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Abstract:  

The Chesapeake Bay and its tributaries provide a range of recreational and aesthetic 

amenities, such as swimming, fishing, boating, wildlife viewing, and scenic vistas. Living in 

close proximity to the Bay improves access to these amenities and should be capitalized into 

local housing markets. We investigate these impacts in the largest hedonic analysis of water 

quality ever completed, with over 200,000 property sales across 14 Maryland counties. We use a 

spatially explicit water quality dataset, along with a wealth of landscape, economic, geographic, 

and demographic variables. These data allow a comprehensive exploration of the value of water 

quality, while controlling for a multitude of other influences. We also estimate several variants of 

the models most popular in current literature, with a focus on the temporal average of water 

quality. In comparing 1 year and 3 year averages, the 3 year averages generally have a larger 

implicit price. Overall, results indicate that water quality improvements in the Bay, such as those 

required by EPA’s Total Maximum Daily Load, could yield significant benefits to waterfront and 

near-waterfront homeowners. 
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I. Introduction  

The Chesapeake Bay and its tributaries provide a range of recreational and aesthetic 

amenities, such as swimming, fishing, boating, wildlife viewing, and scenic vistas. Living in 

close proximity to the Bay improves access to these amenities and so should be capitalized into 

local housing markets. Indeed, homes near the waterfront command a premium in real estate 

markets across the country because of the unique services they provide (Brown and Polakowski, 

1977; Lansford and Jones, 1995; Palmquist and Fulcher, 2006). This paper explores the value of 

water quality on homes near the waterfront, which should reflect several categories of 

recreational and aesthetic amenities. 

 Water pollution has been a chronic problem for the Chesapeake Bay over the last century, 

as agriculture, industry, and local populations have expanded. After a range of unsuccessful local 

and state efforts, in 2010 the US Environmental Protection Agency (hereafter EPA) passed the 

Chesapeake Bay Total Maximum Daily Load (TMDL), which assigns pollution limits to all areas 

of the watershed. The TMDL represents a substantial advance in combatting pollution since all 

states in the watershed—Maryland, Virginia, Pennsylvania, West Virginia, New York, and 

Delaware—and Washington, D.C. are now required to meet the assigned pollution limits by the 

year 2025. TMDL goals are tied to specific deadlines, and extensive measures have been taken to 

ensure accountability.1 Since the TMDL is projected to improve water quality in the Bay and its 

tributaries, the subsequent improvements in recreational, aesthetic, and other amenities may be 

reflected in nearby property prices.  

Hedonic property value analysis models the price of a home as a function of its 

characteristics. This approach has been used to value numerous types of environmental 

commodities. However, there are a variety of unresolved issues in the literature, particularly with 

respect to water quality. This is the largest hedonic analysis of water quality to date, with over 

220,000 observations across 14 counties. Due to the size of the analysis, we are able to explore 

several important issues, in addition to reporting the main results of our preferred models. In 

particular, we focus on the representation of water quality in the hedonic equation. Most recent 

literature uses one year averages of the water quality indicator, frequently entering in natural log 

                                                 
1 For further details on the TMDL, see http://www.epa.gov/chesapeakebaytmdl/ 

http://www.epa.gov/chesapeakebaytmdl/
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form. We compare one year averages to longer-term averages in both natural logs and levels and 

discuss the pros and cons of each approach. Finally, we also assess differences in spatial 

dependence and the spatial extent of water quality price impacts. 

II. Literature Review 

A. Hedonic Studies of Water Quality 

Hedonic property price analysis typically uses recorded real estate transactions, so 

estimates are based on actual behavior revealed in the market. Using statistical regression 

techniques, it is possible to estimate the price of a home as a function of its characteristics. Since 

local environmental conditions are relevant home characteristics, it is possible to estimate their 

value using hedonic analysis. Rosen (1974) derived the theoretical framework for hedonic 

analysis using a model of consumer bid and producer offer functions. Based on several 

assumptions about the market and interacting agents, Rosen demonstrated that in equilibrium the 

estimated marginal implicit prices equal the homebuyer’s marginal willingness to pay, thus 

allowing for marginal welfare inferences from the estimated hedonic price function. 

Furthermore, even non-marginal welfare changes can be estimated in cases where certain 

assumptions hold, including that the hedonic price schedule remains constant.2 

Hedonic analysis has been used to study the impact of a variety of environmental 

externalities, including air pollution (Smith and Huang, 1995), property shoreline (Brown and 

Polakowski, 1977) and land contamination (Haninger et al., 2014). The literature also includes 

hedonic analyses of water quality, though until recently the limitations of water quality 

monitoring data have hindered large-scale studies.3  

One of the earliest studies of the impact of water quality on property prices is an 

unpublished EPA report by David (1968), which analyzed variation in land values around sixty 

different lakes in Wisconsin. Since then there have been several hedonic studies focusing on 

water quality, with a first wave in the late 1990’s/early 2000’s focusing on waterfront homes 

                                                 
2 Kuminoff and Pope (2014) demonstrate the conditions under which non-marginal welfare changes equal the 

change in price.  
3 Now that monitoring data is becoming more widely available, several organizations have recently started 

aggregating water quality data in a more comprehensive and accessible format, such as the university of South 

Florida’s Water Quality Atlas: http://www.wateratlas.usf.edu/. 

http://www.wateratlas.usf.edu/
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around freshwater lakes, particularly those in the Northeast US (Young, 1984; Michael et al., 

1996, 2000; Boyle et al., 1999; Boyle and Taylor, 2001; Poor et al., 2001, Gibbs et al., 2002). 

Other water bodies have been examined, with studies finding that waterfront home values are 

affected by the quality of local streams and rivers (Epp and Al-Ani, 1979; Bin and Czajkowski, 

2013), and larger water bodies, such as the Great Lakes (Ara, 2007) and coastal harbors 

(Mendelsohn, 1992). More recent research has considered Florida (Walsh et al., 2011a, 2011b, 

Bin and Czajkowski, 2013), Oregon (Netusil et al., 2014), and Finland (Artell et al., 2013), 

among other study areas.  

There are two previous hedonic studies of water quality in the Chesapeake Bay 

watershed. Leggett and Bockstael (2000) found that fecal coliform concentrations have a 

negative impact on Bayfront home values in Anne Arundel County, Maryland.  Poor et al. (2007) 

explored the impact of ambient water quality on homes near the St. Mary’s River, a tributary of 

the Chesapeake Bay. They found a negative impact of pollutant concentrations on both 

waterfront and non-waterfront homes.  

Most of the hedonic property value studies of water quality focus solely on waterfront 

properties.  Poor et al.’s (2007) study of the St. Mary’s River was the first published paper to 

estimate water quality impacts on the value of non-waterfront homes. However, the authors 

include all homes within the study area and do not distinguish between waterfront and non-

waterfront homes in their model. Walsh et al. (2011b) explicitly estimate separate implicit prices 

of water clarity for waterfront and non-waterfront homes around 146 lakes in Orange County, 

Florida. They find a statistically significant impact on non-waterfront homes that extends up to 

1,000 meters from a lake.  

There is currently no single accepted best practice for the representation of water quality 

in the hedonic equation. Clarity, represented by secchi disk measurement (SDM), is the most 

common measure used in the literature, with increases in lake clarity generally leading to 

appreciation in waterfront home values. However, a variety of other indicators have been used, 

and identifying appropriate measures of water quality has been the focus of much research in 

hedonics and other valuation methods (Griffiths et al., 2012). Other measures used in past 

hedonic studies include pH, dissolved oxygen, biochemical oxygen demand, acid from minerals 

and carbon dioxide, fecal coliform, total nitrogen, total phosphorus, chlorophyll a, dissolved 

inorganic nitrogen, and total suspended solids (Epp and Al-Ani, 1979; Poor et al., 2001; Leggett 
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and Bockstael, 2001; Walsh et al., 2011a, Netusil et al., 2014). The early literature that examined 

different measures suggested that the indicators most visible to people, such as clarity, oil 

content and turbidity, were most likely to explain variation in property values (Feenberg and 

Mills 1980, Brashares 1985).  

There is also no single approach for the temporal duration of the water quality measure 

included in the hedonic equation. Most recent papers use water quality values from a single year 

(for example, Walsh et al., (2011a), Netusil et al., (2014)). However, individual preferences and 

perceptions may be better captured by longer averages. Michael et al., (2000) suggest that 

historical trends in water quality might cause some stickiness in price, and that expectations of 

future water quality may be influenced by historical trends. On the other hand, the longer the 

average of water quality, the more likely it is that unobserved influences on property values 

could be correlated with the variable. Michael et al., (2000) explored several different ways of 

measuring water clarity, including historical means over one year and 10 years, historical 

minimums over one year and 10 years, and variables indicating a positive or negative recent 

trend. All of those variations were significant and of the expected sign, but exhibited a range of 

magnitudes that Michael et al. contend could lead to different policy outcomes.   

III. Data 

A. Property Data 

Data on all residential transactions in Maryland from 1996 to 2008 were obtained from 

Maryland Property View (MDPV), which is a compilation of the tax assessment and sales 

databases from the tax assessor’s office in each county. In order to better identify the effect of 

Bay water quality on the value of nearby residential properties, the sales data are limited to the 

229,513 single family and townhouse transactions within four kilometers of the Chesapeake Bay 

tidal waters.4 The Chesapeake Bay tidal waters include the main stem of the Bay, as well as the 

                                                 
4 More specifically, the analysis focuses on full property arms-length transactions of homes classified as standard 

single-family units and townhouses.  In order to avoid the influence of outliers on our results, we omit homes with 

sales prices less than $30,000 and greater than $4,000,000. Limiting the analysis to a 4 km buffer of waterfront and 

near-waterfront properties around the Bay helps ensure a more homogenous housing market in order to minimize 

omitted variable bias. Past hedonic studies (Walsh et al., 2011a, 2011b, Netusil et al., 2014) found that water quality 

price effects can extend up to one mile away in the context of freshwater lakes in Florida and streams in Washington 

and Oregon. To be conservative, we include homes out to 4 km.     
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tidal portions of the tributaries entering the Bay, including fresh and brackish waters. Figure 1 

shows a map of the study area, illustrating the 14 counties in this study, as well as the nearby 

portions of the Bay and its major tributaries.  

The MDPV data contain a wealth of variables describing the home structure and parcel 

including age, square footage, lot size, number of bathrooms, and the existence of a basement 

and garage; as well as the transaction price and date, whether the home is on the waterfront, and 

its geographic coordinates, which we use to calculate proximity to the water (among other spatial 

variables). Table 1 contains a few descriptive statistics across all 14 counties, including the 

number of observations, mean sale price, and variables describing the distribution of sales near 

the water. Anne Arundel County has the highest average sales price, at $373,199, as well as the 

most observations (76,842). On the other hand, Somerset County has the lowest sales price 

($158,194) and number of observations (1,681). Talbot County has the largest share of 

waterfront homes in the sample, with almost 20% of homes in the data set. Prince George’s 

County, which only has a small amount of frontage on a tributary, has the smallest share of 

waterfront properties, with only 0.6%.  

In order to properly control for factors that influence housing prices, we match each 

parcel to a wealth of neighborhood, socioeconomic, and other variables that influence a home’s 

value. State and local GIS maps were used to portray local land uses and proximity to a range of 

relevant variables, such as distance to Washington D.C., local water treatment plants,5 beaches, 

and several other amenities and disamenities. Since the bay is composed of brackish water, there 

are four different salinity regimes throughout the bay and its immediate tributaries. Different 

salinity regimes may present a different set of water-based amenities, and so we include dummy 

variables denoting each regime (when there is variation in these classifications within a county).6 

A full list of the right-hand side variables is provided in Table 2. These control variables 

represent a very comprehensive set of controls, capturing more potential influences than the 

majority of past hedonic studies. However, not all variables appear on the right-hand side for 

each county. For example, on the Western Shore of Bay, distance to DC or Baltimore (whichever 

                                                 
5 Following Leggett and Bockstael’s (2000) concerns with potential omitted variable bias associated with proximity 

to pollution sources. 
6 The zones are tidal fresh, olihohaline, mesohaline, and polyhaline. For an example map of salinity regimes in the 

Bay, see http://www.chesapeakebay.net/maps/map/sav_salinity_zones, as well as 

http://www.chesapeakebay.net/maps/map/chesapeake_bay_mean_surface_salinity_summer_1985_2006  

http://www.chesapeakebay.net/maps/map/sav_salinity_zones
http://www.chesapeakebay.net/maps/map/chesapeake_bay_mean_surface_salinity_summer_1985_2006
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is closest) is used. On the Eastern Shore, distance to the Bay Bridge—which gives access to DC 

and Baltimore, is used. 

With the large number of right-hand side variables available, multicollinearity is a 

concern, especially in the smaller counties. To correct for these concerns, we start with the 

variance inflation factors (VIF) of each variable. Although several sources suggest using a 

threshold VIF of 10 or 20 (Kutner et al., 2004), others caution against VIF thresholds as a means 

to remove variables (O’Brien, 2007). We start by identifying if there are any non-interacted 

variables (which we would expect to be somewhat collinear) with a VIF greater than 15. If an 

examination of the correlation coefficients indicates that the variable is highly correlated with 

other important variables, it is dropped. In most cases, variables were correlated with fixed 

effects, and their removal never had more than a miniscule impact on the estimated water quality 

coefficients. 

Since our data span the recent swings in the housing market, it is important to be mindful 

of disequilibrium behavior.7 One sign of disequilibrium is an increase in the number of 

vacancies. (Boyle et al., 2012). Figure 2 contains a graph of the percent of vacant sales over time 

in each county used in the present study. The majority of the counties actually show a decrease in 

vacancies after 2004-2005, with Prince George’s County being the main exception. In addition, 

home prices are deflated using the seasonally adjusted Federal Housing Finance Agency’s 

(FHFA) home price index8, and annual and quarterly dummies are included as control variables 

in the hedonic regressions.  

B. Water Quality Data 

The water quality data come from EPA’s Chesapeake Bay Program Office (CBP), which 

collects samples twice a month from monitoring stations throughout the Bay tidal waters. CBP 

interpolates these water quality data, producing a spatial grid that covers the entire Bay and tidal 

tributaries. Each grid cell is a maximum of one square kilometer in size (with smaller grid cells 

in the tributaries), and each cell has a unique value for water quality measures over time.  

                                                 
7 Although some studies find implicit prices to be unaffected by swings in the housing market (Leung et al., 2007), 

others find the opposite (Shimizu and Nishimura (2007), Chen and Hao (2008)). Also, Bin et al., (2015) examine the 

hedonic implicit price of water quality in Martin County, Florida, during the recent recession and find that the 

implicit price of water quality is still significant during the recession. 
8 http://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index.aspx 

http://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index.aspx
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While CBP collects data on several indicators of water quality, we focus on light 

attenuation—represented by KD, the water-column light attenuation coefficient—as the primary 

indicator of interest. KD is essentially the inverse of water clarity; higher light attenuation is 

equivalent to cloudier water.9 As discussed previously, the hedonic literature provides strong 

support for the notion that homebuyers value water clarity (Feenberg and Mills, 1980; Walsh et 

al., 2011a; Bin and Czajkowski, 2013). We match each home sale to the average light attenuation 

across the two closest grid cells. Each of the 14 Maryland Bay counties included in our analysis 

is covered by several monitoring stations, allowing us to capture spatial variation in water 

clarity.10 On average, each county is bordered by 165 unique grid cells.  

To reflect the temporal variation in water quality expected to be relevant for homebuyers, 

the past literature presents several temporal options. The majority of previous papers employ a 

water quality average from the year the property is sold. One popular approach is to use the 

average over the whole year. Gibbs et al., (2002) Leggett and Bockstael (2000), Poor et al., 

(2007), and Walsh et al., (2011b) match homes to the annual average of water quality in the year 

the home was sold. Other papers have used measures from a particular time of year. Boyle, Poor, 

and Taylor (1999) and Boyle and Taylor (2001) use the minimum water clarity from the previous 

summer months. Netusil et al., (2014) compare wet season and dry season indicators (the study 

was done in the rainy Pacific Northwest). They prefer the dry season (summer) results, since 

residents are more likely to recreate on water during that time. In line with this second group of 

studies, we use average KD from the spring and summer (March – September) during or 

immediately prior to the home sale.11 In the Chesapeake Bay area, most water-based recreation 

activities occur during this time, and it is also when most adverse water clarity conditions—such 

as algae blooms—occur (along with related media coverage, which may be information sources 

for potential homebuyers) (EPA, 2003; EPA, 2007; MD DNR, 2013).  

Table 3 presents summary statistics for water clarity in the 14 Maryland Bay counties. 

Mean light attenuation (KD) is 2.53 m-1, corresponding to a Secchi disk measurement of about 

                                                 
9 Light attenuation can be converted to SDM based on the following statistical relationship: KD = 1.45/SDM (EPA 

2003).  
10 While the number of monitoring stations varied over the study period, water quality in each county in the hedonic 

analysis was monitored at an average of 14 stations in 2006, for example.  
11 Recognizing that most home sales take place several weeks after the buyer views the property and makes an offer, 

we assign home sales occurring during June – December to the same year’s spring-summer average water quality. 

We assigned sales between January – May to the previous spring-summer average. Spring and summer light 

attenuation are highly correlated in our dataset (ρ = 0.78).  
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0.64 m. Figure 3 and Figure 4 illustrate patterns in water clarity over space and time, using 2002 

(a year with good clarity) and 2003 (a year with poor clarity) as examples. While water clarity is 

worse in most areas in 2003, several hotspots of poor clarity are constant across the two years.  

IV. Hedonic Property Value Methods 

A. Empirical Model 

The hedonic property value equation postulates that the price of a home or housing 

bundle is a function of the individual attributes composing that bundle, including characteristics 

of the home and parcel (Hit), as well as its location and neighborhood (Lit). Distance to the 

Chesapeake Bay tidal waters (Dit) and local Bay water quality levels (WQit), as represented by 

the light attenuation coefficient KD, are of particular interest in this analysis, and so these 

variables are represented separately from the vector of other locational attributes. Di is a vector 

of dummy variables denoting different distance buffers, but this variable could also be 

represented as a scalar measure, such as linear or inverse distance. Lastly, pit denotes the price of 

home i when it was sold in period t. For the time being, consider a single housing market. The 

hedonic price function is:  

( , , , , )it it it i it tp P WQ H L D T        (1) 

where Tt denotes a vector of year and quarter indicator variables to control for overall trends and 

seasonal cycles in the housing market. 

The empirical model allows the influence of water quality on home prices to vary with 

proximity to the Bay by interacting water quality with the Bay distance variables. The model can 

be written as:  

0 1 2 3 4ln( )it it it t i i it itp WQ       H β L β Tβ Dβ D γ    (2) 

where the dependent variable ln(pit) is the natural log of the price of home i sold in period t, and 

εit is an assumed normally distributed disturbance. The coefficient vectors to be estimated are βk, 

for k = 0,…, 4, and γ.  

The implicit prices associated with characteristics of the house (e.g., interior square 

footage, number of bathrooms, lot size) and its location (e.g., proximity to nearest primary road, 

surrounding commercial or industrial land uses) are reflected in β1 and β2, respectively. The 

vector β3 represents overall market and cyclical trends over time, and the combination of β4 and 
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its relevant interaction in γ express the influence of proximity to the Bay on the price of a home. 

The coefficients of particular interest are denoted by the vector γ, which is the percent change in 

home price with respect to water quality.  

We measure proximity to the Bay using a vector of five indicator variables denoting 

whether a home is located on the Bayfront, or is a non-Bayfront home within 0 to 500, 500 to 

1000, 1000 to 1500, or 1500 to 2000 meters of the Chesapeake Bay.12 This specification 

implicitly includes a restriction that water quality has no effect on homes more than 2000 meters 

from the Bay. Although past papers have found that the implicit price gradient terminates earlier 

(Dornbusch and Barrager, 1973; Walsh et al., 2011b, Netusil et al., 2014), the size and 

prominence of the Bay may induce a longer gradient. Within 2000 meters, we hypothesize that 

the implicit price of water quality declines with distance from the Bay, but we do not impose this 

relationship when estimating the hedonic regressions.  

Measuring proximity to the Bay using discrete “buffers,” or distance intervals, has the 

advantage over alternative specifications (such as linear or inverse distance gradients) in that it 

allows the influence of Bay proximity and water quality to vary freely across the Bay proximity 

buffer groups. This is particularly important since we are estimating the hedonic price equations 

for several different counties (or housing markets) with a variety of coastal and landscape 

features, and because there has been minimal guidance in the literature (with the exception of 

Walsh et al., (2011b) and Netusil et al., (2014)) as to the spatial extent and shape of this price 

gradient across different markets and water bodies. Our functional form follows similar 

applications in hedonic analyses of beach width, oceanfront access, and tree canopy and streams 

(Landry and Hindsley 2011,Taylor and Smith 2000, Netusil 2005). 

Functional form assumptions and their impacts on implicit price estimates are prevalent 

concerns in the hedonic property value literature (Cropper et al., 1988; Kuminoff et al., 2010). 

The semi-log model (equation (2) above) is one of the most commonly assumed functional forms 

in the general hedonic literature. However, many studies also employ water quality variables in 

their natural log form (Michael et al., 2000; Gibbs et al., 2002; Walsh et al., 2011b), since the 

marginal implicit price of water quality may not be constant over different levels of water 

                                                 
12 Other buffer sizes were explored, but smaller sized buffers in some counties had too few property sales for 

statistical analysis. 
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quality. For example, changes in water quality may be more visible at worse levels of quality.13 

More formally:  

0 1 2 3 4ln( ) ln( )it it it t i i it itp WQ       H β L β Tβ Dβ D γ    (3) 

In equation (3), γ can be interpreted as the elasticity of house prices with respect to water quality. 

In other words, γ denotes the percent change in the price of a home due to a one percent change 

in water clarity, expressed as KD. The γ parameter in (2), on the other hand, yields the percent 

change in price due to a one unit change in KD. For purposes of comparison, we estimate 

regressions for both (2) and (3) for each of the 14 counties in the analysis.  

 As mentioned above, we also explore the temporal representation of water quality in the 

hedonic equation. To probe the issue of the temporal duration of effects, we use a three year 

average of the spring/summer water clarity variable in addition to the one year spring/summer 

average described above. To be consistent with the other measure, we use a three year average of 

the spring/summer measure, so winter and fall measurements are excluded.   

The hedonic models are estimated separately by county to approximate separate real 

estate markets. It is highly unlikely that the 14 counties we analyze are viewed as one real estate 

market by consumers. Although the counties in our study may not perfectly capture individual 

real estate markets, they are probably a close approximation. Furthermore, the shared amenities, 

taxes, school systems and other county services represent a natural distinction between areas.   

B. Spatial Econometric Models 

Spatial dependence is an issue in most hedonic analyses. It arises when the prices or 

characteristics of nearby homes are more alike than more distant homes (Anselin and Lozano-

Gracia, 2008). There may also be other geographically clustered omitted variables that are not 

easily observable or quantifiable. Although all these influences can be difficult to represent using 

traditional methods, nearby home prices can improve the explanatory power of a regression 

model (LeSage and Pace, 2009), and help absorb any residual spatially correlated unobserved 

influences, which could otherwise confound the coefficient estimates of interest (Anselin and 

Lozano-Gracia, 2008).  

                                                 
13 Unfortunately, a Box-Cox specification was not a useful guide in selecting the functional form due to the zeros in 

the interacted water quality/distance terms. To be used in a Box-Cox model, a variable’s values must be strictly 

greater than 0. 
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We employ several spatial econometric models to account for spatial dependence. Since 

the structure of dependence can vary between counties, we use a multi-step procedure to identify 

the appropriate spatial econometric model in each county. The two most common models in the 

hedonic literature are the spatial error model (SEM) and spatial autoregressive (SAR) model 

(Lesage and Pace, 2009). The SEM allows for spatial autocorrelation of the disturbance terms, 

whereas the SAR includes a spatial lag of the dependent variable (i.e., neighboring home prices) 

on the right-hand side of the hedonic equation. Both forms of spatial dependence can be 

accounted for using the general spatial model (referred to as the SAC model in Lesage and Pace, 

2009), which we estimate for each county, as shown below. 

1 0 1 2 3 4       β Hβ Lβ Tβ Dβ Qγ eP WP ,    (4) 

2 e W e u   

Letting n denote the number of observed transactions, P is an n×1 vector of logged sales prices. 

The vectors previously denoting home and parcel characteristics, neighborhood attributes, time, 

and distance to the Bay, are now represented by the matrices H, L, T, and D, respectively. The 

elements of matrix Q correspond to the interactions between water quality and distance to the 

Bay, more formally Dif(WQit) , where f(•) could be either linear or logged versions of the water 

quality parameter. As before, the coefficient vectors to be estimated include βk, for k = 0,…, 4 

and γ.  

The W1 and W2 terms denote row standardized n×n spatial weight matrices (SWMs), 

which exogenously define neighbor relations among observations. When used in a spatial lag 

term (ρW1P), it produces a spatially weighted average of the home price of neighbors. The SWM 

in the error term, W2, defines the dependence among the disturbances. The n×1 vector u is 

assumed to be iid and u ~ N(0,σ2In). The scalars λ and ρ are spatial coefficients to be estimated.  

A variety of SWMs have been used in the literature; we employ four different 

variations.14 To identify the spatial model and SWM combination that is most appropriate for 

                                                 
14 The first is the nearest-neighbor specification, where the 20 nearest neighbors (for example) are given nonzero 

weights based on the inverse distance from the parcel of interest to each neighbor. We set the number of neighbors 

to 20, although other larger and smaller values were used and produced only minimal differences. The three other 

SWMs use variations of the inverse distance SWM, where the number of neighbors given a nonzero weight is not 

directly constrained. These variations are intended to mimic the comparable sales method of real estate appraisal. 

One SWM uses a distance cutoff of 400 meters, and a time cutoff of 6 months back and 3 months forward. The next 

uses a radius of 800 meters. The final SWM is a hybrid approach that applies the 800 meter boundary and the same 

time constraints, but keeps the 10 closest, to prevent irrelevant home sales from entering the SWM. 
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each county, the SAC model is first run with all combinations of SWMs. Following 

recommendations from LeSage and Pace (2009), the model with the highest likelihood value is 

selected. Given these models, the spatial coefficients λ and ρ are examined for significance. If 

both are significant, the SAC model is selected as the preferred spatial model. If λ is significant 

but not ρ, the SEM model is used. In the opposite situation the SAR model is selected. This 

approach represents a flexible way to account for the spatial influences within each county. 

Based on the results of the spatial regressions, as well as likelihood ratio tests that confirmed the 

existence of spatial dependence in every county, the spatial model is appropriate because it 

addresses spatial dependence among the error terms and/or unobserved spatially correlated 

(potentially confounding) price influences. Results also indicate that the general spatial model is 

preferred in each county, as the spatial error and lag coefficients were both significant in all 

counties.15  

V. Hedonic Regression Results  

A. One Year Model 
To simplify our discussion, we start with the model that uses the 1 year KD variable in 

natural-log form in Table 4, which presents the water quality-related coefficient estimates for all 

14 Maryland Bay counties.16 As depicted in equation (3), ln(KD) is interacted with dummy 

variables denoting whether a home is located on the waterfront, or is non-waterfront and within 

one of the Bay proximity buffers. As there was only limited significance beyond 1000 m, the 

Table contains coefficients out to that buffer.  

For the RHS variables not included in the table, in general the signs on these variables are 

as anticipated and they are mostly statistically significant. An expected suite of characteristics 

improve a home’s value, including the interior square footage, a basement, a garage or carport, 

higher education level in the Census block group, and, importantly, a waterfront location. The 

age of the home, townhouses (relative to single-family homes), increased residential density, and 

                                                 
15 For the preferred spatial weights matrices, all counties use the 20 nearest neighbor specification for the spatial lag 

term. For the spatial error term, Baltimore, Prince George’s, and Somerset Counties favored the SWM that uses a 

distance radius of 800 m. All other counties use the same distance boundary, but with the additional restriction that 

only the nearest 10 observations are kept. All SWMs use temporal boundaries of 6 months back and 3 months 

forward. 
16 For an expanded example, the Appendix contains the full set of estimated coefficients for Anne Arundel County.  
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an industrial setting are all negatively correlated with home prices. A few variables, such as land 

area, number of bathrooms, median household income in the block group, proportion of families 

below the poverty line, and housing vacancy have mixed results across counties. The R-squared 

values range from approximately 0.7 to 0.9, suggesting a fairly good statistical fit in all counties. 

The coefficient estimates corresponding to the interaction term between ln(KD) and the 

waterfront buffer are negative in 10 of the 14 counties (indicating a positive impact of water 

clarity since KD is inversely related); of those, seven are statistically significant. Among these 

seven counties, the spatial Bayfront coefficient estimates range from -0.03 to -0.16. In these 

double-log models, the coefficient estimates can be interpreted as elasticities, so a ten percent 

decrease in KD (an improvement in clarity) would be expected to yield approximately a one third 

to a one and a half percent increase in waterfront home values across these seven counties. In the 

four counties with positive waterfront-KD interaction terms, none of the coefficients are 

significant. 

Turning to the non-waterfront results, the magnitude of the price impact generally 

declines at farther distances from the Bay, as one might expect. However, there is considerable 

heterogeneity across counties. For example, Anne Arundel and Charles demonstrate a price 

gradient extending out to 2 km and 1.5 km, respectively. In other counties, this negative price 

impact does not extend beyond Bayfront homes (e.g., Dorchester, Kent, Talbot), or there is no 

monotonic trend with distance. 

Focusing on non-waterfront homes within 0 to 500 meters, in three counties increases in 

KD have a negative and statistically significant impact on residential property prices, with a 

smaller range of impacts from 0.02 – 0.06. Seven additional counties show a negative but 

statistically insignificant effect. Mixed results are also found in the farther distance buffers. This 

is not necessarily surprising since landscape features and the density of homes varies across 

counties. The previous journal articles to find price gradients extending past waterfront homes 

(Walsh et al., 2011b, Netusil et al., 2014) studied urban areas, probably most similar to Anne 

Arundel County. The 500-1000 distance buffer has six significant estimates, with two of them 

having counter-intuitive signs.  

Table 5 shows the estimated implicit prices for a ten percent increase in light attenuation 

(KD) for the model that uses the natural log of the one year average of spring/summer KD. This 

ten percent change translates into roughly a four to ten centimeter decrease in SDM, depending 
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on the location, where the actual changes in KD appear in the final column of the table. Among 

waterfront homes, this 10% decrease in water clarity can lead to declines in property values by as 

much as $26,497 (in Talbot County), or as low as $2,576 in Calvert County.  The price premium 

for a 10 percent improvement in light attenuation in the 0-500m buffer is smaller in magnitude, 

with implicit prices up to $3,233 in Queen Anne’s County, but generally smaller and less 

significant.   

B. Alternate Models 
We now proceed to some of the additional models we considered. First, the second set of 

values in Table 4 contains the results of the models that use KD in levels instead of logs. 

Although there is general agreement in sign and significance with most of the previous results, 

there are some notable differences. Calvert County’s waterfront coefficient is no longer 

significant, while St. Mary and Charles Counties’ now are. Calvert County has relatively better 

water clarity (lower light attention) than most other counties in the data set, while Charles 

County has about average clarity, so forcing the relationship between KD and price to be linear 

may be worse in that County. St. Mary’s County has a positive coefficient, counter to 

expectations, which is significant at the ten percent level in this model. Previous work in St. 

Mary’s County (Poor et al., 2007) noted the confounding impact of a large military base, which 

is the largest employer as well as the location of significant impervious surface—which is 

negatively related to water quality (Poor et al., 2007). Although we use a variable indicating 

distance to the nearest gate of the base (as done in Poor et al., (2007)), it may be better to employ 

different water quality variables in this county (Poor et al. used stormwater-related variables).  

Table 6 contains the results of the models that use 3 year averages of (spring/summer) 

water clarity. The waterfront coefficients are now much larger, on average. In some areas, these 

are implausibly large, with Charles County having an elasticity of 0.64, so that a ten percent 

improvement in clarity is associated with a 64% increase in home price.  The first column of 

values contains the coefficients for the model with logged KD, where the waterfront coefficients 

for Dorchester and Kent Counties are no longer significant, while Wicomico and Queen Anne’s 

Counties now have significant waterfront coefficients of the expected sign. Additionally, Talbot 

County, which has a large number of valuable waterfront homes and had the highest implicit 

price in Table 5, no longer has a significant waterfront coefficient. 
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In addition, The Table also illustrates much different behavior beyond the waterfront, 

with 6 counties now having positive and significant coefficients at the 0-500 meter buffer. These 

results could indicate that these longer term measures are capturing more than just the impact of 

water clarity, and may, at least partially, reflect very local trends in the housing market that are 

not captured by our county-wide annual time dummies. 

Finally, the second column of Table 6 contains results from the last model that uses a 3 

year average of spring/summer non-logged KD. Similar to the first column of ln(KD) results, the 

average waterfront coefficients here are also usually larger than the parallel one year averages. 

The non-waterfront results also include several counterintuitive (positive and significant) results, 

again raising questions about the robustness of the 3 year average water quality measure, 

particularly for non-waterfront homes.  

To better compare across specifications, the remaining implicit prices are presented in 

Table 7. While the size of the implicit prices for the 1 year KD model are roughly comparable to 

those in Table 5, the implicit prices for some of the three year models are considerably larger. 

Anne Arundel County’s waterfront implicit price is approximately $50,000 dollars in both 3 year 

models, compared to around $17,000 - $20,000 in the 1 year models. Charles County goes from 

approximately $3,000 and insignificant to $29,000 and significant in the 3 year ln(KD) model. 

On the other hand, the implicit prices for Baltimore and Calvert Counties stay fairly consistent. 

Overall, the differences in magnitude between these differences in functional form could induce 

different recommendations in a benefit-cost policy context, similar to the findings of Michael et 

al., (2000).  

The much larger average implicit prices from the 3 year models are troubling, since the 

longer averages may allow for additional omitted variable bias, as compared to the one year 

averages. Furthermore, weather patterns and other events can induce wide variation in clarity 

across years, so that a three year average may deviate from what a potential homeowner actually 

sees when they visit the property. In an extension paper, Klemick et al., (2015) use meta-analysis 

and benefit transfer to examine differences caused by the functional form variations in these 

hedonic regressions. They find that the benefit transfers based on the 3 year models exhibit larger 

confidence intervals and larger transfer errors than the 1 year models, further supporting the use 

of the one year averages. 
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VI. Conclusions 
The Chesapeake Bay area has a long history of water-related culture and recreation, 

involving boating, fishing, and a range of other exploits. To the extent that these activities are 

bundled with local housing decisions, affected water quality should be capitalized into home 

prices. This study conducts the largest hedonic analysis of water quality ever undertaken, using 

over 225,000 property sales across fourteen Maryland counties. These data are combined with 

spatially explicit water clarity data, as well as an extensive set of other home, neighborhood, 

socio-economic, and location-based characteristics. These data are explored using a variety of 

econometric models and specifications. 

For our specification that uses the log of water clarity averaged over the spring and 

summer of the sale year, which best represents the most common functional form in past 

literature, we find a positive impact of water clarity on waterfront property prices in ten of the 14 

counties, seven of which are statistically significant. In the four other counties, the waterfront 

impact was insignificant. Although the results are more mixed in the non-waterfront areas, we 

still find evidence that the impact of water quality stretches past the waterfront.  

 We explore several different representations of water clarity during estimation, with 

emphasis on the length of the temporal average and alternative functional forms. Although 

similar hedonic analyses of air quality have focused on the spatial extent of averaging (Anselin 

and Le Gallo, 2006), there has been much less attention on temporal aspects. Only one other 

paper investigates this issue in the water quality literature (Michael et al., 2000), We compare a 

three year average of spring and summer water quality to a one year average, which is much 

more prevalent in the literature. Results indicate that the 3 year averages yield larger estimates 

(implausibly large in some cases), although they are much more variable. Beyond the waterfront, 

the 3 year averages are characterized by counterintuitive signs and magnitudes, suggesting that 

the broader temporal window may capture more than just the impact of water quality.  

 Utilizing our sizable dataset, we find significant price impacts for water quality across 

multiple property markets in Maryland. Since almost all past hedonic papers on water quality 

focus on narrow areas, such as a county or municipality, we believe this provides a broader look 

at the wider potential impacts of water quality, or conversely water pollution, on home prices in 

other areas. There have been a wealth of local, state, and federal water quality regulations passed 

in recent years. In the benefit-cost analyses of these rules, there has been no use of hedonic 
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property price analysis, which is partly due to the narrow geographic scope of the previous 

literature. Our results suggest that property price impacts may represent an important benefit 

category to be considered in future regulatory analysis. 
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Tables and Figures 
 

Table 1: Select Summary Statistics of Residential Transactions by County  

County Obs 
Mean 

Sale Price 

% 

Waterfront 

Properties 

% 0 to 

500m 

Buffer 

% 500 to 

1000m 

Buffer 

Anne Arundel 76,842 373,199 10.4 43.6 23.2 

Baltimore  34,781 167,766 9.4 40.3 23.1 

Calvert 15,563 307,438 8.7 28.5 21.7 

Cecil 10,816 250,576 8.8 28.2 21.3 

Charles 5,397 292,142 7.7 24.2 22.9 

Dorchester 4,358 217,662 16.8 38.3 26.6 

Harford 17,483 230,199 3.5 18.9 20.8 

Kent 3,388 307,314 14.1 43.1 20.7 

Prince George’s 24,969 264,662 0.6 10.7 19.4 

Queen Anne’s 8,674 392,945 16.6 46.1 26.4 

Somerset 1,681 158,194 18.7 34 33.4 

St. Mary’s 5,966 278,967 10.8 24.1 15.8 

Talbot 8,227 507,353 19.6 34.4 13.2 

Wicomico 11,368 194,521 2.4 34.9 29.4 

 

 

  



20 

 

Table 2: RHS Control Variables 

Variable Source 

Age of Structure MDPV 

Age Squared MDPV 

Square Footage of Structure MPDV 

Acres of Parcel MDPV 

Dummy : Townhouse  MDPV 

Dummy : Basement  MPDV 

Total # of Bathrooms MDPV 

Dummy: Garage MDPV 

Dummy: Pool  MPDV 

Dummy: Pier MDPV 

Dummy: Central Air Conditioning MDPV 

Dummy: Waterfront property location MDPV 

Dummy: High-density residential area MDPV 

Dummy: Medium-density residential area MPDV 

Dummy: Forested area MDPV 

Current Improved Value MDPV 

Distance to primary road (meters) Federal Highway Administration  

Bay depth (meters)  EPA CBP 

Distance to nearest Wastewater Treatment Plant 

(meters) 

EPA FRS 

Distance to Baltimore (meters) or DC, if Western Shore Derived using GIS data 

Distance to Bay Bridge, if Eastern Shore  Derived using GIS data 

Distance to nearest beach Derived using GIS data 

Distance to Military Base Gate (St Mary’s Only) Derived using GIS data, following Poor 

et al., (2007) 

Distance to Nearest Urban Area or Urban Cluster Derived using GIS data 

Median household income Census (1990, 2000 and 2010) 

Proportion of total population, Black Census (1990, 2000 and 2010) 

Proportion of total population, Asian Census (1990, 2000 and 2010) 

Proportion of families below the poverty line Census (1990, 2000 and 2010) 

Proportion of total housing units that are vacant Census (1990, 2000 and 2010) 

Population growth rate, 1990-2000 Census (1990, 2000 and 2010) 

Population Density in 2000 Census 2000 

Percent of block group high-density residential MDPV 

Percent of block group industrial MDPV 

Percent of block group urban MDPV 

Percent of block group agriculture MDPV 
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Percent of block group animal agriculture MDPV 

Percent of block group forest MDPV 

Percent of block group wetland MDPV 

Percent of block group beach MDPV 

Home Quality – Dummies for Low, Average, Good, 

and High Quality determinations from MDPV 

MDPV 

Proportion of population age 25+ w/ higher education Census (1990 and 2000) 

Buffer Dummy = 1 if within 0-500 meter buffer Derived using GIS data 

Buffer Dummy = 1 if within 500-1000 meter buffer Derived using GIS data 

Buffer Dummy = 1 if within 1000-1500 meter buffer Derived using GIS data 

Buffer Dummy = 1 if within 1500-2000 meter buffer Derived using GIS data 

Dummy: Salinity Zone (where applicable) CBPO 

Dummy: Tributary (if it varies within county) Derived using GIS data 

Dummy: in a floodplain  FEMA Floodplain Maps (from MDPV) 

In Nuclear Evacuation Zone (if exists in County) Derived using GIS data 

 

Table 3: Water Clarity in MD Bay Counties, March - September, 1996-2008  

County 
KD mean 

(m-1) 

KD std 

dev (m-1) 

Secchi 

depth (m) 

Number of 

unique 

interpolator 

cells 

Anne Arundel 1.91 0.47 0.76 564 

Baltimore County 3.07 1.42 0.47 185 

Calvert 1.56 0.86 0.93 149 

Cecil 3.07 1.07 0.47 193 

Charles 2.60 0.83 0.56 80 

Dorchester 1.99 0.75 0.73 186 

Harford 3.82 1.23 0.38 26 

Kent 3.57 1.50 0.41 115 

Prince George's 3.08 1.20 0.47 57 

Queen Anne's  1.85 1.24 0.78 222 

Somerset 2.12 1.00 0.69 116 

St. Mary's 1.74 0.73 0.83 102 

Talbot 1.42 0.54 1.02 182 

Wicomico 3.63 0.78 0.40 138 

Average  2.53 0.97 0.64 165.36 
Notes: Summary statistics calculated for nearest two grid cells to each property in the county sales dataset located 

within 500 meters of the Bay. Secchi depth measurement calculated by the formula SDM = 1.45/KD.  
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Table 4: Regression Results: 1 Year (Spring/Summer) Average 
 One Year ln(KD) One year KD 

  
Waterfront 

0-500 

meters 

500-1000 

meters 
Waterfront 0-500 meters 

500-1000 

meters 

Anne Arundel -0.126*** -0.023*** -0.009 -0.0585*** -0.0249*** -0.0089** 

Baltimore County -0.090*** 0.009 -0.015* -0.0293*** 0.0032* -0.0060*** 

Calvert -0.033* 0.001 0.021* -0.0088 0.0174*** 0.0196*** 

Cecil 0.010 -0.001 0.003 0.0024 0.0086* 0.0012 

Charles -0.058 -0.056** -0.107*** -0.041** -0.0252*** -0.0335*** 

Dorchester -0.078* -0.008 -0.013295 -0.0557** -0.0076 -0.0079 

Harford -0.096*** 0.001 0.012 -0.0243*** 0.0022 -0.0022 

Kent -0.142*** 0.008 0.002 -0.0289** 0.0120 0.0049 

Prince George’s -0.062 -0.001 0.022** -0.0093 -0.0018 -0.0023 

Queen Anne’s 0.017 -0.060*** -0.068*** -0.0151 -0.041422*** -0.0470*** 

Somerset -0.091 -0.055 -0.141*** -0.0300 -0.0207 -0.0498*** 

St Mary’s 0.014 -0.015 0.017 0.0375* -0.0082 0.0115 

Talbot -0.156*** -0.014 -0.031 -0.0631*** -0.0122 -0.0190 

Wicomico 0.046 -0.015 -0.010 -0.0018 -0.0130* -0.0116 

***, **, and * denote significance at the 99%, 95%, and 90% levels, respectively. 
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Table 5: Implicit Price Estimates for a 10% Increase in KD.(2010$) 

1 Year ln(KD) Distance from Shore 

Mean 10% 

Change 

County Waterfront 500 1,000 KD 

Anne Arundel -20,001.0*** -1,604.7*** -544.5 0.1919 

 (2,946.4) (528.1) (634.5)  

Baltimore -4,247.1*** 217.8 -296.6* 0.3284 

 (724.8) (161.2) (163.8)  

Calvert -2,575.9* 18.8 847.1* 0.1764 

 (1,424.0) (406.7) (434.3)  

Cecil 888.3 -52.6 123.5 0.2979 

 (3,340.2) (542.4) (629.7)  

Charles -3,055.6 -2,159.2** -3,572.1*** 0.2775 

 (2,760.4) (1,016.1) (977.4)  

Dorchester -5,289.3* -215.3 -321.1 0.209 

 (3,205.7) (970.5) (904.6)  

Harford -6,399.6*** 43.8 463.0 0.3735 

 (1,993.1) (369.0) (377.7)  

Kent -12,589.4*** 302.5 81.9 0.3755 

 (3,473.7) (1,183.5) (1,210.8)  

Prince George’s -5,058.6 -27.3 849.1** 0.3287 

 (5,230.1) (564.1) (413.8)  

Queen Anne’s 2,263.5 -3,232.6*** -3,337.4*** 0.1923 

 (2,829.3) (815.9) (916.2)  

Somerset -2,968.9 -999.8 -1,996.6* 0.2188 

 (2,001.0) (837.4) (658.2)  

St. Mary’s 942.7 -586.6 656.6 0.1692 

 (2,373.0) (883.0) (969.3)  

Talbot -26,497.2*** -949.6 -1,912.4 0.1688 

 (6,460.6) (1,971.8) (2,170.2)  

Wicomico 3,671.9 -515.1 -273.0 0.3644 

 (5,235.3) (818.5) (674.5)  

Standard errors appear in parentheses 
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Table 6: Coefficients from Models with 3 Year KD Averages 
 3 Year ln(KD) 3 year KD 

  
Waterfront 

0-500 

meters 

500-1000 

meters 
Waterfront 

0-500 

meters 

500-1000 

meters 

Anne Arundel -0.3058*** -0.1020*** -0.0123 -0.1660*** -0.0586*** -0.0103* 

Baltimore County -0.05560*** 0.0386*** -0.0077 -0.0191*** 0.0117*** -0.0015 

Calvert 0.0134 0.0779*** 0.0653*** -0.0133 0.0247*** 0.0237*** 

Cecil -0.0010 0.1257*** 0.0362 -0.0023 0.0329*** 0.0128 

Charles -0.6413*** -0.1764** -0.3021*** -0.2421*** -0.0670*** -0.1037*** 

Dorchester -0.0607 0.0429 0.0053 -0.0309 0.0284 0.0040 

Harford -0.2600*** 0.0213 0.0370** -0.0760*** 0.0066 0.0109** 

Kent -0.0745 0.1147*** 0.1083** -0.0277* 0.0349** 0.0306** 

Prince George’s 0.0090 -0.1411*** -0.1427*** 0.0227 -0.0399*** -0.0439*** 

Queen Anne’s -0.1310*** -0.1838*** -0.1983*** -0.0402*** -0.0633*** -0.0664*** 

Somerset -0.0839 -0.0632 -0.1635*** -0.0547* -0.0499** -0.0761*** 

St Mary’s 0.1265*** 0.0855*** 0.1324*** 0.0839*** 0.0476*** 0.0665*** 

Talbot -0.0793 0.1082** 0.0984 -0.0473 0.0149 0.0226 

Wicomico -0.0751*** -0.0869** -0.0878** -0.0053 -0.0187 -0.0190 

***, **, and * denote significance at the 99%, 95%, and 90% levels, respectively. 
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Table 7: Implicit Prices for 1 Year KD, 3 year KD, and, 3 year ln(KD) Models 

 1 Year KD 3 year KD 3 year ln(KD) 

  
Waterfront 

0-500 

meters 

500-1000 

meters 
Waterfront 0-500 meters 

500-1000 

meters 
Waterfront 0-500 meters 

500-1000 

meters 

Anne Arundel -16,506.9*** -1,356.6*** -647.3 -50,662.4*** -3,394.0*** -743.9 -49,523.3*** -2,890.6*** -302.1 

Baltimore County -4,375.3*** 192.4 -279.8* -4,871.9*** 350.7** -435.3*** -4,704.1*** 380.7** -474.5*** 

Calvert -4,053.5*** -295.7 477.2 -5,678.8*** -827.0*** -0.6 -5,686.6*** -710.3 61.7 

Cecil 860.2 -251.3 210.3 -4,275.6 499.1 930.8 -4,196.2 1,287.0 823.6 

Charles -3,462.7 -2,408.6*** -3,253.1*** -27,258.3 -2,967.2** -8,293.4*** -29,351.1*** -2,848.6 -8,662.0*** 

Dorchester -3,900.6 90.1 -427.5 -2,449.5 2,673.1** -111.5 -4,503.2 1,529.3 -513.8 

Harford -5,680.8*** 283.4 544.1 -19,064.3*** -1,338.8** 533.2 -19,147.8*** -1,559.8*** 255.6 

Kent -12,990.8*** 763.8 73.8 -15,041.7*** 3,628.3** 2,768.3 -14,960.6*** 2,766.3 2,258.0 

Prince George’s -3,019.2 18.8 876.5** -9,627.6*** -1,262.2 862.5 -8,663.4*** -1,291.8 1,107.5 

Queen Anne’s 378.1 -2,882.6*** -2,759.3*** -1,751.2 -3,776.2*** -3,435.0*** -3,204.7 -5,431.8*** -5,249.2*** 

Somerset -2,332.7 -1,161.0 -1,489.9*** -2,803.1 -2,048.9** -2,206.4*** -2,807.6 -1,596.5** -2,248.7*** 

St Mary’s 2,286.4 -520.1 691.7 4,588.4** 2,155.5** 3,095.5*** 3,529.1** 2,175.4** 3,440.1*** 

Talbot -19,288.8*** -1,439.6 -2,017.6 -18,594.1*** -499.7 41.6 -34,565.0*** 89.0 1,455.5 

Wicomico 4,875.1 -670.3 -525.7 17,988.2** 3,939.4** 3,230.0** 14,140.6*** 3,511.7*** 2,953.5*** 
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Figure 1: Chesapeake Bay Tidal Waters and 14 Maryland Bay Counties 

 
 

Figure 2: Percent of Vacant Sales across Counties 
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Figure 3: Spring-Summer Average Light Attenuation (KD) in MD Bay Counties, 2002 

 

 

Figure 4: Spring-Summer Average Light Attenuation (KD) in MD Bay Counties, 2003 
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Appendix 

Table A-1: Full Set of Anne Arundel County Coefficients 

 1 Year ln(KD) 1 Year KD 3 Year ln(KD) 3 Year KD 

Variable Coeff. SE Coeff. SE Coeff. SE Coeff. SE 

constant 5.794 0.002*** 5.770 0.996*** 5.813 0.002*** 5.829 0.002*** 

WF*ln(KD) -0.126 0.019*** -0.055 0.438*** -0.314 0.027*** -0.171 0.015*** 

500m*ln(KD) -0.022 0.007*** -0.010 0.448*** -0.041 0.013*** -0.025 0.007*** 

1000m*ln(KD) -0.009 0.01 -0.005 0.626 -0.005 0.016 -0.006 0.008 

1500m*ln(KD) -0.012 0.014 -0.006 0.523 -0.031 0.02 -0.021 0.010** 

2000m*ln(KD) -0.021 0.018 -0.011 0.544 -0.030 0.024 -0.015 0.011 

Asd. Val. Struct. 0.000 0.000*** 0.000 1.000*** 0.000 0.000*** 0.000 0.000*** 

Miss. Asd. Val. 0.146 0.006*** 0.146 0.999*** 0.146 0.006*** 0.146 0.006*** 

Age -0.001 0.000*** -0.001 1.002*** -0.001 0.000*** -0.001 0.000*** 

Age SQ 0.000 0.000*** 0.000 1.000*** 0.000 0.000*** 0.000 0.000*** 

Sqftstrc 0.000 0.000*** 0.000 1.000*** 0.000 0.000*** 0.000 0.000*** 

Sqftstrc  Miss. 0.084 0.008*** 0.085 1.004*** 0.084 0.008*** 0.084 0.008*** 

Acres 0.000 0 0.000 1 0.000 0 0.000 0 

Townhouse -0.158 0.004*** -0.157 0.998*** -0.158 0.004*** -0.159 0.004*** 

Basement 0.034 0.002*** 0.034 0.999*** 0.034 0.002*** 0.034 0.002*** 

Baths 0.055 0.002*** 0.055 0.999*** 0.055 0.002*** 0.055 0.002*** 

Att. Garage 0.035 0.003*** 0.035 0.998*** 0.036 0.003*** 0.036 0.003*** 

Pool 0.023 0.009*** 0.023 1.005*** 0.022 0.009** 0.022 0.009** 

Pier 0.144 0.011*** 0.144 0.996*** 0.161 0.011*** 0.162 0.011*** 

AC 0.085 0.003*** 0.085 1.000*** 0.085 0.003*** 0.085 0.003*** 

Waterfront 0.523 0.013*** 0.550 1.053*** 0.629 0.018*** 0.759 0.027*** 

Hi. Dens. Res -0.035 0.005*** -0.035 0.989*** -0.035 0.005*** -0.035 0.005*** 

Med. Dens. Res -0.031 0.003*** -0.031 0.999*** -0.031 0.003*** -0.031 0.003*** 

Forest -0.003 0.004 -0.003 0.987 -0.003 0.004 -0.003 0.004 

Dist Prim. Road 0.000 0.000*** 0.000 1.000*** 0.000 0.000*** 0.000 0.000*** 

Depth 0.009 0.001*** 0.009 1.004*** 0.009 0.001*** 0.009 0.001*** 

WWTP Dist 0.000 0.000*** 0.000 1.000*** 0.000 0.000*** 0.000 0.000*** 

500m 0.007 0.007 0.012 1.77 0.018 0.010* 0.042 0.014*** 

1000m -0.020 0.008 -0.015 0.739** -0.021 0.011* -0.012 0.016 

1500m -0.034 0.010** -0.029 0.862*** -0.022 0.014 0.000 0.019 

2000m -0.005 0.014 0.003 -0.612 0.000 0.017 0.011 0.023 

BG % highres 0.069 0.012*** 0.068 0.982*** 0.071 0.012*** 0.071 0.012*** 

BG % ind -0.196 0.003*** -0.195 0.998*** -0.199 0.003*** -0.200 0.003*** 

BG % urbanOS -0.137 0.020*** -0.136 0.991*** -0.139 0.020*** -0.139 0.020*** 

BG % ag 0.048 0.018*** 0.046 0.967*** 0.053 0.018*** 0.055 0.018*** 

BG % animal_ag 3.071 0.000*** 3.062 0.997*** 2.891 0.000*** 2.849 0.000*** 

BG % forest -0.041 0.008*** -0.041 1.003*** -0.038 0.008*** -0.037 0.008*** 

BG % wetland 0.085 0.002*** 0.088 1.037*** 0.074 0.002*** 0.079 0.002*** 

BG % beach -1.442 0.000*** -1.463 1.015*** -1.527 0.000*** -1.514 0.000*** 

Flood Zone 0.043 0.005*** 0.043 0.999*** 0.044 0.005*** 0.044 0.005*** 
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Dist City 0.000 0.000*** 0.000 1.000*** 0.000 0.000*** 0.000 0.000*** 

Dist. Beach 0.000 0.000*** 0.000 1.000*** 0.000 0.000*** 0.000 0.000*** 

Pow. Plt. 2 mi. -0.050 0.006*** -0.050 1.009*** -0.046 0.006*** -0.045 0.006*** 

HH Med. Inc. 0.000 0.000*** 0.000 1.000*** 0.000 0.000*** 0.000 0.000*** 

% Black -0.116 0.012*** -0.116 0.996*** -0.120 0.012*** -0.122 0.012*** 

% Asian -0.031 0.003*** -0.029 0.937*** -0.011 0.003*** -0.001 0.003 

% Below Poverty -0.038 0.033 -0.038 1.018 -0.032 0.033 -0.032 0.033 

% Units Vac. 0.235 0.037*** 0.234 0.996*** 0.241 0.037*** 0.242 0.037*** 

Pop. Growth 0.001 0.002 0.001 1.169 0.000 0.002 0.000 0.002 

% Bach 25+ 0.261 0.011*** 0.260 0.996*** 0.256 0.011*** 0.254 0.011*** 

Pop Density -11.958 0.000*** -11.738 0.982*** -12.377 0.000*** -12.410 0.000*** 

Avg. Quality 0.155 0.005*** 0.155 1.000*** 0.155 0.005*** 0.155 0.005*** 

Good Quality 0.180 0.007*** 0.180 0.999*** 0.180 0.007*** 0.180 0.007*** 

High Quality 0.051 0.026* 0.051 0.983** 0.047 0.026* 0.047 0.026* 

Quality Missing 0.464 0.006*** 0.464 0.998*** 0.465 0.006*** 0.465 0.006*** 

Salinity mh -0.041 0.016*** -0.042 1.036** -0.044 0.016*** -0.049 0.016*** 

Tributary 0.015 0.007** 0.014 0.935** 0.021 0.007*** 0.022 0.007*** 

y97 0.022 0.005*** 0.022 0.997*** 0.021 0.005*** 0.021 0.005*** 

y98 0.014 0.006** 0.013 0.978** 0.013 0.006** 0.013 0.006** 

y99 0.009 0.006* 0.010 1.031* 0.009 0.006* 0.009 0.006 

y00 0.001 0.006 0.001 0.658 0.000 0.006 0.000 0.006 

y01 -0.017 0.006*** -0.017 1.022*** -0.017 0.006*** -0.017 0.006*** 

y02 -0.030 0.006*** -0.030 1.003*** -0.026 0.006*** -0.026 0.006*** 

y03 -0.028 0.006*** -0.027 0.992*** -0.029 0.006*** -0.029 0.006*** 

y04 -0.040 0.006*** -0.040 1.014*** -0.038 0.006*** -0.037 0.006*** 

y05 -0.037 0.006*** -0.037 1.007*** -0.032 0.006*** -0.030 0.006*** 

y06 -0.052 0.006*** -0.052 1.004*** -0.051 0.006*** -0.050 0.006*** 

y07 -0.088 0.007*** -0.087 0.998*** -0.087 0.007*** -0.086 0.007*** 

y08 -0.069 0.007*** -0.069 0.999*** -0.068 0.007*** -0.067 0.007*** 

q1 0.001 0.003 0.001 0.989 0.001 0.003 0.001 0.003 

q2 0.008 0.003*** 0.008 1.044*** 0.009 0.003*** 0.009 0.003*** 

q3 0.008 0.003*** 0.008 1.018*** 0.008 0.003*** 0.008 0.003*** 

ρ 0.518 0.002*** 0.520 1.004*** 0.516 0.002*** 0.515 0.002*** 

λ 0.198 0.000*** 0.203 1.025*** 0.196 0.000*** 0.193 0.000*** 

R2 0.7885 0.7886 0.7887 0.7886 

# Obs. 76,538 76,538 76,538 76,538 

 


