Identifying SF₆ Emissions from High Voltage Electrical Equipment: SF₆ Leak Monitoring Systems

July 26, 2007

Jerome Blackman U.S. EPA's SF₆ Emission Reduction Partnership for Electric Power Systems

George Davet and Tim Dunn

Solon Manufacturing Company

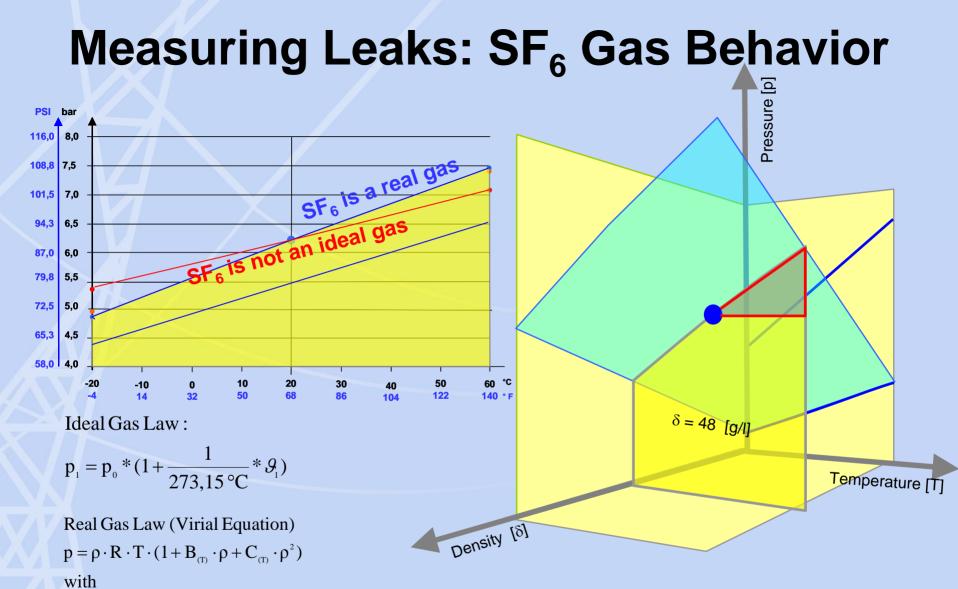
Ron Hoffman and Thomas Heckler WIKA

Live Meeting Housekeeping Items

- Please mute your phone
 - No mute button? Enter *6 on your keypad to mute, *7 to un-mute
- Full Screen mode (F5)

 Q&A session at end of presentation
 Interactive panels – bottom of console, enter a question or ask!

Speaker: Jerome Blackman, EPA


Agenda

- Importance of Monitoring Equipment for SF₆
 Gas Leaks
- SF₆ Gas Behavior and Common Challenges
- Monitoring Systems Instrumentation
 - Current industry technology options
 - Advanced technology options
- Questions and Discussion

Importance of Equipment Monitoring

- Research indicates about 7 10% of circuit breaker populations may be leaking. Why are SF₆ gas leaks a problem for a utility?
 - Can lead to operational inefficiencies and safety hazards
 - Require an unnecessary cost incurred by your company to replace the lost gas
 - Contribute to global warming
- Accurate leak measurement for SF₆ emission reduction projects
- Remember, only one component of a full SF₆
 emission abatement strategy (handling losses and equipment losses)

4



 $\mathbf{B}_{_{(\mathrm{T})}} = \mathbf{B}_{_{0}} + \frac{\mathbf{B}_{_{1}}}{\mathrm{T}} + \frac{\mathbf{B}_{_{3}}}{\mathrm{T}^{_{3}}} + \frac{\mathbf{B}_{_{5}}}{\mathrm{T}^{_{5}}}$ $\mathbf{C}_{_{(\mathrm{T})}} = \mathbf{C}_{_{0}} + \mathbf{C}_{_{1}} \cdot \mathrm{T} + \mathbf{C}_{_{2}} \cdot \mathrm{T}^{_{2}}$ $\mathbf{B}_{_{(\mathrm{T})}}, \mathbf{C}_{_{(\mathrm{T})}} \text{ are correction factors}$

Precise compensation at different density levels requires compensating for different slopes

Speaker: Ron Hoffman, WIKA

Common Challenges

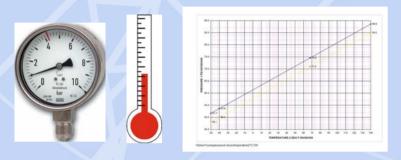
WHAT IS THE PRESSURE?

- Many methods to accurately measure
- Altitude / Barometric pressure may effect

WHAT IS THE TEMP?

- Sun
- Shade
- Rain
- Wind
- Snow
- Gradients

WHAT ARE THE INPUTS?


- Gas input must be controlled
- Manual intervention

6

Speaker: George Davet, Solon Manufacturing

Current Technology

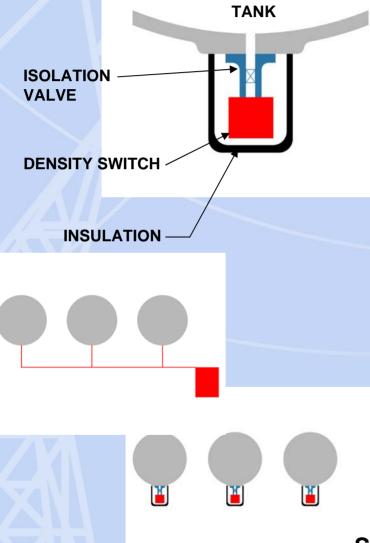
Current Technology Monitoring Systems

GAUGE/THERMOMETER/CHART

- Low cost
- Requires manual interpretation
- Prone to error
- Not recommended

REMOTE TEMPERATURE SENSOR

- Body location not important
- Temperature sensor follows gas
- Flexible installation options
- Adds cost



INTRINSIC

- Location is important
- More compact
- Simple / less cost
- Same performance as remote when applied properly 8

Speaker: George Davet, Solon Manufacturing

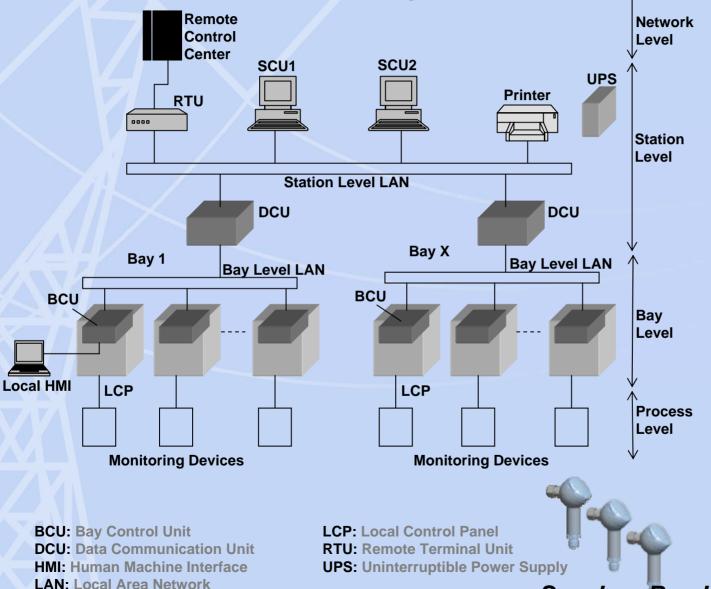
Current Industry Practices

BETTER APPLICATION

- Improved gas systems
- Monitor installation improvements

SETTINGS CLOSER TO FILL PRESSURE

- Faster notification of leaks
- Current devices are now available with lower deadbands, less contact bounce, & more accuracy
- More sensitive to installation

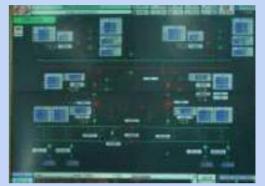

ISOLATE TANKS

- Eliminate connections
- 1/3 gas loss with each leak
- Able to use intrinsic device to lower \$

Speaker: George Davet, Solon Manufacturing

Advanced Technology

Advanced Technology Monitoring Systems


SF6 GAS Density		[kg.f/cm2]
CB	Section	5,62
Main Bus	Section	5.06
상부터	Section	5.29
하부DS/ES	Section	5.11

11

Speaker: Ron Hoffman, WIKA

Advanced Technology

SF6 GAS Density		[kg.f/cm2]
CB	Section	5.62
Main Bus	Section	5.06
상부E5	Section	5.29
하부DS/ES	Section	5.11

Speaker: Ron Hoffman, WIKA

Current and Advanced Technology: Pros and Cons

Current Technology: Pros and Cons

Advantages in confirming...

- Safe operating condition of a breaker
- Filling process of a breaker
- Actual density in a tank

Disadvantages in design...

- Low emission rate confirmation
- Early leak detection
- High accuracy compensation

Advanced Technology: Pros and Cons

Advantages in performance features:

- Confirm emissions from gas tanks and can detect leaks early
- Observe current conditions/ operational safety anywhere (web interface)

Disadvantages:

- Current cost
- Availability
- Suitability for gas circuit breakers versus gas insulated substations

15

Thank you.

Questions, Discussion, Feedback

16 Speaker: Jerome Blackman, EPA