

EPA's State Inventory Tool and MRR Data

State GHG InventoryTool:

- Based on National methods and sources
- Offers consistent, streamlined approach to state inventories
- Provides customizable default data in user-friendly framework
- Available free-of-charge
- Framework extends to 2020, default data through 2009

Incorporating Data from the MRR

- Currently provide spot for manual input of "all in" sources in Industrial Processes module starting with 2010 data
- Exploring options to:
 - build in default industrial processes data from MRR
 - enhance other modules of the tool with MRR data
- Looking for input on what would be most helpful

EPA's State Inventory Tool and MRR Data

Insert Delete Format Cells Cells Cells M Return to ontrol Sheet lear All Data	Styles + K Return Control	as Table Styles J er tier subject een (e.g.,	PA through its Ion use of highe undaries will be ore than 25,000 dule that have be ource category (H ssions to EP, ilities based of hin their bour gory emit mo n the IP modu sfor each so	use gas emis ons from facil category with source categ s included in ite emissions	F F nsylve eir greent 010 emiss ular source within tha The source the total s	Cent Pen port th a for 2 partic cilities ation. resent n repo	te and rep obtain data at have a p arly all faci determina hould repre eginning in	mputs or, calculat EPA will of cilities that at all or near oplicability of a below sho	D ta In gram, El lany fac ted that heir app ne data t	Il be required to i . Underthe proj EPA in 2012. M analysis indicat would simplify th	<u>→</u> <u>→</u> <u>→</u> <u>→</u> nt	Greenhouse Ga methods, with th to the rule. For th mtCO ₂ e per year determined "all in	Clipboard 1 2. G
Cells	Styles + K Return Control	as Table Styles J er tier subject een (e.g.,	PA through its lon use of highe undaries will be ore than 25,000 dule that have be ource category (H ssions to EP/ ilities based of hin their bour gory emit mo n the IP modu sfor each so	Number G nia use gas emis category with source categ s included in ite emissions	F F nsylve eir greent 010 emiss ular source within that The source the total s	Cent Pen port th a for 2 partic cilities ation. resent n repo	E for P teand rep btain data at have a p arly all faci determina bould repre	mputs or, calculat EPA will of cilities that at all or near oplicability of a below sho	Aligr D ta In monitor gram, El lany fac ted that heir app ne data b	Rule Dat	as Reporting 2010, many facilities will Gas Reporting Program hthe first reports due to or these facilities, EPA's ear, and that an "all in"	B Beginningin 201 Greenhouse Gas methods, with th to the rule. For th mtCO ₂ e per year determined "all ii	Clipboard
Cells Cells CLM	Styles + K Return Control	as Table Styles J er tier subject een (e.g.,	PA through its lon use of highe undaries will be ore than 25,000 dule that have be ource category (H ssions to EP/ ilities based of hin their bour gory emit mo n the IP modu sfor each so	Number G nia use gas emis category with source categ s included in ite emissions	F F nsylve eir greent 010 emiss ular source within that The source the total s	Pen port th a for 2 partic cilities ation. esent n repo	E te and rep obtain data at have a p arly all faci determina nould repre eginning in	nputs or, calculat EPA will ot actilities that at all or nea oplicability of a below sho	Aligr D ta In monitor gram, El lany fac ted that heir app ne data b	Rule Dat	as Reporting 2010, many facilities will Gas Reporting Program hthe first reports due to or these facilities, EPA's ear, and that an "all in"	B Beginningin 201 Greenhouse Gas methods, with th to the rule. For th mtCO ₂ e per year determined "all ii	Clipboard
Return to ontrol Sheet	K Retur	J ertier subject) een (e.g.,	PA through its Ion use of highe undaries will be ore than 25,000 dule that have be ource category (H ssions to EP, ilities based of hin their board of gory emit mo n the IP modu s for each so	G nia use gas emis ons from facil category with source categ s included in ite emissions	F nsylve of greent 010 emissi ular source within that The source the total s	port th a for 2 partic cilities ation. resent n repo	te and rep obtain data at have a p arly all faci determina hould repre eginning in	D nputs or, calculat EPA will ob incilities that applicability of a below sho	D ta In gram, El lany fac ted that heir app ne data t	Rule Dat	as Reporting 2010, many facilities will Gas Reporting Program hthe first reports due to or these facilities, EPA's ear, and that an "all in"	B Beginningin 201 Greenhouse Gas methods, with th to the rule. For th mtCO ₂ e per year determined "all ii	
Return to ontrol Sheet	Retur	subject) een (e.g.,	l on use of highe undaries will be ore than 25,000 dule that have be ource category (ssions to EP/ ilities based o hin their bour gory emit mo h the IP modu s for each so	nia use gas emis ons from facil category with source categ s included in ite emissions	eir greent 010 emiss ular sourc within tha The sourc the total s	port th a for 2 partic cilities ation. resent n repo	te and rep obtain data at have a p arly all faci determina hould repre eginning in	nputs or, calculat EPA will ob cilities that all or nea oplicability of a below sho	monitor gram, El lany fac ted that heir app ne data t	Rule Dat	2010, many facilities wil Gas ReportingProgram In the first reports due to or these facilities, EPA's ear, and that an "all in"	Beginningin 201 Greenhouse Gas methods, with th to the rule. For th mtCO2e per year determined "all in	1 2.6
ontrol Sheet	Control	subject) een (e.g.,	l on use of highe undaries will be ore than 25,000 dule that have be ource category (ilities based o hin their bour gory emit mo h the IP modu s for each so	use gas emis ons from facil category with source categ s included in ite emissions	eir greent 010 emiss ular sourc within tha The sourc the total s	port th a for 2 partic cilities ation. resent n repo	te and rep obtain data at have a p arly all faci determina hould repre eginning in	or, calculat EPA will of acilities that at all or nea oplicability of a below sho	monitor gram, El lany fac ted that heir app ne data t	Il be required to i . Underthe proj EPA in 2012. M analysis indicat would simplify th	2010, many facilities wil Gas ReportingProgram In the first reports due to or these facilities, EPA's ear, and that an "all in"	Beginningin 201 Greenhouse Ga methods, with th to the rule. For th mtCO ₂ e per year determined "all in	1 2.6
ontrol Sheet	Control	subject) een (e.g.,	l on use of highe undaries will be ore than 25,000 dule that have be ource category (ilities based o hin their bour gory emit mo h the IP modu s for each so	use gas emis ons from facil category with source categ s included in ite emissions	eir greent 010 emiss ular sourc within tha The sourc the total s	port th a for 2 partic cilities ation. resent n repo	te and rep obtain data at have a p arly all faci determina hould repre eginning in	or, calculat EPA will of acilities that at all or nea oplicability of a below sho	monitor gram, El lany fac ted that heir app ne data t	Il be required to i . Underthe proj EPA in 2012. M analysis indicat would simplify th	2010, many facilities wil Gas ReportingProgram In the first reports due to or these facilities, EPA's ear, and that an "all in"	Beginningin 201 Greenhouse Ga methods, with th to the rule. For th mtCO ₂ e per year determined "all in	1 2.6
ontrol Sheet	Control	subject) een (e.g.,	l on use of highe undaries will be ore than 25,000 dule that have be ource category (ilities based o hin their bour gory emit mo h the IP modu s for each so	use gas emis ons from facil category with source categ s included in ite emissions	eir greent 010 emiss ular sourc within tha The sourc the total s	port th a for 2 partic cilities ation. resent n repo	te and rep obtain data at have a p arly all faci determina hould repre eginning in	or, calculat EPA will of acilities that at all or nea oplicability of a below sho	monitor gram, El lany fac ted that heir app ne data t	Il be required to i . Underthe proj EPA in 2012. M analysis indicat would simplify th	2010, many facilities wil Gas ReportingProgram In the first reports due to or these facilities, EPA's ear, and that an "all in"	Beginningin 201 Greenhouse Ga methods, with th to the rule. For th mtCO ₂ e per year determined "all in	
ontrol Sheet	Control	subject) een (e.g.,	l on use of highe undaries will be ore than 25,000 dule that have be ource category (ilities based o hin their bour gory emit mo h the IP modu s for each so	ons from facil category with source categ s included in ite emissions	010 emis: ularsourc within tha The source the total s	a for 2 partic cilities ation. resent n repo	obtain data at have a p arly all faci determina hould repre eginning in	EPA will ob acilities that at all ornea oplicability of a below sho	gram, El lany fac ted that heir app ne data t	. Underthe pro EPA in 2012. M analysis indicat would simplify th	Gas Reporting Program h the first reports due to or these facilities, EPA's ear, and that an "all in"	Greenhouse Ga methods, with th to the rule. For th mtCO ₂ e per year determined "all in	
		subject) een (e.g.,	undaries will be s ore than 25,000 dule that have be ource category (hin theirbour gory emit mo h the IP modu s foreach so	category with source categ s included in te emissions	ular sourc within the The sourc the total s	partic cilities ation. esent n repo	at have a p arly all faci determina hould repre eginning in	acilities that at all ornea oplicability o a below sho	lany fac ted that heir app ne data t	EPA in 2012. M analysis indicat would simplify th	h the first reports due to or these facilities, EPA's ear, and that an "all in"	methods, with th to the rule. For th mtCO ₂ e per year determined "all in	
ear All Data	Clear A) een (e.g.,	ore than 25,000 dule that have be ource category (gory emit mo n the IP modu s for each so	source categ s included in ite emissions	within tha The source the total s	cilities nation. resent n repo	arly all faci determina hould repre eginning in	at all ornea oplicability (a below sho	ted that heir app ne data t	analysis indicat would simplify th	or these facilities, EPA's ear, and that an "all in"	to the rule. For the mtCO₂e per year determined "all in	
ear All Data	Clear A	(e.g.,	ource category (s for each so	te emissions	the total s	esent n repo	nould repre eginning in	below sho	ne data k			determined "all in	
							nrepo	eginningin						
							0.	g with 2010			ummed), and wil	facility data should be su		
								-	beginning	ksheet b	e Summary work	et will be included on the	this worksheet w	
														2
														3 4
2018 2019 2020	7 2018	201	5 2016	2015	2014	2013	,	2012	2011		2010		: (MTCO₂E)	
	/ 2010	201	2010	2010	2014	2010	-	2012		<u> </u>	2010			
											L			
												Concumption CO.	-	
														-
												· · ·		-
													-	
													-	
												3		
														14
20	7 21	201	5 2016	2015	2014	2013	2	2012	2011		2010	ea Consumption, CO ₂	: (MTCO2E) roduction, CO2 Manufacture, CO2 Production and Urea (id Production, N2O cid Production, N2O Production, PFC Production, HFC-23	6 Cement 7 Lime N 8 Soda A 9 Ammon 10 Nitric 11 Adipic 12 Alumin

U.S. EPA Office of Atmospheric Programs