their future beach monitoring 
program. 

Statistical models were developed for Racine’s two 
beaches using the U.S. Environmental Protection 
Agency’s (EPA’s) Virtual Beach (VB) software 
(v2.0–2.2). The Wisconsin Department of Natural 
Resources (WDNR) Sciences Services assisted 
throughout the model development process. WDNR 
coordinates Wisconsin’s beach monitoring program 
and administers the BEACH Act grants for the state’s 
193 public beaches along 55 miles of Lake Superior 
and Lake Michigan coastlines. Because WDNR staff 
had expertise in model development for the state’s 
many public beaches, they were well-equipped to 
offer guidance to the City of Racine. WDNR’s support 
proved invaluable as they pulled together various 
data sources, including data from older and recently 
developed models. Identified as Nowcast models, 
the “real-time” predictive models developed for 
the project use multiple linear regression and other 
statistical procedures to evaluate the relationships 
between measured FIB concentrations in the water 

Performing qPCR. 

and certain meteorological factors and onshore and 
near-shore conditions associated with water quality. 
The output of the current models developed by the 
city, in conjunction with the WDNR, expresses two 
values: predicted E. coli concentrations and predicted 
probability of exceedance. 

Model Development Key 
Components 
The key for developing a good model is selecting 
the proper set of component variables and ensuring 
that staff have the necessary skills. In the initial 
development phase, in 2010, Racine examined 
a diverse set of variables for potential use in the 
model. Variables included water temperature, air 
temperature, seagull counts, dog counts, wildlife 
counts, wave height and intensity, water clarity, sky 
conditions (i.e., cloud cover), water color changes, 
odor, algae amount, algae type, bather load (in, out, 
and total), long shore current direction and speed, 
wind direction and speed, stream discharge, pollution 
discharge, rainfall (24-, 48-, and 72-hour) and other 
precipitation records, day of year, season, lake levels, 
and the previous day’s E. coli values. Initially, all 
variables were included because the majority could 
have been considered factors that influence local 
water quality. The project team reduced the initial 
number of variables by conducting correlation 
analyses. The model was developed using the 
variables that had the strongest associations. 

Important data sources for the model development 
included the U.S. Geological Survey’s (USGS’) real-
time data viewer, Racine Water and Wastewater 
Utilities, the Great Lakes Observing System (GLCFS 
Nowcast 2D), local weather station data, and National 
Oceanic and Atmospheric Administration (NOAA) 
buoy data. Staff also obtained data from routine 
sanitary surveys housed on the Wisconsin Beach 
Health website (hosted by the USGS). Exploratory 
data analyses revealed that the sanitary survey 
data were especially valuable. The presence of algae 
and water clarity, for example, proved to be a good 
predictor of high FIB levels at some locations. 
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City of Racine Nowcast Model (Racine, Wisconsin) (continued)
 

Racine’s beaches proved to be good candidates 
for modeling because they have large, consistent 
databases of FIB concentrations and fairly predictable 
pollution incidents associated with storms which 
resulted in advisories. Because North Beach is 
sampled at least five times per week, model developers 
could more frequently compare model results with 
actual FIB concentrations. 

By 2011 the VB software (VB v2.1) was fully 
developed and the city built an operational Nowcast 
model for North Beach. Key variables selected for 
the model included rainfall, wave height, long shore 
current vectors, stream discharge, water clarity, and 
sky conditions. Racine conducted a pilot test using 
qPCR and a culture-based method for measuring 
E. coli concentrations. This preparatory step was 
important because it allowed the city to track model 
predictions with laboratory results and validate the 
model using real-time data. 

The results were very encouraging. The model 
predicted E. coli concentration with 91 percent 
accuracy for culture-based results and with 98 
percent accuracy for qPCR-based results. 

In 2012 Racine built new models (using VB v2.2) for 
North and Zoo Beaches. The new models included 
a greater proportion of Web captured data than the 
2011 models which relied heavily on beach sanitary 
data collected locally. By developing two different 
types of models, Racine was able to determine 
whether the number and types of field data could be 
reduced or eliminated (as a cost savings measure). In 
the new model, wave height was found to be the most 
predictive variable at Zoo Beach. As developed, the 
Zoo Beach model required significantly less locally 
collected field data to run than the 2011 model and 
results have been encouraging. However, the city 
found that the 2011 North Beach model (which 
included several beach sanitary survey parameters) 
was more robust than the 2012 model construct. 

Model Implementation 
Before developing the Nowcast models, the City of 
Racine used the persistence model (i.e., the previous 
day’s culture-based results) for issuing beach 
notifications. In 2011 the city used the Nowcast 
model in combination with the lab-based methods 
to support management decisions. Even when the 
model predicted exceedance of the E. coli water 
quality standard, the city did not use the model 
alone to make notification decisions. Instead, 
the city developed a set of guidelines for making 
notification decisions. For example, they issue a 
preemptive advisory in advance of results from the 
laboratory analyses if the probability of exceedance 
is greater than 10 percent and the predicted E. coli 
concentration exceeds 50 colony-forming units per 
100 milliliters of water. 

Each beach monitoring component—sanitary survey, 
Nowcast model, culture-based testing, and qPCR—is 
designed and applied to complement and reinforce 
the others to generate timely, accurate results and a 
better understanding of the conditions and variables 
that accelerate FIB growth in water to create unsafe 
conditions for swimming. In June 2012 Racine, 
Wisconsin, became the first municipality in the 
nation to base notification decisions on qPCR results. 
In conjunction with the qPCR assay, Racine also ran 
the model at North and Zoo Beaches daily (the city 
runs the model only on weekdays, unless there is an 
advisory or closure that extends their sampling and 
sanitary survey data collection into the weekend). 
The results of qPCR, along with sanitary survey 
information, model estimations and staff judgment 
are all considered when determining whether to issue 
a beach advisory or closure. 

Model Costs 
The city did not incur additional costs for 
data collection for model development and 
implementation. The necessary data were already 
being routinely collected, using equipment already 
in place. The costs associated with the development 
of the Nowcast model were mostly for labor. The staff 
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City of Racine Nowcast Model (Racine, Wisconsin) (continued)
 

Stormwater retention management practices at North Beach. 

needed to have a basic understanding of statistics, 
intuitive ability to manipulate data, and a working 
knowledge of factors affecting local water quality. 
The development team usually consisted of two 
laboratory personnel, with support and guidance 
from staff at the WDNR Science Services division. 
In some cases, WDNR staff took a more impromptu 
role by developing models in coordination with 
laboratory personnel. Labor costs included the time 
it took staff to retrieve, format, and assess the data 
and build, train, and revise the operational version 
of the initial model. Staff needed several months to 
collect and format data to develop the initial model. 
Model costs were minimal but required one person 
to work through the modeling process. The newer VB 
software reduced the model development time, but 
data evaluation and model development still required 
a week or more. 

The daily cost to run the model is minimal—most 
of the cost is in data collection and processing (i.e., 
the initial effort required to build the model, run 
correlations, and perform statistics), which occurred 
over several days. Importantly, EPA’s continued 
improvement of the VB software allows for more 
rapid statistical model development and simplifies the 
application of the model for the end user. Newer ver­
sions of the model not only provide quantified results, 
but also add an exceedance probability providing 
another dimension to beach management decisions. 

The time spent running the model is only a 
fraction of the time spent on routine, culture-based 
monitoring. Once all the routine sanitary survey 
data are available, the model takes approximately five 
minutes to run—significantly faster than laboratory 
sample analyses, which require at least 2 hours and 
up to 18 hours, depending on the method used. 
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 City of Racine Nowcast Model (Racine, Wisconsin) (continued)
 

Issues Encountered 
Although the overall model prediction results have 
been very accurate, the City of Racine encountered 
a few issues. During the model development phase, 
the city had trouble building a robust dataset because 
of the large amount of data required. They resolved 
this problem after they compared the electronic data 
against the original hardcopies and found that missing 
data and incorrectly entered data often caused issues 
with empty cells or incorrect predictions. 

Another issue encountered was with the estimation 
of E. coli data. North Beach typically has very few 
advisories; as a result, building a model to predict 
those exceedances was difficult. For example, 
since advisory dates were so few and far between, 
those dates could have possibly been identified as 
statistical outliers (i.e., sample results that were 
numerically distant from the rest of the data) and 
it was sometimes difficult to decide which data 
should be culled. Once these decisions were made, 
implementation was far less problematic. City of 
Racine laboratory staff noted, “Where there are few 
exceedances, we sometimes remove them as statistical 
outliers, but we have to be careful doing so because if 
we leave them out, we are essentially excluding event-
based data.” 

The city sometimes had issues with data retrieval. 
Occasionally, either online data were unavailable for 
running the model, or data were unusable because 
of a reporting error. In those cases, the city had 
to find a comparable data source. For example, if 
rainfall data were unavailable from the local airport, 
the city used precipitation records from the local 
wastewater treatment plant (a comparable distance 
from the beach) to make an initial estimation. 
Once precipitation records from the airport became 
available, they re-ran the model using the amended 
data from the original source. 

Moving Forward 
The City of Racine validates the model by comparing 
model results to monitoring (culture and qPCR) 
results. They consider the model to be successful 
because of the low number of Type I and Type II 
errors found after evaluating beach management 
decisions at the end of the beach season. The city ran 
the 2011 (VB v2.1) and 2012 (VB v2.2) models side­
by-side to compare the results and verified which 
model was most appropriate for each beach. They will 
continue to evaluate their model every year to ensure 
that it is still predictive since major changes can occur 
to beaches and the weather varies significantly from 
year to year. Data collection methods and variables 

Waiting for fireworks. 
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 City of Racine Nowcast Model (Racine, Wisconsin) (continued)
 

Life guard watching North Beach. 

used in the model have not changed. The city 
compared the 2011 model to newer model iterations 
and have found that incorporating additional years of 
data has not made any significant improvements. 

As of 2015, the city is using both the monitoring 
and modeling results to make beach notification 
decisions. Because the model results have shown high 
accuracy, monitoring could be reduced in the future. 
However, staff would still need to visit the beaches 
regularly to complete the routine beach sanitary 
survey form that includes data elements necessary to 
run the model. In the future, the city plans to focus 
more on cost-efficiency; Nowcast models will likely 
play a large role in this endeavor. Eventually, model 
results might be the primary means for making beach 
notification decisions, restricting laboratory analyses 
to only those days when exceedances are predicted. 
Through the use of qPCR this can be accomplished 
in near real time, striking a balance between 
public health protection and maximum utility of 
recreational beaches. 

Advice and Lessons Learned 
To assist others planning to develop a predictive 
model, the City of Racine shared these lessons 
learned: 
• Partner with agencies or universities that have 

software expertise and experience with predictive 
models. 

• Build your model using easily retrievable data 
and collect data in a consistent manner and in 
sufficient quantity. You can’t compare an apple 
to an orange (i.e., estimations of wave height 
beachside might not be equivalent to data retrieved 
at a NOAA buoy). It is often best to collect your 
own data and not rely on someone else’s. 

• Have a robust data set—at least 2 seasons’ worth of 
data are preferable. 

• Use sanitary surveys to identify pollution sources 
as well as gaps in model performance. One 
season may have a dominant variable that wasn’t 
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 City of Racine Nowcast Model (Racine, Wisconsin) (continued)
 

previously accounted for. Sanitary survey data 
should be consistently collected each day that 
sampling occurs. 

• Evaluate your dataset before building the model. 
Sometimes modelers will expect an unreasonably 
high R-squared value without much knowledge 
of their data. As a result, modelers might spend 
unnecessary time finding, acquiring, compiling, 
formatting, and reviewing additional data, 
which might not significantly improve model 
performance. A flow chart of inputs and outputs 
for FIB at your beach can help with this. 

• Not all beaches will have a single driving force, but 
those that have unique situations might require 
evaluative criteria prior to model development to 
improve chances of a success. There can be a lot 
of background noise from the frequency of non­
event related observations in predictive variables. 
The City of Racine improved model performance 
by implementing a rainfall threshold to reduce the 
size of the dataset. 

• Examine the interaction between variables—not 
just variables as single elements. For example, 
wind direction might not be predictive, but wind 
direction plus speed might be (e.g., onshore winds 
exceeding a velocity threshold). 

• Determine how to best represent your data (i.e., 
quantitative, qualitative, categorical, or binary). 

• Discuss the threshold for exceedance probabilities 
during the implementation phase. Depending on 
the model, the probability of exceedance result 
might be less or more than expected, given the 
model estimate. 

• Have comparable backup data sources for your 
model inputs. Be realistic about model outputs 
and combine the results with experience. Does 

the model output match what my experience tells 
me? How should I expect these environmental 
conditions to affect local water quality? (i.e., your 
model needs to make sense.) 

• Validate the model periodically because ambient 
conditions might change. 
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The Stormwater and NexRad Rainfall Models (Horry
 
County, South Carolina) 
Introduction 
Horry County, South Carolina has 180 miles of 
coastline containing a series of beaches, its most 
famous being Myrtle Beach, also known as the 
“Grand Strand.” Its beaches attract more than 13 
million visitors each year. 

Like all the public beaches in the state, Grand Strand 
beaches are regularly monitored for fecal indicator 
bacteria levels by the South Carolina Department of 
Health and Environmental Control (SCDHEC), in 
conjunction with local governments. The goal of the 
monitoring program is to allow the public to make 

informed decisions about their recreational activities 
and any potential for swimming-associated health 
effects. 

Water Quality 
The water quality of Grand Strand beaches is 
typically very good. However, during and after heavy 
rainstorms, stormwater discharges occasionally 
cause bacteria levels to rise above state water quality 
standards, prompting SCDHEC to issue swimming 
advisories. To minimize the impact of stormwater 
on these beaches, some Grand Strand communities 
have extended their stormwater outfall structures 

further out into the ocean to discharge 
runoff into deeper waters, away from 
swimming areas. 

In 2011 Myrtle Beach completed 
a project at 4th Avenue North 
that consolidated nine nearshore 
stormwater drainage pipes into one 
large pipe which runs underneath the 
seabed and empties into the Atlantic 
Ocean more than 1,000 feet from 
shore. Similar projects have been 
conducted at 7th Avenue South in 
North Myrtle Beach and at Deep Head 
Swash in Myrtle Beach. These and 
other infrastructure investments have 
significantly reduced fecal indicator 
bacteria levels at Grand Strand 
beaches. 

Model Development 
Stormwater Model 
In 2007 SCDHEC developed a model 
as part of a staffer’s master’s thesis 
project to predict fecal indicator 
bacteria levels at South Carolina state 
beaches. To be adopted and applied 
by SCDHEC, the model needed to be 
simple to operate and provide reliable 
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Stormwater Model (Horry County, South Carolina) (continued)
 

Myrtle Beach. 

results. The model effort evolved to include a project 
team consisting of the local health department, 
SCDHEC and University of South Carolina (USC) 
professors with geostatistical modeling, database 
management, and geographic information system 
(GIS) expertise. They chose to develop models using 
information for the popular Grand Strand beaches. 
These beaches are Tier 1 (the highest priority beaches 
because of high risk, high use, or both) beaches and 
were best suited for modeling because they have 
direct stormwater input and high number of bathers. 
Tier 2 beaches typically had very few exceedances and 
bathers. 

SCDHEC and the project team used various statistical 
methods, a literature review, and professional 
judgment to determine which variables to include. 
Rainfall was found to be the primary predictive 
variable. 

The initial models developed were statistical models 
with rainfall as the most important variable. A 
Multiple Linear Regression (MLR) model and a 
Classification and Regression Tree (CART) model 

were developed and run separately for each sample 
site. To improve prediction, SCDHEC developed 
an ensemble forecast—a statistical approach using 
results from multiple models—by combining results 
from the MLR (predicting estimated fecal indicator 
bacteria levels) and CART (estimating the range 
of expected fecal indicator bacteria levels) for each 
sample site (or section of beach). By combining these 
two results, SCDHEC could approximate a third 
possible fecal indicator bacteria level, called the 
Ensemble prediction. Beach managers could use all 
three model outputs to determine the advisory level 
needed to protect public health in different areas. 

NexRad Rainfall Model 
In 2011 SCDHEC began collaborating with USC and 
the University of Maryland to develop an updated 
version of the stormwater model, (i.e., NeRad 
rainfall model) one that would not require the use of 
expensive rainfall equipment. The project entailed 
enhancing a user application with new models and 
developing an automated, database-driven tool 
that would estimate bacteria levels and visualize 
model results, allowing SCDHEC to better predict 
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Stormwater Model (Horry County, South Carolina) (continued)
 

and analyze bacteria-related public health threats. 
The project was led by Dr. Dwayne Porter of USC 
and built on previous efforts and incorporated new 
models that provide rainfall estimates using radar-
based data. These radar data improved existing 
tools by (1) allowing spatial estimates to be averaged 
over a watershed area instead of applying point 
estimates and (2) allowing for automated integration 
of remotely sensed data, eliminating the need for 
SCDHEC’s costly rain gauge network. 

The NexRad rainfall model essentially combined 
the MLR, CART, and ensemble techniques into 
one modeling user interface, and added a new 
element—Next-Generation Radar (NexRad) data, 
compiled from a network of high-resolution Doppler 
weather radars operated by the National Oceanic and 
Atmospheric Administration’s (NOAA’s) National 
Weather Service (NWS). The goal of using NexRad 
is to have as close to real-time data as possible. As of 
2013, the NexRad data just included rainfall; however, 
the development team planned to consider other 
variables such as sunlight, temperature, salinity, and 
the number of preceding dry days. The development 
team is still determining the best data sources. As of 
2015, USC still uses sanitary surveys although they 
can be time-consuming. 

The NexRad rainfall model also used GIS polygons 
of individual watersheds, which were created by 
overlaying piping diagrams of the stormwater systems 
provided by the area’s individual municipalities. GIS 
polygons are overlaid to create mini-watersheds to 
determine how much rain falls on each beach site. 

SCDHEC tested the NexRad rainfall model in several 
counties during the 2012 beach swimming season 
(May 15 through October 15) and used model results 
as one of several tools in deciding whether to issue 
swimming advisories. Exceedances of water quality 
standards are expressed as High, Medium, and Low 
(using the MLR and CART model predictions), but 
the model can also provide actual predicted FIB 
levels. 

Data 
SCDHEC used historical water quality data to 
develop and validate the Stormwater model in 
2007. The data and variables considered included 
cumulative rainfall, rainfall intensity, number of 
preceding dry days, wind speed and direction, tides 
and lunar phase data, water current, and salinity. The 
water quality data were collected by the SCDHEC 
beach monitoring program.  Rainfall data were 
collected by a system of gauges installed in several 
locations. Wind speed and direction data were 
obtained online from NOAA. 

In 2011, USC began developing the NexRad rainfall 
model based on the assimilation and integration of 
multiple sources of data including field programs 
(bacteria density, salinity, air and water temperature, 
tide, weather); observing systems (rainfall, currents, 
salinity, wind); and remote sensing models (salinity, 
air and water temperature, rainfall, currents, wave 
activity). SCDHEC provided the bacteria density 
data. All other data for the NexRad rainfall came 
from a variety of sources, including the NWS, the 
National Estuarine Research Reserve System, and 
the Southeast Coastal Ocean Observing Regional 
Association’s Integrated Ocean Observing System 
(IOOS). 

Model Output and Validation 
To validate the Stormwater model, USC compared 
the predicted MLR calculations to actual sampled 
values twice a month. In general, the Stormwater 
model expressed predicted exceedances of the water 
quality standard with above-average accuracy; 
however, SCDHEC did not sample after rain events 
at sites where acceptable water quality was predicted. 
Therefore, an unknown quantity of false positives 
might have occurred. 

In 2005 SCDHEC ended the data collection used to 
validate the Stormwater model. Officials felt that the 
post-2005 changes (i.e., offshore stormwater outfall 
pipe [discussed above] and new infiltration pits and 
ultraviolet disinfection systems) drastically changed 
the environment; therefore, the model was no longer 
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Myrtle Beach. 

relevant since it was based on data collected before 
these changes occurred. 

The NexRad rainfall model worked better for some 
beaches than others. USC performed receiver 
operating characteristic (ROC) analyses to determine 
the frequency of Type I and Type II errors. USC staff 
assessed model effectiveness by cross-referencing 
samples taken against predicted MLR calculations. 
If the MLR model calculated fecal bacteria levels of 
greater than 103 colony-forming units (CFU) per 
100 milliliters (mL) of water, SCDHEC issued an 
advisory. If the CART model calculated High, they 
issued an advisory. If the MLR model calculated 
a concentration of greater than 74 CFU/100 mL 
and CART model calculated Medium at the same 
site, they issued an advisory. USC validates the 
NexRad rainfall model using VB’s toolbox for model 
development and validation which has made model 
updates and validation fairly easy as long as data are 
available. This tool allows the user to compare model 
predictions against actual monitoring data. 

Model Implementation 
When implementing the Stormwater model (during 
the 2007–2009 beach seasons), SCDHEC discovered 
that the effect of rainfall and other variables differed 
by beach site. Consequently, the agency decided that 
each beach site should be modeled independently 
(i.e., using a different statistical model for each station 
or section of beach) to provide the most accurate 
information. 

SCHDEC applied the Stormwater model to 10 beaches 
in Horry and Georgetown counties. The model was 
designed to extract rainfall data from rain gauges at 
each beach and independently input weather and tidal 
information. These data were continuously added 
to the model, which was constantly recalibrated, 
although a more intensive recalibration was needed to 
adjust to the infrastructure changes. 

When developing the NexRad rainfall model in 2011, 
USC found that combining the separate, sample 
site-specific models (MLR, CART, and Ensemble) 
into one user interface was fairly easy. As of 2015 USC 
makes the daily model results available via email, a 
Web interface, and a phone application. SCDHEC 
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publishes advisory information at www.howsthe­
beach.org. In 2012, SCDHEC used the NexRad model 
to implement the initial suite of preemptive beach 
swimming advisory models as a tool to determine 
when an advisory should be issued in Horry County, 
South Carolina. Because of program management 
changes, SCDHEC did not continue using the model 
for advisory decisions in Horry County after 2012. 

Issues Encountered 
The Stormwater model was used during the 2007– 
2009 beach seasons to make beach management 
decisions. Little or no modeling was performed in 
2010–2011. In 2010, SCDHEC changed the advisory 
program and began placing permanent advisory 
signs at beach sites that routinely exceeded the state 
water quality standards (e.g., stormwater outfalls 
and swashes). Remaining sites were either not 
modeled because of historically low enterococci 
counts or because they never exceeded water quality 
standards, even after a rainfall event (other than a 
tropical storm). This, coupled with drier seasons, 
meant that the stormwater model was not used very 
frequently, if at all, in most locations. Out of a total 
of 43 sites monitored, SCDHEC placed 29 permanent 
signs saying, “Caution, swimming not advised, high 
bacteria counts, refrain from fishing and wading, do 
not put head below water, no swimming within 200 
feet of sign.” SCDHEC still monitored all 43 sites, but 
did not want to invest in new monitoring equipment 
to support the modeling when many sites already had 
permanent signs. In addition, the outdated equipment 
used to measure rainfall began failing and was not 
compatible with new computers. The entire system 
was expensive to replace, with an estimated cost of 
$20,000–$30,000. 

Learning from SCDHEC’s experiences, beach 
managers should be aware of the limitation of 
hardware and equipment. For South Carolina, the 
tipping buckets used to gather rain data required a 
significant amount of maintenance and time to keep 
running and clean. Replacement parts for all types 
of equipment can be costly; in addition, equipment 

can sometimes become obsolete, being replaced with 
newer technology. In addition, equipment can be 
difficult to maintain with limited amounts of staff 
and resources. 

Model Costs 
The initial cost to develop the Stormwater model 
in 2007 was low—basically the cost of a graduate 
student’s time. Once the model was operational, costs 
increased because a series of 11 rain gauges needed to 
be installed and maintained. Unfortunately, SCDHEC 
budget cuts reduced the resources and staff available 
to perform maintenance. Using data collected during 
the 2007–2009 beach seasons, they were able to target 
sites with frequent exceedances and could reduce 
monitoring and maintenance of the rain gauges at 
other sites, further reducing costs. This continued 
until permanent signs were put in place at beach sites 
where the water quality standards were routinely 
exceeded and eventually they stopped using the rain 
gauges all together. 

The primary costs for the 2011 NexRad model are 
development and continual model updates. There 
were no costs associated with model implementation 
because model data were obtained for free. 

Moving Forward 
The NexRad rainfall model eliminated the need for 
updates and maintenance of the rain gauge network; 
improve timeliness by providing robust decision 
support well in advance of verification by biological 
sample cultures; and improved accuracy by providing 
reliable forecasts of beach hazards that would merit 
closures, while reducing false positives. These models 
are some of the first marine Enterococcus models, 
and some of the first to use CART models. They 
are transferable to other swimming beaches in the 
southeast United States that experience similar 
weather and water circulation patterns and have 
stormwater runoff as the most significant pollution 
source. In the future, the scientists who developed 

www.howsthebeach.org
www.howsthebeach.org
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 Stormwater Model (Horry County, South Carolina) (continued) 

the model hope to increase buoy and radar coverage 
to provide improved spatial resolution of data and to 
assess the use of the model for predicting salinity and 
currents. 

USC’s Dr. Dwayne Porter advises other beach 
programs that “you do not want to shortchange the 
modeling effort, but simpler is often better.” Sean 
Torrens with SCDHEC encourages beach managers to 
collaborate with others, such as graduate students and 
universities, and to research what others are doing to 
avoid reinventing the wheel. 
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