Red Hill Administrative Order of Consent (AOC) Scoping Meetings Statement of Work (SOW) Section 6 and 7

November 30, 2015 – December 3, 2015 Building 679, Navy College, SUBASE Area, Joint Base Pearl Harbor-Hickam, Hawaii

1. OVERALL MEETING OBJECTIVE

Discuss technical approach, design, and rationale for AOC SOW Section 6 (Investigation and Remediation of Releases), Section 7.1 (Groundwater Flow Model), Section 7.2 (Contaminant Fate and Transport [CF&T] Model), and Section 7.3 (Groundwater Monitoring Network) for the Red Hill Bulk Fuel Storage Facility.

2. DRAFT AGENDA OVERVIEW (DETAILED DRAFT AGENDA ATTACHED)

Day 1 – Monday, November 30, 2015

0800 - 1000	Introduction of Attendees, Meeting Procedures, and All-Tracks Discussion
1000 - 1015	Break; Separate into Different Meeting Track (Section 6 and Section 7)
1015 - 1045	Introductions, Review Meeting Agenda, and State AOC SOW Section Purposes
1045 - 1130	Site Setting: Land Uses, Topography, Water Resources, Regional Geology
1130 - 1230	Lunch
1230 - 1430	Site Hydrogeology: Preliminary Geologic Conceptual Site Model (CSM)
1430 - 1445	Break
1445 - 1700	Previous Investigations (Pre-2014): Results, Existing Models and CSM

Day 2 - Tuesday, December 1, 2015

0800 - 1030	January 2014 Release: Response, Investigations, and Results
1030 - 1045	Break
1045 - 1200	AOC SOW Section 6 In-Depth Discussion: Objectives and Tasks
1200 - 1300	Lunch
1300 - 1400	Task #1: Evaluate Vadose Zone Geology
1400 - 1500	Task #2: Investigate Light Non-Aqueous Phase Liquid (LNAPL)
1500 - 1515	Break
1515 - 1600	Task #2: Investigate LNAPL (Continued)
1600 - 1700	Task #3: Identify Chemicals of Potential Concern (COPCs)

Day 3 – Wednesday, December 2, 2015

0800 - 0900	All-Tracks Discussion on Progress
0900 - 1030	Section 6 Task #4: Monitoring Network – Existing and Newly Proposed
1030 - 1045	Break
1045 - 1200	Task #4: Monitoring Network (Continued)
1200 - 1300	Lunch
1300 - 1500	Task #4: Monitoring Network (Continued)
1500 - 1515	Break
1515 - 1615	AOC SOW Section 7 In-Depth Discussion: Objectives and Tasks
1615 - 1700	Task #5: Update the Existing Groundwater Model

Day 4 – Thursday, December 3, 2015

0800 - 1000	Task #5: Update the Existing Groundwater Model (Continued)
1000 - 1015	Break
1015 - 1200	Task #6: Update CF&T Model and Evaluate Whether to Perform a Tracer Study
1200 - 1300	Lunch
1300 - 1400	Task #7: Evaluate Potential Remedial Alternatives – Feasibility, Methodologies
1400 - 1500	Open Discussion
1500 - 1515	Break
1515 - 1630	Path Forward, Milestones, Potential Collaboration, and Review Action Items

Day 5 – Friday, December 4, 2015

0800 - 0900	All-Tracks Discussion and Closeout
0900 – TBD	[Contingent if Section 6 and Section 7 Require More Discussions]

3. DRAFT DETAILED MEETING AGENDA

Day 1 – Monday, November 30, 2015

0800 – 1000 Introduction of Attendees, Meeting Procedures, and All-Tracks Discussio	0800 - 1000	Introduction of Attendees, Meeting Procedures, and All-Tracks Discussion
---	-------------	--

- 1000 1015 Break; Separate into Different Meeting Track (Section 6 and Section 7)
- 1015 1045 Introductions, Review Meeting Agenda, and State AOC SOW Section Purposes
 - Introductions
 - AOC SOW Section 6 Objective
 - a. "Determine the feasibility of alternatives for investigating and remediating releases from the Facility" including:
 i. "...the response to the January 2014 release from Tank #5 and an evaluation and
 - "...the response to the January 2014 release from Tank #5 and an evaluation and discussion of potential remediation methods for the January 2014 Tank #5 release and any future releases"
 - AOC SOW Section 7 Objective
 - a. "Monitor and characterize the flow of groundwater around the Facility"
 - b. "Update the existing Groundwater Protection Plan (GPP) to include response procedures and trigger points in the event that contamination from the Facility shows movement toward any drinking water well"
 - Section 6 and Section 7 Scoping Meeting Objectives
 - a. General
 - i. Understand site history, conditions, environment, limitations, and challenges
 - ii. Review existing data and models; identify data gaps and other needs
 - iii. Come to an understanding of what is and is not feasible
 - b. Specific
 - i. Outline major tasks that can achieve the AOC-SOW objectives
 - ii. Discuss framework and criteria to be used in implementing the major tasks
 - iii. Discuss potential investigation and analysis details
 - Details will be finalized in the Scopes of Work (Workplans) for each AOC-SOW Section, that will be developed upon regulators' acceptance of the Final Scoping Meeting
- 1045 1130 Site Setting: Land Uses, Topography, Water Resources, Regional Geology
 - Facility Description and History
 - Location and Setting
 - a. Surrounding land use and other potential point sources
 - b. Topography, surface water, and surface soils
 - c. Regional groundwater supply wells: Red Hill, Halawa, Moanalua

1130 – 1230 Lunch

1230 – 1430 Site Hydrogeology: Preliminary Geologic Conceptual Site Model CSM)

- Vadose Zone Geology
 - a. Hawaiian lava flows and geologic features and properties
 - b. Pahoehoe, a'a, clinker, tuff, dikes and sills, strike and dip of flow bedding/planes
 - c. Permeability, confining layers, voids, flow directions
 - d. Previous Red Hill investigations: boring logs and rock cores
- Preliminary Geologic CSM of the Vadose Zone Underlying the Facility
- 1430 1445 Break

1445 – 1700 Previous Investigations (Pre-2014): Results, Existing Models and CSM

- Summary of Previous Investigations
- Releases and Development of Existing Groundwater Monitoring Well Network a. Well construction details
- Boring Logs and Rock Cores Aquifer Substrate Composition
- Results of Previous Investigations Environmental Sampling and Analysis
 - a. Water level and LNAPL gauging
 - b. Groundwater sampling and laboratory chemical analysis
 - c. Soil vapor results
- Groundwater Flow Model
 - a. Limitations data gaps, and opportunities for improvement
- Contaminant Fate and Transport (CF&T) Model a. Limitations data gaps, and opportunities for improvement

Day 2 - Tuesday, December 1, 2015

0800 – 1030 January 2014 Release: Response, Investigations, and Results

- Release Points, Detection, Fuel Type, and Quantity a. Review of any available information
- Response and Investigations
 - a. Installations of new monitoring wells (RHMW06 and RHMW07)
 - b. Vadose zone evaluation
 - c. Soil vapor results
- Environmental Sampling and Analysis
 - a. Chemicals of potential concern (COPCs)
- 1030 1045 Break

1045 – 1200 AOC SOW Section 6 In-Depth Discussion: Objectives and Tasks

- Overall AOC SOW Section 6 Objective
 - a. "Determine the feasibility of alternatives for investigating and remediating releases from the Facility"
- Major Tasks to Achieve Section 6 Objective
 - a. Task #1: Evaluate Vadose Zone Geology
 - b. Task #2: Investigation Light Non-Aqueous Phase Liquid (LNAPL)
 - c. Task #3: Identify Chemicals of Potential Concern (COPCs)
 - d. Task #4: Monitoring Network Existing and Newly Proposed

1200 – 1300 Lunch

1300 - 1400

•

Task #1: Evaluate Vadose Zone Geology

- Geologic Mapping
 - a. Previous boring logs and rock cores
 - b. Aerial imagery
 - c. Field mapping
 - Mapping to Strategically Place New Monitoring Wells (Discussed Further Below)
 - a. Acquire additional information from the advancement of new borings/wells

1400 – 1500 Task #2: Investigate Light Non-Aqueous Phase Liquid (LNAPL)

- Brief Review of Geologic CSM: Constraints, Potential Inhibitors, and Objectives
 - a. Subsurface heterogeneity, combined with interbedded voids and confining layers, potentially:
 - i. LNAPL difficult to locate if within unpredictable void spaces
 - ii. Difficult to remediate or remove
 - Natural attenuation would be expected to occur
 - iii. Retards flow of LNAPL to groundwater (i.e., potential risk of drilling)

1500 – 1515 Break

1515 – 1600 Task #2: Investigate LNAPL (Continued)

- Consider Vadose Zone Vapor Transport Modeling
 - a. Utilize existing soil vapor data
 - b. Evaluate its use as leak detection (e.g., concentrations did not exceed immediately after the leak, level of protectiveness, etc.)
- Potential Non-Intrusive Technologies
 - a. Electroresistivity methods
 - b. Other geophysical techniques (i.e., MIP, LIF, UVOSS, etc.)
 - c. Applicability and practicality of available methods
 - d. To be evaluated in greater detail during preparation of scope of work

1600 – 1700 Task #3: Identify Chemicals of Potential Concern (COPCs)

- Review of Existing Data
- Identify COPCs
- Recommend COPCs For:
 - a. Analytical testing
 - b. Parameter inputs into CF&T model
- Sampling and Chemical Analyses Methods: Field and Laboratory

Day 3 - Wednesday, December 2, 2015

0800 – 0900 All-Tracks Discussion on Progress

0900 – 1030 Section 6 Task #4: Monitoring Network – Existing and Newly Proposed

- Well Placement Objectives:
 - a. Addressing groundwater flow model data gaps
 - i. Evaluate the potential regional flow north and mauka of the prison, as indicated in the second modeling report from 2010
 - ii. Evaluate the resistance to flow provided by the valley fill
 - iii. Refine modeling boundary condition assumptions
 - b. Addressing CF&T model data gaps (and potentially addressing future releases)
 - i. Consider installing sentinel wells between the release and the Halawa Shaft
 - ii. Consider installing sentinel wells between the release and the Moanalua wells
 - iii. Consider additional sentinel wells upgradient of the Red Hill Shaft
 - iv. Consider sentinel well upgradient of the nearby (downgradient) housing
 - c. Evaluate distribution of natural attenuation parameters
 - d. Evaluate aquifer properties and refine geological profiles and model inputs
 - i. Borehole logging, geotechnical soil sampling and testing, and potential geophysical methods (if found feasible)
 - ii. Investigate the extent weathered basalt/saprolite layer that was recommended to be added and considered to the groundwater flow model
 - iii. Better information on the valley fill and its potential effects
 - e. Potential remedial alternatives and future use
 - i. Recovery and treatment
 - ii. Bioaugmentation (i.e., bioventing, etc.)
 - iii. Expand monitoring network to include new and existing well locations
- 1030 1045 Break
- 1045 1200 Task #4: Monitoring Network (Continued)
 - Potential Well Placement
 - a. Consider northwest of Halawa Prison
 - b. Consider south of Halawa Industrial Park
 - c. Consider south of the Facility
- 1200 1300 Lunch
- 1300 1500 Task #4: Monitoring Network (Continued)
 - Potential Well Placement (Continued Discussion)
 - Well Construction Details
 - a. Consider potential data use, representativeness, and future use (i.e., extraction, etc.)
- 1500 1515 Break

1515 – 1615 AOC SOW Section 7 In-Depth Discussion: Objectives and Tasks

- Overall AOC-SOW Section 7 Objective
 - a. "Monitor and characterize the flow of groundwater around the Facility"
 - b. "Update the existing Groundwater Protection Plan to include response procedures and trigger points in the event that contamination from the Facility shows movement toward any drinking water well"
- Major Tasks to Achieve Section 7 Objective (Interconnected to Section 6)
 - a. Task #5: Update the Existing Groundwater Model
 - b. Task #6: Evaluate Whether to Perform a Tracer Study
 - c. Task #7: Evaluate Potential Remedial Alternatives Feasibility, Methodologies

1615 – 1700 Task #5: Update the Existing Groundwater Model

- Strengths and Limitations of Mathematical Modeling of Red Hill
 - a. MODFLOW & RT3D are state of the art flow and transport models that are particularly suitable for modeling petroleum releases in porous media
 - b. Much effort has been expended to create a robust model, which can be improved and used
 - c. The site aquifer substrate is likely amenable to equivalent porous flow modeling
 - d. A model is only as good as its inputs (i.e., site characterization). The heterogeneity of Red Hill imposes inherent limitations to any mathematical model
- Other Modeling Programs and Considerations
 - a. Freshwater flow only
 - b. Density dependent flow
 - c. Desktop Catchment Water Modeling
- Proposed Uses of the Mathematical Model
 - a. Evaluate placement of new wells
 - b. Set and revise site-specific risk based levels (SSRBLs)
 - c. Evaluating potential remediation alternatives and develop contingency plans
 - d. Provide input to and support the Risk and Vulnerability Assessment (AOC SOW Section 8) for hypothetical scenario considerations

Day 4 – Thursday, December 3, 2015

0800 – 1000 Task #5: Update the Existing Groundwater Model (Continued)

- Recommended Modeling Efforts
 - a. Extent of groundwater flow model
 - b. Incorporate data obtained since 2010 and input other model improvements:
 - i. Literature review to verify appropriateness of layer geotechnical parameters
 - ii. New groundwater monitoring well logs (re-evaluate model layers)
 - iii. Consider adding weathered basalt (saprolite) layer above basalt layer
 - iv. Groundwater elevation gauging data
 - v. Revised recharge data (re-evaluate model boundary conditions)
 - vi. Potential well placement
 - c. Incorporate new data obtained during implementation of previous Section 6 tasks
 - i. Stratigraphy
 - ii. Groundwater elevations
 - iii. COPCs analyses
 - d. Revise SSRBLs and update risk assessment
 - e. Basis and consideration of modeling codes/types
 - f. Scenarios to be evaluated
 - g. Calibration/Validation of model

1000 - 1015 Break

1015 – 1200 Task #6: Update CF&T Model and Evaluate Whether to Perform a Tracer Study

- Update CF&T Model
 - a. Use updated groundwater model (i.e., flow parameter inputs [velocity, direction, dispersion], etc.)
 - b. Contaminant species to be evaluated in model
 - c. Transport assumptions (i.e., solubility, etc.)
 - d. Degradation evaluation and inputs
 - e. Scenarios to be evaluated
 - f. Other model considerations
 - g. Calibration/Validation of model
- Applicability, Feasibility, and Appropriateness of Conducting a Tracer Study
 - a. Valuable input into CF&T model
 - b. Limitations to a tracer study (i.e., implementability, timeframe, etc.)
 - c. Possible tracer study designs
 - d. Improper design can potentially result in a very expensive (in cost and time) failure
- 1200 1300 Lunch

1300 – 1400 Task #7: Evaluate Potential Remedial Alternatives – Feasibility, Methodologies

• Evaluate and Recommend Remedial Alternatives Based on Results of Aforementioned Tasks

a. Evaluate remedial alternatives against the following criteria:

- i. Overall Protection of Human Health and the Environment
- ii. Compliance with Other Federal and State Requirements
- iii. Long-Term Effectiveness and Permanence
- iv. Reduction of Toxicity, Mobility, or Volume through Treatment
- v. Short-Term Effectiveness
- vi. Implementability
- vii. Cost
- viii. Projected State Acceptance
- ix. Project Community Acceptance
- 1400 1500 Open Discussion
- 1500 1515 Break
- 1515 1630 Path Forward, Schedule Milestones, and Review Action Items/Decision Points
 - AOC SOW Schedule for Section 6 and Section 7
 - Potential Collaboration Opportunities with the University of Hawaii on Section 6 and Section 7
 - Additional Scoping Meetings Required?