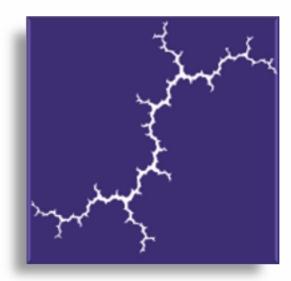


Emissions Reductions from Renewable Energy and Energy Efficiency in California Air Districts

EPA State Climate and Energy Program


June 14, 2011

Jeremy Fisher, PhD – Synapse Energy Economics Supported by the CEC Public Interest Energy Research Program

- Synapse Energy Economics
 - Research and consulting firm in Cambridge, MA
 - 25 technical experts in energy and environmental issues
 - Electric generation & transmission planning
 - Market structures & ratemaking
 - Efficiency & renewable energy, and
 - Environmental quality
 - Technical support for policies leading to a sustainable, efficient and equitable energy economy.

Public Interest Energy Research Program

Supports public interest energy research & development that will help improve the quality of life in California by bringing environmentally safe, affordable, and reliable energy services and products to the marketplace

- Program Research Areas
 - Energy Efficiency & Demand Response
 - Renewable Energy & Advanced Electricity Generation
 - Transmission & Distribution
 - Climate & Environment
 - Transportation

Background

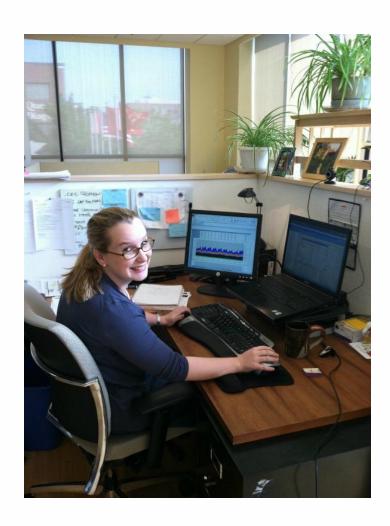
- SIP requirements in California require further reductions;
- Most sources controlled at end-of-pipe
- Seeking emissions reductions from efficiency (EE) and renewable energy (RE)
 - Where do benefits accrue?
 - Who benefits?

Research Goals

- Pilot project for California
- Industry-standard dispatch (simulation) model
- Provide flexible tool for air districts
- Final paper currently under review by CEC

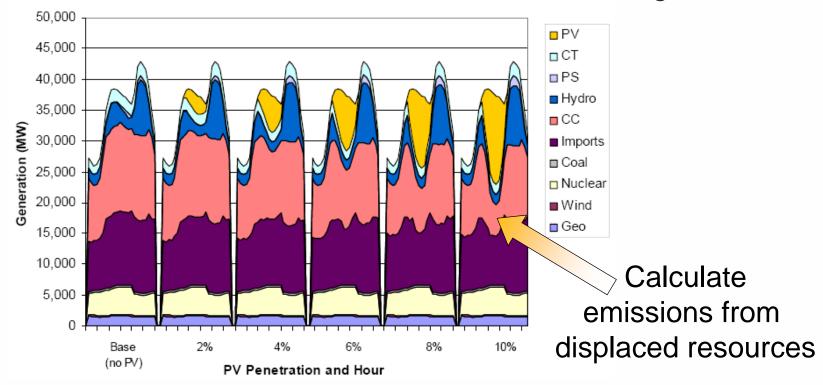
Conclusions

Simulation Model

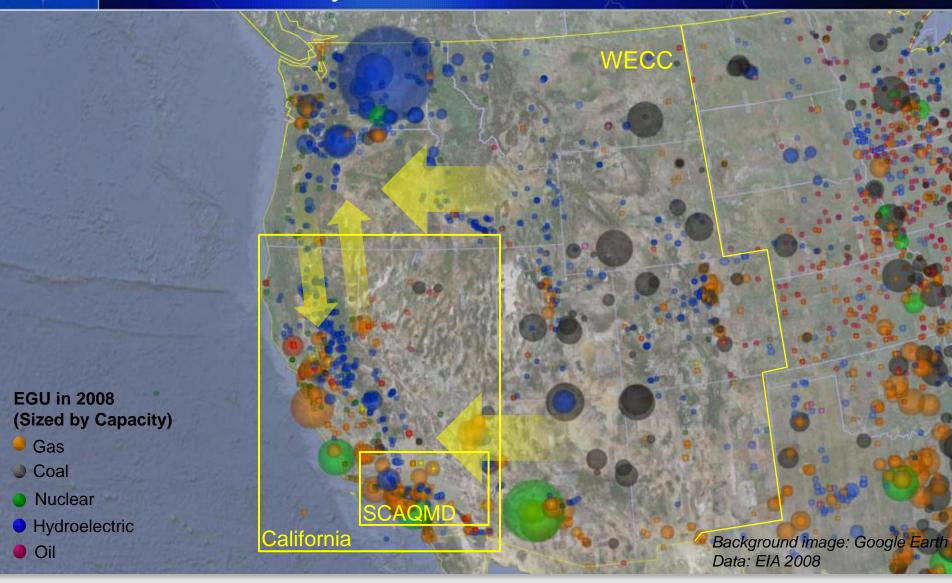

- Provides platform for energy / air quality discussion
- Numerous and subtle complications
- Grid is large, complex, and interconnected...
 but we can simulate it

Output & Results

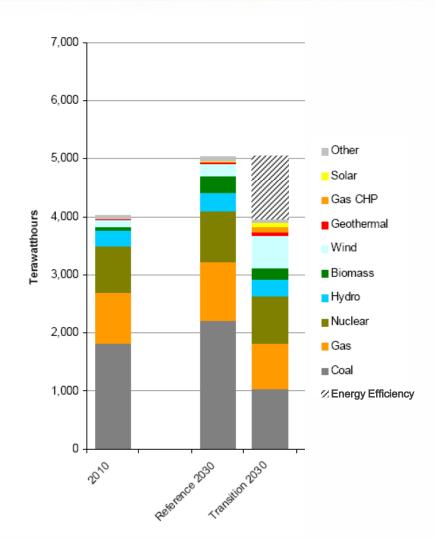
- Benefits spread over large geographic regions
- Displacement can occur far from source
- Shape and structure of the grid counts
- Signal-to-noise questions


Dispatch Models

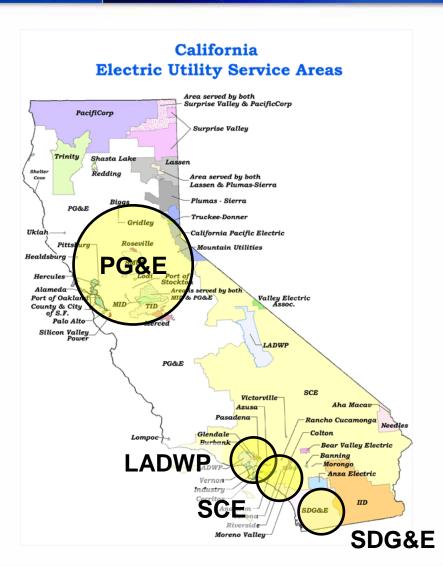
- Standard industry practice
- Simulation model is forwardlooking
 - Relies on accurate input data
 - Thousands of generators with dozens of characteristics
 - Costs for fuels and operations, energy contracts
 - Hourly demand from dozens or hundreds of utilities
 - Transmission availability
- Simulation model uses rules, constraints, and economic principles to "optimize" dispatch
- Provides detailed assessment of system operations
- Requires significant expertise


Displaced Emissions through Scenario Analysis

- Displaced generation and emissions
 - Changes at the "margin" relative to a baseline
 - Require a baseline run, and specific EE/RE scenario runs
 - Examine which resources back down with increasing EE/RE


Denholm et al. 2008. Production Cost Modeling for High Levels of Photovoltaics Penetration. NREL

Analysis Window: Western Interconnect


Building a Base Case

- Shape of the future grid
 - Which generating resources will be built or retired?
 - Expected load conditions, fuel costs, emissions prices
 - New transmission
 - Emissions from existing sources; future emissions controls?
- California project
 - CEC assumptions for 33% by 2020 renewable energy future
 - 2016 analysis year: 26% RE

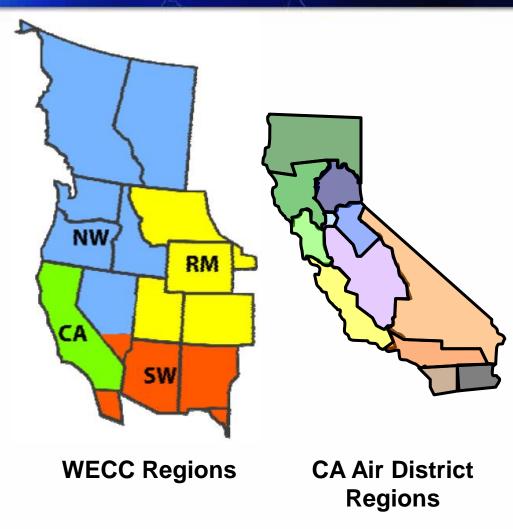
16 Scenarios: Four Regions, Four EE/RE

1000 MW Wind

1000 MW Solar PV

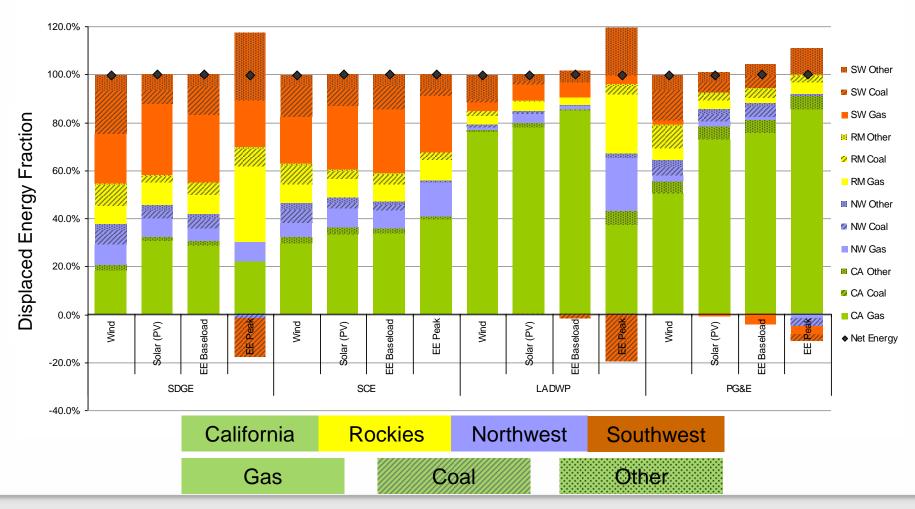
333 MW Baseload EE

10% Peak Shaving EE

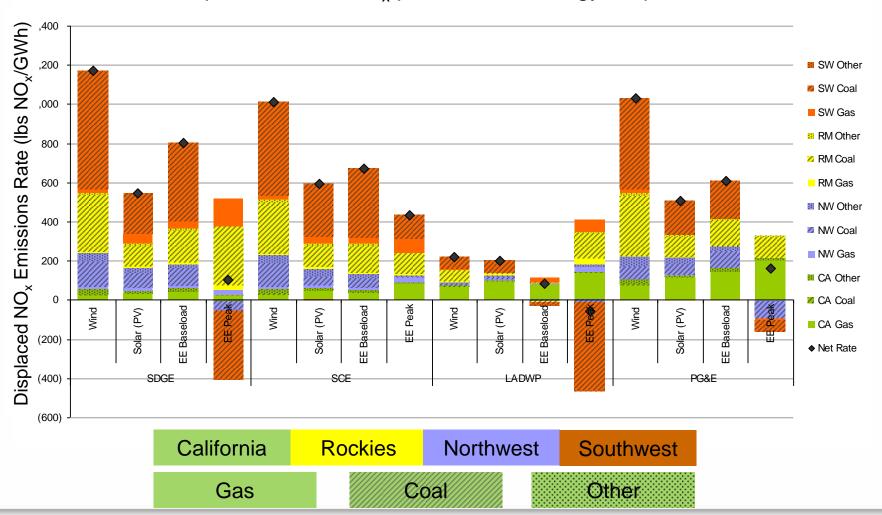

Plug in inputs

Hit "Go"

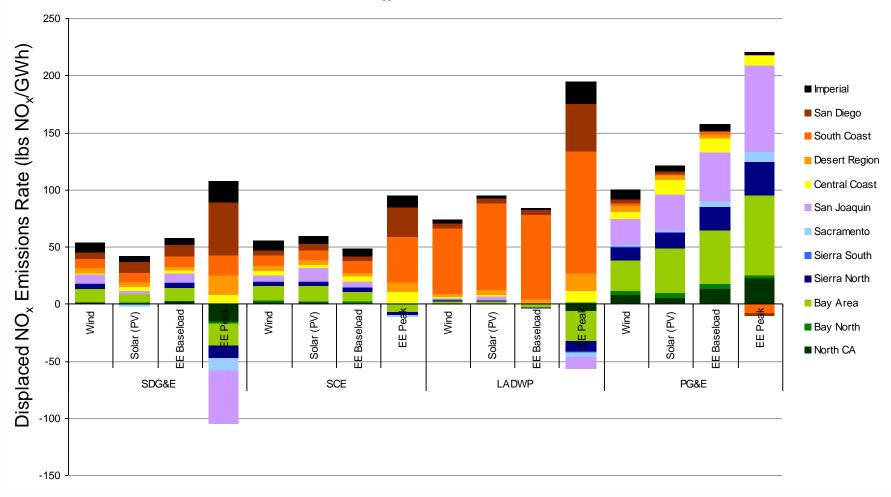
...six hours later...



- Generation and emissions (NO_X, SO₂, and CO₂) for each power plant in the Western Interconnect
- Map plants to WECC regions and air districts
- Aggregate data by western region and air district
- Examine errors and uncertainty
- Build calculator from output results


Results: Displaced Generation Fraction by Region & Fuel Type

Displaced Energy Fraction by Region (MWh per MWh)


Results: Displaced NO_X Emissions Rate by Region and Fuel Type

Displaced lbs of NO_x per GWh of Energy Displaced

Results: Displaced NO_X Emissions Rate by Air District

Displaced lbs of NO_x per GWh of Energy Displaced

4

Calculator

Step 1:

Choose RE/EE Type

EE/RE Measure Wind (Onshore)

Step 2:

Choose utility region to implement

Step 3:

Choose project capacity, in MW

Do not alter capacity factor

Do not alter annual energy

s Angeles De	partment of	Water	and	Po

Utility Region

Project Size (MW) 500.0

Capacity Factor (%) 39.9%

Annual Energy (GWh) 1,751.3

Displaced Energy and Emissions by WECC Region						
	Energy Displaced (GWh)	NO _X Displaced (tons)	SO ₂ Displaced (tons)	CO ₂ Displaced (tons)		
California	1,348.2 <i>103.5</i>	63.9 8.7	9.8 9.0	552,882 <i>51,044</i>		
Northwest	33.5 78.2	14.8 93. <i>4</i>	1.8 11.1	18,608 <i>83,418</i>		
Rocky Mountain	104.0 <i>4</i> 2.7	55.6 <i>45.1</i>	31.8 24.1	65,189 27,258		
Southwest	263.7 104.8	60.7 83.4	18.4 38.3	54,749 78,497		
Total, Net		195.0 125.4	61.8 31.2	691,428 <i>75,090</i>		

Displaced Energy and Emissions by California Air District Region								
	Energy	NO _X	SO ₂	CO ₂				
	Displaced	Displaced	Displaced	Displaced				
	(GWh)	(tons)	(tons)	(tons)				
North CA	1.0	-0.5	0.0	565				
	3.6	1.5	0.0	1,607				
Bay North	5.6	0.1	0.1	680				
	29.8	0.4	0.2	12,798				
Bay Area	44.1	1.8	2.6	19,712				
	33.1	4.9	2.8	17,247				
Sierra North	17.7	0.7	0.1	8,614				
	14.3	1.5	0.1	5,844				
Sierra South	0.1	0.1	0.0	64				
	0.1	0.2	0.1	53				
Sacramento	2.6	-0.2	0.0	238				
	8.0	0.5	0.1	3,452				
San Joaquin	19.3	1.3	1.7	9,017				
	17.1	4.0	1.7	7,440				
Central Coast	-28.8	1.3	0.1	-16,266				
	16.1	0.3	0.1	10,877				
Desert Region	9.3	2.4	1.2	5,401				
	16.4	2.0	1.0	7,229				
South Coast	1,252.2	49.9	4.0	517,407				
	46.3	3.2	11.7	27,387				
San Diego	11.2	3.8	0.0	6,967				
Sali Diego	9.6	2.4	0.2	6,374				
Imperial	2.2	2.6	0.0	1,639				
	3.5	0.7	0.1	1,687				

Expectations: Using a Dispatch Model for Displaced Emissions

- Dispatch modeling is restrictive
 - Requires extensive input assumptions, build-out scenarios for baseline, calibrated model inputs
 - Licensure and expertise are high cost
 - Data is proprietary
- Regional studies have very high value
 - No difference between modeling California and Intermountain West – same model
 - Economies of scale, spread costs and efforts, capture benefits across states
 - Output can be published in numerous forms, including calculators

Conclusions

- Benefits spread over large geographic regions
 - Significant displaced generation outside of California
 - Displaced resource type varies significantly

- Grid is complex, but analyzable
 - Transmission constraints can be important
 - Specific location and type of EE/RE project is important
 - Historic statistical analysis vs. forwardlooking simulation model: results will differ

Acknowledgements

Synapse

Nicole Hughes, Chris James, David White, Bruce Biewald, & Ezra Hausman

CEC

Marla Mueller, Al Alvarado, Angela Tanghetti, Denny Brown, Ivin Rhyne

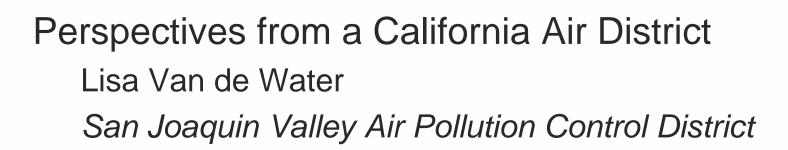
EPA

Greg Nudd, Art Diem, Ben Machol, Chris Stoneman, Robyn DeYoung

California Air Districts

Lisa Van de Water, Charles Anderson,

Jack Brouwer, UC Irvine Mark Meldgin, PG&E


Contact Info

Jeremy Fisher, PhD

Synapse Energy Economics <u>ifisher@synapse-energy.com</u> 617.453.7045

Marla Mueller

Air Quality Research Program
Public Interest Energy Research (PIER) Program
California Energy Commission
mmueller@energy.state.ca.us

