Day 1 Monday	Day 2 Tuesday	Day 3 Wednesday	Day 4 Thursday	Day 9 Tuesday	Day 10 Wednesday
Setting up	alloying and and drossing, we run 0.7%So2 in air at approx 6.9 l/min for 15 min With Novoc612 400ppm HE	Calibrating FTIR. Ready 0922. Running HFC/air at 680. HFC/air at 710. Metal sample taken. End of day 1600.	Metal topped with Be. Calibrating FTIR. Ready 0840	Optimising cover gas.	Long term exposure SF6, HFC and HFE.
Tests	SF6, HFE and Novec in air, 680C.	HFC/air 680C and 710C. Novec, HFE and SF6 in air 710.	SF6, HFC, Hfe, Novec in CO2air 680C, Novec and HFE in CO2air 710C.	HFC/SF6 CO2air 710C	

Procedure:

0: Gas on.

1: Wait for furnace atmosphere to stabilize (10, 10, 15 and 30 min).

2: Dross carefully.

3: Wait 10 min.

4:Collect sample, dross.

5: Change gas flow.

Cover gas concentration is kept constant at 0.05%

Workers safety measurements (operator zone) are taken at lowest protecting flow + at flow above lowest. Also after open lid and drossing

Observations IMA Pilot testing Porsgrunn, 242295.11 AM50,10 I/min SF₆ in CO₂/5%air, 680°C.

11-Sep day 10, Wednesday.

Procedure casting trials.

1) Start off melt with drossing and exposure to optional flow rate and carrier gas for replacement of atmosphere (10 - 30 min). Oxide and metal sample.

2) Expose for 2.5 hours. Record visual appearance of surface. Sample surface and metal (as before exposure).

3) Turn off gas, open hatch, and provoke a fire. Lance gas, high concentration to quench fire. Pure SF6, 7 l/min. Video.

4) Die cast 20*3 test pieces. Add ingot. Dross, and wait 10 min for surface to even.

5) Test single point gas inlet with a lance. Record surface appearance regular for up to 30 min.

6) Switch cover gas.

The Long term exposure is performed with a standard lid accepting the pump for die casting. It differs from the custom lid in two ways:

a) The cover gas distribution ring do not have traversing tube, and the distribution holes in the ring has a diameter of ca 2 mm.

b) One of the hatches are bigger (ca 40 cm diameter) in order to accommodate the pump.

Trial and observations:

- 0810 SF6 on, 10 l/min.
- 0820 Drossing picture and video, surface and metal sample. Start lon term test.
- 1050 End exposure. Sampling surface and metal.
- 1051Shut off cover gas, open hatch.1:30 white oxide flowers2:15 spot fires
 - ca 4 min smoke evolving.
 - 7:00 quenching with pure SF6. OK.
- 1100 Preparing for die casting.
- 1125 20 ingots casted.
- 1138 Switch to single point gas inlet (lance). 500ppm 10 l/min. Drossing.
- 1152 Evaluate single inlet. No difference. Quit and change gas

Observations from optimizing trials.

Gas flow	Uniform gas distribution			Mono-point gas distribution
(l/min)	Gas set	Response to first drossing	Post exposure sampling and drossing	Reduction until protection failure.
10	start the SF6 stream. 75/25 CO2/air due to problems with pure SF6. We have some problems with SF6 conc and wait until we get down to 500	concentration down to 500 ppm. The surface looks good without too many halls The black dross smolders a little	12.07 Sampling and drossing. Surface has a streched appeance but seems well protected. A few smaller meatballs. Slight discoloration	

Observations IMA Pilot testing Porsgrunn, 242295.11 AM50, 5 I/min HFC134a in CO₂/5%air, 680°C.

11-Sep day 10, Wednesday. Procedure casting trials.

1) Start off melt with drossing and exposure to optional flow rate and carrier gas for replacement of atmosphere (10 - 30 min). Oxide and metal sample.

2) Expose for 2.5 hours. Record visual appearance of surface. Sample surface and metal (as before exposure).

3) Turn off gas and provoke a fire. Lance gas, high concentration to quench fire. (max conc. of cover gas at 20 l/min. (HFC straight from the bottle). Video.

- 4) Die cast 20*3 test pieces. Add ingot. Dross, and wait 10 min for surface to even.
- 5) Test single point gas inlet with a lance. Record surface appearance regular for up to 30 min.

6) Switch cover gas.

The Long term exposure is performed with a standard lid accepting the pump for die casting. It differs from the custom lid in two ways:

a) The cover gas distribution ring do not have traversing tube, and the distribution holes in the ring has a diameter of ca 2 mm.

b) One of the hatches are bigger (ca 40 cm diameter) in order to accommodate the pump.

Trial and observations:

- 1210 HFC 134a on. 530ppm 5 l/min
- 1225 Drossing picture and video, surface and metal sample. Start long term test.
- 1455 End exposure. Sampling surface and metal.
- 1456 Shut off cover gas, open hatch.1:30 Oxide roses with/sparks. Similar to SF6 in the start.2:00 Smoke and some spot fire.
- 1504 8:00 Quenching with Concentrated HFC. Smoke stops immideately.
- General impression: sparks/smoke start as early as with SF6, but increases more slowly.
- 1508 Preparing for die casting.
- 1510 Casting started
- 1514 Ingot added.
- 1524 Ingot added.
- 1529 Casting completed.
- 1534 Single point lance 517ppm 5 l/min. Drossing.
- 1549 Evaluate single inlet. No difference. Quit and change to SO2

Gas flow	ns from optimizing trials.	Uniform gas distribution	1	Mono-point gas distribution Comparison with optimal flow using	Fire Extinguish
(l/min)	Gas set	Response to first drossing	Post exposure sampling and drossing		
5	V 48 docroase tiow	10.03 Drossing. Still very shiny and smooth. A few oxide roses.	10.13 Very good and stable conditions. Some small black oxide build-ups. Acceptable level. We observe that the film is much more elastic than air film.		

Observations from optimizing trials.

Observations IMA Pilot testing Porsgrunn, 242295.11

AM50, 2,5 I/min HFE7100 in CO₂/5%air, 680°C.

11-Sep day 10, Wednesday. Procedure casting trials.

Start off melt with drossing and exposure to optional flow rate and carrier gas for replacement of atmosphere (10 - 30 min). Oxide and metal sample.
Expose for 2.5 hours. Record visual appearance of surface. Sample surface and metal (as before exposure).
Turn off gas and provoke a fire. Lance gas, high concentration to quench fire. (max conc. of cover gas at 20 l/min. (HFC straight from the bottle). Video.
Die cast 20-50 test pieces. Add ingot. Dross, and wait 10 min for surface to even.
Test single point gas inlet with a lance. Record surface appearance regular for up to 30 min.
Switch cover gas.

The Long term exposure is performed with a standard lid accepting the pump for die casting. It differs from the custom lid in two ways: a) The cover gas distribution ring do not have traversing tube, and the distribution holes in the ring has a diameter of ca 2 mm. b) One of the hatches are bigger (ca 40 cm diameter) in order to accommodate the pump.

Trial and observations:

- 1559 HFE 7100 500ppm 10 l/min to change atmosphere.
- 1609 HFE 7100 498ppm 2.5 l/min Sampling and drossing. Start long exposure.
- 1839 End exposure. Sampling surface and metal.
- 1839 Shut off cover gas, open hatch.
 - 1:15 Old meatballs starts to glow. Melt passive.
 - 4:00 Meatballs starts to smoke, and is growing.
 - 4:30 Meatballs start to burn. Smoke slowly getting more severe. Pretty similar to HFC.
- 1847 8:00 Quenching with 1.7% HFE 7100in 50:50 CO2/air. Calms immideately. Large meatballs glow for 15 sec.
- 1850 Prepare to die casting.
- 1852 Ingot added.
- 1912 Ingot added.
- 1912 Casting completed.
- 1918 Single point lance 520ppm 2.5 l/min. Drossing.
- 1933 Evaluate single inlet. No difference. Shiny metallic surface. End of day.

Observations from	optimizing trials.
-------------------	--------------------

Gas flo	Uniform gas distribution		Mono-point gas distribution	
(l/min) Gas set	Response to first drossing	Post exposure sampling and drossing	Reduction until protection failure.
2.5	14.22 Flow decreased 524 ppm	14.52 Drossing. Some large meatballs, otherwise exemplary.	15.02 Sampling and drossing. Some large meatballs, otherwise exemplary	

Observations IMA Pilot testing Porsgrunn, 242295.11 AM50, 2,5 I/min Novec612 in CO₂/5%air, 680°C.

12-Sep day 11, Thursday. Procedure casting trials.

Start off melt with drossing and exposure to optional flow rate and carrier gas for replacement of atmosphere (10 - 30 min). Oxide and metal sample.
Expose for 2.5 hours. Record visual appearance of surface. Sample surface and metal (as before exposure).
Turn off gas and provoke a fire. Lance gas, high concentration to quench fire. (max conc. of cover gas at 20 l/min. (HFC straight from the bottle). Video.
Die cast 20-50 test pieces. Add ingot. Dross, and wait 10 min for surface to even.

5) Test single point gas inlet with a lance. Record surface appearance regular for up to 30 min.

6) Switch cover gas.

The Long term exposure is performed with a standard lid accepting the pump for die casting. It differs from the custom lid in two ways: a) The cover gas distribution ring do not have traversing tube, and the distribution holes in the ring has a diameter of ca 2 mm.

b) One of the hatches are bigger (ca 40 cm diameter) in order to accommodate the pump.

Trial and observations:

- 0815 Novec 612, 500ppm 10 l/min to change atmosphere.
- 0833 Novec 612, 550ppm 2.5 l/min Sampling and drossing. Start long exposure.
- 1103 End exposure. Sampling surface and metal.
 - 0:00 Shut off cover gas, open hatch. A few old meatballs. Satin metallic surface, indicating that it is thicker than for the other cover gases.
 - 2:00 Film still passive.

3:00 Meatballs starts to form at the film rift where the sample was taken.

3:30 Meatballs start to glow.

4:00 Meatballs starts to grow slowly.

- 5:30 Still very low activity. Some smoke starting to evolve
- 11:00 Activity is gradually increasing, and smoke is more and more pronounced.
- 11:00 Quenching with 1.7% Novec 612 in 50:50 CO2/air. Calms immideately. Large meatball at fire quenched after 15 sec.
- 11:00 Compared to HFC and HFE, Novec is performing significantly better. Film appearance also differs, in being satin metallic (looks relatively thicker).
- 1125 Ingot added.
- 1157 Prepare to die casting. Ad to wait some time fir tubes to reach temperature.
- 1205 Ingot added.
- 1220 Casting completed.
- 1222 Single point lance 520ppm 2.5 l/min. Drossing.
- 1237 Evaluate single inlet. No difference. Shiny metallic surface. Directly under the lance, the film starts to become satin, building up thickness.

Extended trial: 10 l/min, 125 ppm (similar delivery of cover gas, but more diluted and higher speed.

- 1238 SO2 while setting up the gas
- 1246 Gas on, Novac 10 l/min, 108 ppm.
- 1301 Drossing
- 1311 Film sample, video. Shiny metallic. Passive surface. Exemplary. End test
- 1315 End trial.

Observations from optimizing trials

Gas flow	uniform gas distribution			Mono-point gas distribution
(l/min)	Gas set	Response to first drossing	Post exposure sampling and drossing	Reduction until protection failure.
2.5	15.51 flow turned down		16.32 Sampling and drossing. Sample film very thin but still exemplary.	

Observations IMA Pilot testing Porsgrunn, 242295.11

AM50, SF₆ in air, 680°C.

9/3/2002 day 2, Tuesday.

Gas flow		Uniform gas distribution		Mono-point gas distribution	
(l/min)	Gas set	Response to first drossing	Post exposure sampling and drossing	Reduction until protection failure.	Comments
20	9.42 Change from SO2 to testgas 500 ppm (not measured)		09.55 Normal response, no fire or excessive oxidation. FTIR acquisition starts at dross start. 10.05 observation is slightly yellow surface. Sample taken. Conditions stable.		Premixed 0.2SF6 in air used. Mixed with net air to 500 ppm
10	10.07 gas change 500 ppm (not measured)	Dross burns	10.19 More oxidised surface. No fire or smoking but less attractive surface and oxide build-ups. At 10.29 sample taken and surface drossed. Significant oxide buildup. Switch to SO2 gas		_
5	Not done due to 10 l/min response				_
2.5					

Procedure:

0: Gas on.

1: Wait for furnace atmosphere to stabilize (10, 10, 15 and 30 min).

2: Dross carefully.

3: Wait 10 min.

4:Collect sample, dross.

5: Change gas flow.

Observations IMA Pilot testing Porsgrunn, 242295.11 AM50, SF₆ in CO₂/5%air, 680°C.

5-Sep day 4, Thursday.

Gas flow	day 4, mulsuay.	Uniform gas distribution		Mono-point gas distribution
(l/min)	Gas set	Response to first drossing	Post exposure sampling and drossing	Reduction until protection failure.
20	Skip due to experience with HFC			
10	start the SF6 stream. 75/25 CO2/air due to problems with pure SF6. We	balls The black dross smolders a little	12.07 Sampling and drossing. Surface has a streched appeance but seems well protected. A few smaller meatballs. Slight discoloration	
5			12.36 Sampling and drossing. More meatballs. Surface starting to smoke upon drossing. Protection not OK. Stop sequence.	
2.5				

Procedure:

0: Gas on.

1: Wait for furnace atmosphere to stabilize (10, 10, 15 and 30 min).

2: Dross carefully.

3: Wait 10 min.

4:Collect sample, dross.

5: Change gas flow.

Observations IMA Pilot testing Porsgrunn, 242295.11 AM50, SF₆ in air, 710°C.

4-Sep day 3, Wednesday

Gas flow		Uniform gas distribution	. I	Mono-point gas distribution
(l/min)	Gas set	Response to first drossing	Post exposure sampling and drossing	Reduction until protection failure.
20	At 15.10, SF6 turned on after 20 minutes purging with SO2. Drossing. 500 ppm (not measured).	15.22 Continous smoulder, smoke and reformation of white oxide when drossing.	15.28 Sampling. Very strong smoking. Thick white oxide layer. Hardly any protective layer.	
10				
5				
2.5				

Procedure:

0: Gas on.

1: Wait for furnace atmosphere to stabilize (10, 10, 15 and 30 min).

2: Dross carefully.

3: Wait 10 min.

4:Collect sample, dross.

5: Change gas flow.

Observations IMA Pilot testing Porsgrunn, 242295.11 AM50, SF₆ in CO₂/5%air, 710°C.

10-Sep_day 9, Tuesday.

Gas flow	day 9, Tuesday.	Uniform gas distribution		Mono-point gas distribution
(l/min)	Gas set	Response to first drossing	Post exposure sampling and drossing	Reduction until protection failure.
20	Not tested.			
10	Gas set 1246 500 ppm (not measured)	1256 Drossing. Passive surface, a few meatballs, golden metallic appearance. Dross burns.	1306 Sampling and drossing. Passive surface, golden metallic appearance. Dross burns. Protection just OK.	
5	1308 Reduce flow	1323 Drossing. Meatballs, golden appearance, very thin oxide film, but no smoke. Dross burns.	1333 Drossing and sampling. Meatballs, very thin oxide film, a little smoke and some smoulder during drossing. Not quite OK.	
2.5				

Procedure:

0: Gas on.

1: Wait for furnace atmosphere to stabilize (10, 10, 15 and 30 min).

2: Dross carefully.

3: Wait 10 min.

4:Collect sample, dross.

5: Change gas flow.

Observations IMA Pilot testing Porsgrunn, 242295.11 AM50, HFC134a in air, 680°C.

4-Sen day 3 Wednesday

4-Sep Gas flow	o day 3, Wednesday.	Uniform gas distribution	. I	Mono-point gas distribution
(l/min)	Gas set	Response to first drossing	Post exposure sampling and drossing	Reduction until protection failure.
20	10.47 Surface drossed and new gas turned on. Deans portable gas analyser shows 500ppm ok but pressure unstable and switch back to SO2. New turnon of gas at 10.59. Still problems so back on SO2. We start here 4/9 0924 HFC 496 (24) ppm. Drossing.		0944 Sample catch fire due to oxide roses. Thin oxide layer, oxide roses abundant. No spot fires upon drossing. Protection inferior compared to HFE/Novec/SF6. Protection nearly failed.	
10	0950: Gas set, HFC 446 (334) ppm.	10.00 Drossing. Very large build-up of oxide roses. Smoke (white) and spot burning. Impossible to clean surface properly.	10.11 Lots of oxide roses. Continously smolulder/smoke evolving before and during drossing. Protection failed.	
5				
2.5				

Procedure:

0: Gas on.

1: Wait for furnace atmosphere to stabilize (10, 10, 15 and 30 min).

2: Dross carefully.

3: Wait 10 min.

4:Collect sample, dross.

5: Change gas flow.

Cover gas concentration is kept constant at 0.05%

Cross section lid holes 0.17 cm2, 1/4"tube 0.31 cm2, 3/8"tube 0.65cm2.

Cover gas flow meter 3 (CO) setting: 20 l/min : 24.9 10 " : 12.4 5 " : 4.0 (calibrated) 2.5 " : 2.3 (calibrated)

Observations IMA Pilot testing Porsgrunn, 242295.11 AM50, HFC134a in CO₂/5%air, 680°C.

5-Sep Gas flow		Uniform gas distribution	I	Mono-point gas distribution Comparison with optimal flow using	Fire Extinguish
(l/min)	Gas set	Response to first drossing	Post exposure sampling and drossing 9.23 Sampling and drossing.	ring	
20	9.00 Drossing and turn over to HFC from the SO2. We have also alloyed up with Be back up to ~8ppm. The HFC conc 583 (62) ppm.	9.10 Surface very calm and smooth, no oxide or smoke.	Considerably better surface under CO2 than air. Smooth and covering film without visible signs of oxidation. Film a little multicoloured indicating relative thiness.		
10	9.26 decrease flow. HFC 502 (40) ppm.	9.36 Drossing. Still very shiny and smooth surface without indications of oxidation. Exemplary.	9.47 Very good and stable conditions. No signs of oxidation at all.		
5	9.48 decrease flow. HFC 505 (36) ppm.	10.03 Drossing. Still very shiny and smooth. A few oxide roses.	10.13 Very good and stable conditions. Some small black oxide build-ups. Acceptable level. We observe that the film is much more elastic than air film.		-
2.5	10.15 decrease flow. HFC 537 (74) ppm.	10.44. Drossing. Shiny surface without white oxide but some buildup of black oxide balls (meatballs) approx 1 cm diameter	10.55 Sampling and drossing. Fine stable surface. But with "meatball" size black oxide lumps in a few places. Sten considers it still acceptable. Dross burns All taken into account, we still consider it borderline		-

Procedure:

0: Gas on.

1: Wait for furnace atmosphere to stabilize (10, 10, 15 and 30 min).

2: Dross carefully.

3: Wait 10 min.

4:Collect sample, dross.

5: Change gas flow.

Cover gas concentration is kept constant at 0.05%

Cover gas flow meter 3 (CO) setting: 20 l/min : 24.9 10 " : 12.4 5 " : 4.0 (calibrated) 2.5 " : 2.3 (calibrated)

Observations IMA Pilot testing Porsgrunn, 242295.11 AM50, HFC134a in air, 710°C.

4-Sep day 3, wednesday.

Gas flow	Uniform gas distribution			Mono-point gas distribution
(l/min)	Gas set	Response to first drossing	Post exposure sampling and drossing	Reduction until protection failure.
20		1133 Drossing. Significant amount of oxide roses, smoke, little fire. Significant worse than 680. Video.	1143 Extensive roses, smoke, some fire. Protection failed.	
10				
5				
2.5				

Procedure:

- 0: Gas on.
- 1: Wait for furnace atmosphere to stabilize (10, 10, 15 and 30 min).
- 2: Dross carefully.
- 3: Wait 10 min.
- 4:Collect sample, dross.
- 5: Change gas flow.
- Cover gas concentration is kept constant at 0.05%

Cover gas flow meter 3 (CO) setting: 20 l/min : 24.9 10 " : 12.4 5 " : 4.0 (calibrated) 2.5 " : 2.3 (calibrated)

Observations IMA Pilot testing Porsgrunn, 242295.11 AM50, HFC134a in CO₂/5%air, 710°C.

10-Sep_day 9, Tuesday.

Gas flow	Uniform gas distribution				
(l/min)	Gas set	Response to first drossing	Post exposure sampling and drossing		
20	Not tested				
10	Gas set 1107, HFC 548 (14) ppm	1117 Drossing. Exemplary. Passive surface, shiny metallic.	1127 Sampling and drossing. Exemplary. Passive surface, shiny metallic.		
5	Decrease flow 1130 HFC 604 (16) ppm	1145 Drossing. Exemplary. Passive surface, coloured shiny metallic (thinner oxide skin).	1155 Sampling and drossing. Exemplary. Passive surface, coloured shiny metallic.		
2.5	Decrease flow 1158 HFC 650 (9) ppm	1228 Drossing. Some meatballs, but no smoke. Metallic coloured appearance (thin film).	1238 Sampling and drossing. Meatballs, no smoke. Golden film OK protection. Dross burns.		

Barely OK at 680 (yellow). Reasons: Small leakage in the hatch; residuaal effect?

0: Gas on.

1: Wait for furnace atmosphere to stabilize (10, 10, 15 and 30 min).

2: Dross carefully.

3: Wait 10 min.

4:Collect sample, dross.

5: Change gas flow.

Observations IMA Pilot testing Porsgrunn, 242295.11 AM50, HFE7100 in air, 680°C.

3-Sep day 2, Tuesday.

Gas flow	Uniform gas distribution	1		Mono-point gas distribution
(l/min)	Gas set	Response to first drossing	Post exposure sampling and drossing	Reduction until protection failure.
20	1029: HFE 538 (3) ppm on	1140: No fire, no smoke, stable. Residues of oxide from earlier when HFC was tried.	1150: Sampling. Very smooth and shiny surface, no smoke or fire. Dross is burning.	
10	11.53 Flow turned down. At 12.01, HFE 547 (6) ppm	12.11: No fire, no smoke, Stable. Some dark oxide at crucible sides. Dross is burning.	12.22: Sampling and drossing. Roses of oxide present but not significantly worse than previous. Dross still burning	
5	12.24 turn down gas. 12.28 at 571 (27) ppm	12.44: No fire or smoke stable and only a few small oxide roses	12.54: No fires, very little smoke but a a few more white oxie roses. A little more reactive	
2.5	12.56 turn gas down. 12.58 at 497 (13) ppm, some smoke out of lid	1226: Small spotfires and whiteish surface. Considerably worse protection, not sufficient, some smoke.	12.37 sampling and drossing. White smoke. Lot of white oxide on surface. Small spotfires when sampling	

Procedure:

0: Gas on.

- 1: Wait for furnace atmosphere to stabilize (10, 10, 15 and 30 min).
- 2: Dross carefully.
- 3: Wait 10 min.

4:Collect sample, dross.

5: Change gas flow.

Cover gas concentration is kept constant at 0.05%

We run an extra experiment on Thursday 5/9 to try gas.

Gas on 1641.

Observations IMA Pilot testing Porsgrunn, 242295.11 AM50, HFE7100 in CO₂/5%air, 680°C.

5-Sep_day 4, Thursday.

	Gas flow	uay 4, maisaay.	Uniform gas distribution	.	Mono-point gas distribution
_	(l/min)	Gas set	Response to first drossing	Post exposure sampling and drossing	Reduction until protection failure.
	20	1240: SO2 on. 12.55 Switch to HFE and dross. 557 (29) ppm conc.NB, Photo says 10l/min	13.05 Drossing. Very nice looking film without tendencies to oxidation. Film quite elastic.	13.17 Sampling and drossing. Very smooth and pretty surface without any oxidation or discoloration. Exemplary.NB, Photo says 10l/min	
	10	13.19 Flow decreased. HFE 467 (8) ppm	13.34 Drossing. Very nice smooth surface and no tendencies whatsoever for oxidation. Still exemplary	13.47 Sampling and drossing. Still exemplary. NB, Photo says 5l/min	
	5	13.53 Flow decreased. HFE 463 (9) ppm.	14.08 Drossing. Exemplary	14.21 Sampling and drossing. Still exemplary.	
	2.5	14.22 Flow decreased. HFE 515 (4) ppm	14.52 Drossing. Some large meatballs, otherwise exemplary.	15.02 Sampling and drossing. Some large meatballs, otherwise exemplary	

Procedure:

0: Gas on.

1: Wait for furnace atmosphere to stabilize (10, 10, 15 and 30 min).

2: Dross carefully.

3: Wait 10 min.

4:Collect sample, dross.

5: Change gas flow.

Observations IMA Pilot testing Porsgrunn, 242295.11 AM50, HFE7100 in air, 710°C.

4-Sep day 3, Wednesday.

	Gas flow	Uniform gas distribution			Mono-point gas distribution
	(l/min)	Gas set	Response to first drossing	Post exposure sampling and drossing	Reduction until protection failure.
	201	from lots of fine white oxide HEE 490	as Novec. Stable surface with a few	14.19 Sampling and drossing. Surface stable and not burning. Some roses but no white oxide. Film looks thin and multicoloured. Sten' comment that this looks like Novec at 10I/min.	
	10	ppm		14.45 Sampling and drossing. Relatively thick white loose oxide layer. Some burning	
_	5				
	2.5				

Procedure:

1: Wait for furnace atmosphere to stabilize (10, 10, 15 and 30 min).

2: Dross carefully.

3: Wait 10 min.

4:Collect sample, dross.

5: Change gas flow.

Observations IMA Pilot testing Porsgrunn, 242295.11 AM50, HFE7100 in CO₂/5%air, 710°C.

5-Sep_day 4, Thursday.

Gas flow	uay 4, muisuay.	Uniform gas distribution		Mono-point gas distribution
(l/min)	Gas set	Response to first drossing	Post exposure sampling and drossing	Reduction until protection failure.
20	Skipped			
10	Skipped			
5	to $7100, 1712$ up. HEE $441, (45)$ ppm	1717 Drossing. No smoke or spot fire, but some meat balls. Concentration notched up to 475ppm.	1727 sampling and drossing. Better result than first drossing! A few small meatballs, otherwise exemplary.	
2.5		1801 Drossing. A few meatballs, otherwise exemplary.	1811 Sampling and drossing. Exemplary.	

Procedure:

0: Gas on.

1: Wait for furnace atmosphere to stabilize (10, 10, 15 and 30 min).

2: Dross carefully.

3: Wait 10 min.

4:Collect sample, dross.

5: Change gas flow.

Observations IMA Pilot testing Porsgrunn, 242295.11

AM50, Novec612 in air, 680°C.

3-Sep day 2, Tuesday.

Gas flow	day 2, Tuesday.	Uniform gas distribution		Mono-point gas distribution
(l/min)	Gas set	Response to first drossing	Post exposure sampling and drossing	Reduction until protection failure.
20	1407: Novec on (After 20 min of SO2 flush at standard conditions). Start conc 630 ppm. Predross. Some black lumps and dis coloration of surface. Novec (505 (5) ppm	14.17 Surface is very stable. No oxidation or fires. Dross burns	14.49 Sampling and drossing. Very pretty surface and no fires/smoke. Dross does not burn. 14.52 switch to SO2 for dry air IR cell calibration. (1cm pathlength). At 15.45,. We generate HF so take surface sample (under SO2) + metal sample. 15.46 we change back to Novec at 20l/min. At 15.56 drossing. Dross does not burn. At 16.08, sampling of surface and dross again. Dross burns.	
10	16.10 flow lowered. Novec 494 (2) ppm	and pretty surface. Dross purps	16.31 Sampling and dross, very stable and shiny surface. Dross burns.	
5	16.34 flow lowered. Novec (484 (5) ppm.	roses appears. Vidar assess it as being too thin. Dross burns.	17.01 Sample and drossing. Sample still looks shiny but a tendency towards small white oxide film building up. The sampled film looks very thin and protection seems a little inadeqate	
2.5	17.04 flow lowered. Novec 609 (27) ppm.	17.34. Oxide build up in furnace worse with a little white smoke coming off. Small spike flames. Looks a little better than HFE at same flow.	17.45 Sampling and drossing. Bad cover and white smoke, white oxide build-up, burning sample and dross.	

Procedure:

0: Gas on.

1: Wait for furnace atmosphere to stabilize (10, 10, 15 and 30 min).

2: Dross carefully.

3: Wait 10 min.

4:Collect sample, dross.

5: Change gas flow.

Observations IMA Pilot testing Porsgrunn, 242295.11 AM50, Novec612 in CO₂/5%air, 680°C.

5-Sep day 4, Thursday.

Gas flow	day 4, maisaay.	Uniform gas distribution	. I	Mono-point gas distribution
(l/min)	Gas set	Response to first drossing	Post exposure sampling and drossing	Reduction until protection failure.
20	skipped			
10	skipped			
5	SO2 turned on at 15.04. Novec turned on 1523. Onc. 521 (31) ppm.	1537 Drossing. Exemplary, film a little elastic.	1547 Sampling and drossing. Exemplary	
2.5	15.51 flow turned down. Novec 725 (62).	16.21 Drossing. Exemplary	16.32 Sampling and drossing. Sample film very thin but still exemplary.	

Procedure:

0: Gas on.

1: Wait for furnace atmosphere to stabilize (10, 10, 15 and 30 min).

2: Dross carefully.

3: Wait 10 min.

4:Collect sample, dross.

5: Change gas flow.

Observations IMA Pilot testing Porsgrunn, 242295.11 AM50, Novec612 in air, 710°C.

4-Sep day 3, Wednesday.

Gas flow	day 3, Wednesday.	Uniform gas distribution		Mono-point gas distribution
(l/min)	Gas set	Response to first drossing	Post exposure sampling and drossing	Reduction until protection failure.
20	1206: Gas on. Novec 514 (3)ppm. Drossing	1216 Drossing.Calm. No smoke or fire. Flexible, moderately thick oxide skin.	12.27 Sampling and drossing. Only a few scattered oxide roses. Easy sampling. Visibly thicker film than HFC.	
10	12.30 Reduced to 10 l/min. Novec 551 (8). Increasing FTIR sampling tube bore, which used to keep clogging.	12.59 Drossing. Some roses have appeared but melt is still very calm. No smoke or white oxide	13.09 Sampling and drossing. Sample ok but surface has some white oxide and somewhat unattractive. Still no fires.	
5	13.11 Gas flow reduced. Novec 519 (8) ppm.	12.29 Drossing. Fine layer of white oxide, some roses but no fire. Oxide does not burn	12.40 Sampling and drossing. Fine layer of white oxide and some smoke. Some roses and scattered burning oxide on surface. Film on surface thinner and multi coloured.	
2.5				

Procedure:

0: Gas on.

1: Wait for furnace atmosphere to stabilize (10, 10, 15 and 30 min).

2: Dross carefully.

3: Wait 10 min.

4:Collect sample, dross.

5: Change gas flow.

Observations IMA Pilot testing Porsgrunn, 242295.11 AM50, Novec612 in CO₂/5%air, 710°C.

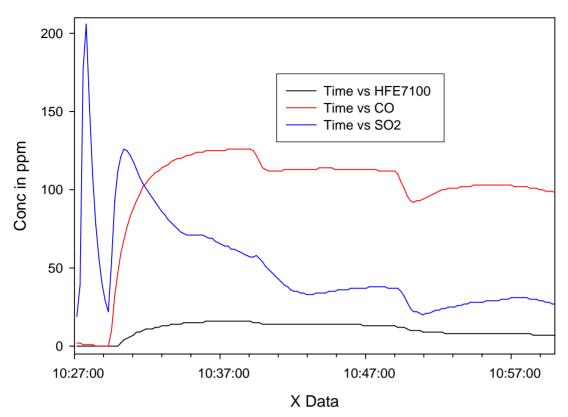
5-Sep day 4, Thursday.

Gas flow	day 4, maisaay.	Uniform gas distribution		Mono-point gas distribution
(l/min)	Gas set	Response to first drossing	Post exposure sampling and drossing	Reduction until protection failure.
20				
10				
5	Gas set 1828. Novec 581 ppm (not recorded).	1838. Drossing. Exemplary.	1848. Sampling and drossing. A few meat balls, otherwise exemplary.	
2.5		1921 Drossing. A few meat balls an one tiny spot fire, otherwise exemplary.	1931. Sampling and drossing. A few meat balls, otherwise exemplary.	

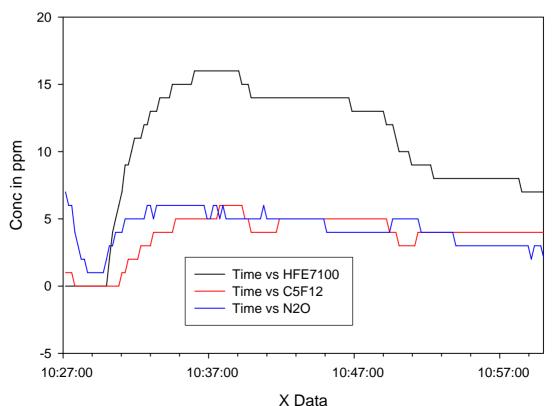
Procedure:

0: Gas on.

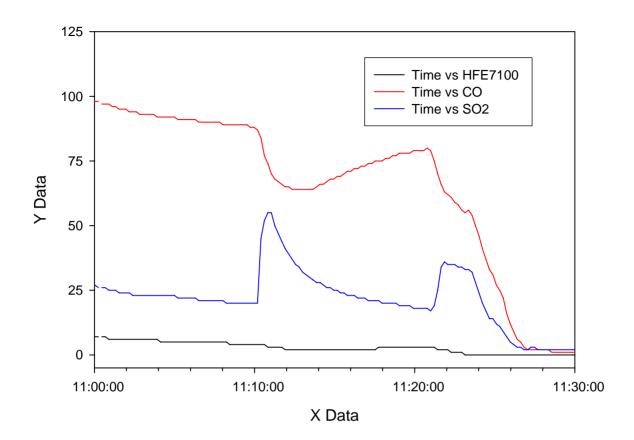
1: Wait for furnace atmosphere to stabilize (10, 10, 15 and 30 min).

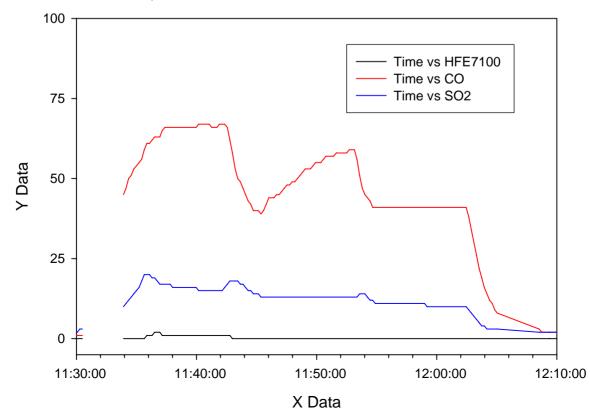

2: Dross carefully.

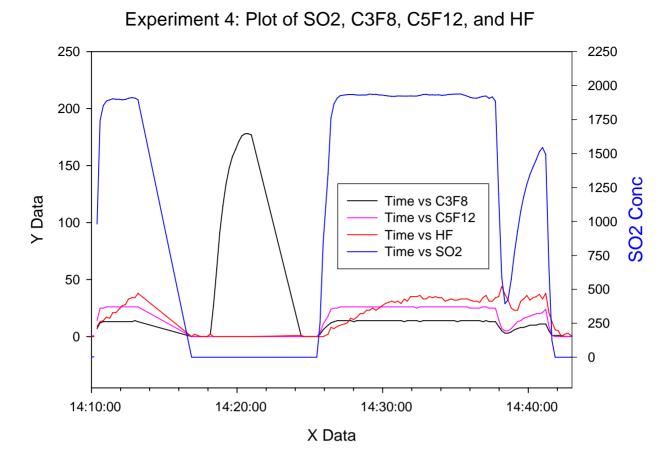
3: Wait 10 min.


4:Collect sample, dross.

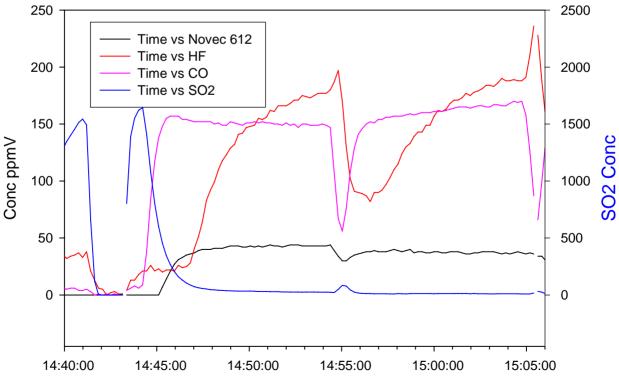
5: Change gas flow.

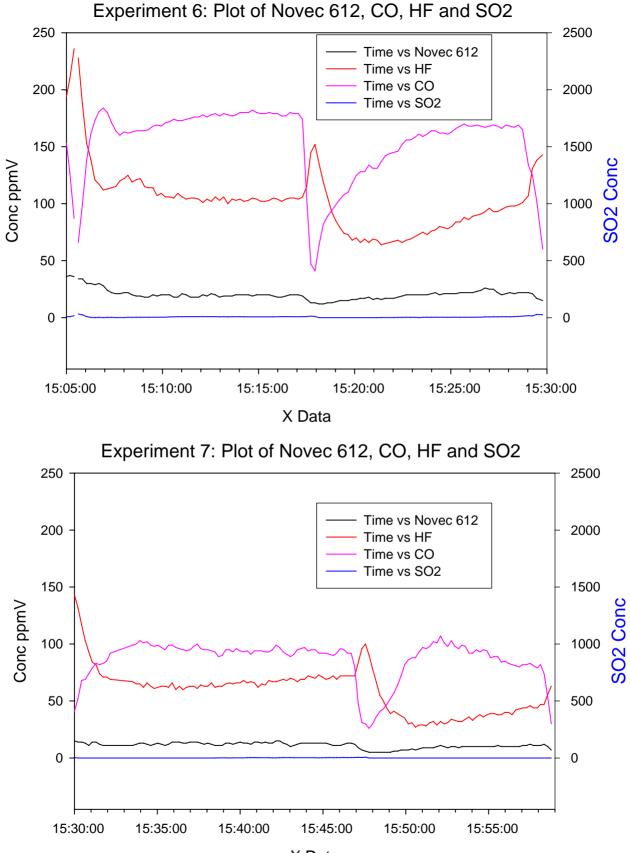


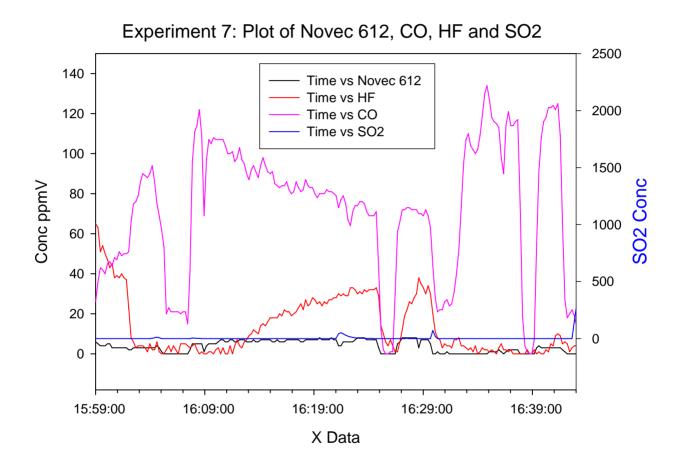

Experiment 1: Plot of HFE-7100, C5F12 and N2O

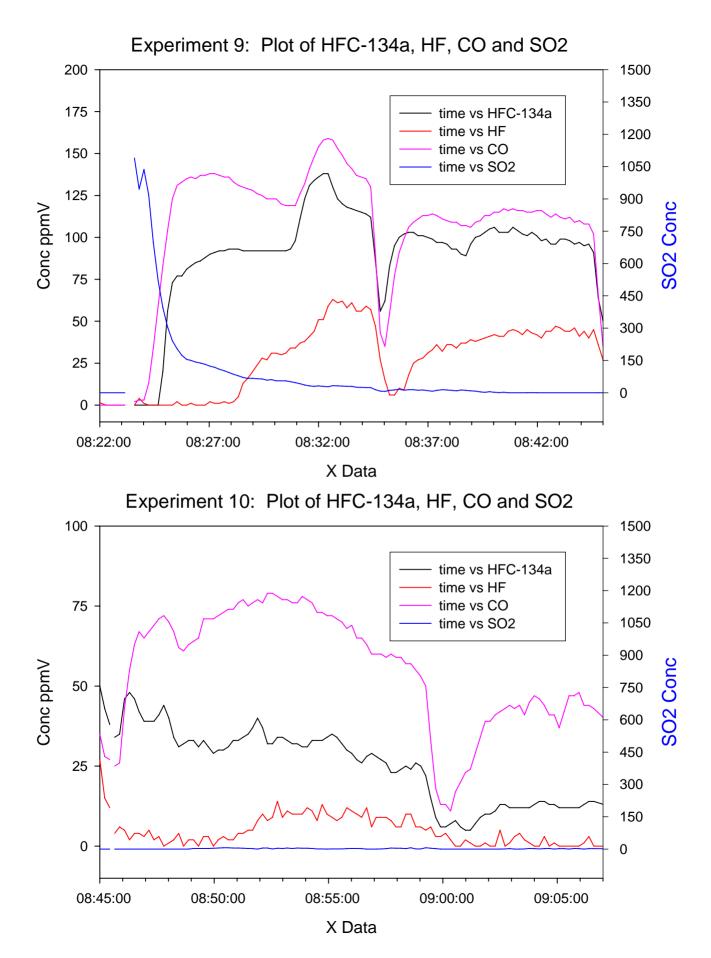


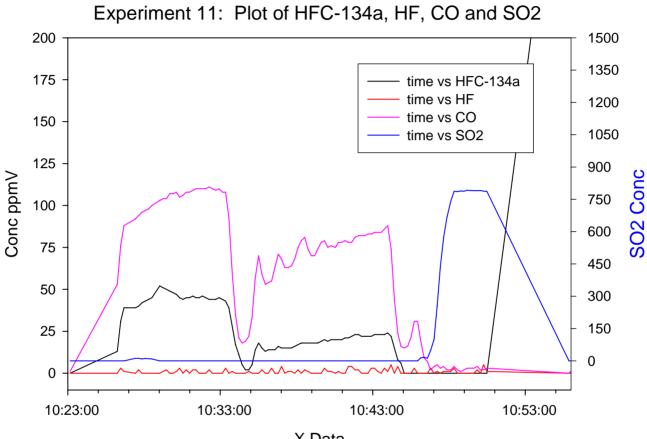
Experiment 2: Plot of HFE-7100, CO and SO2

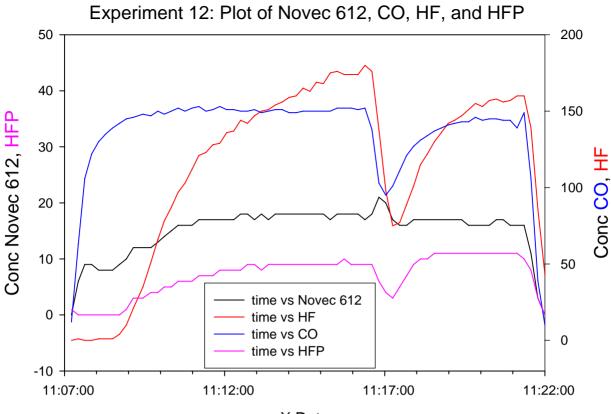


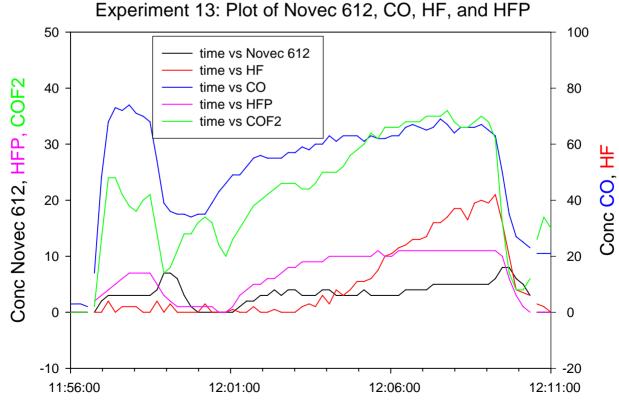


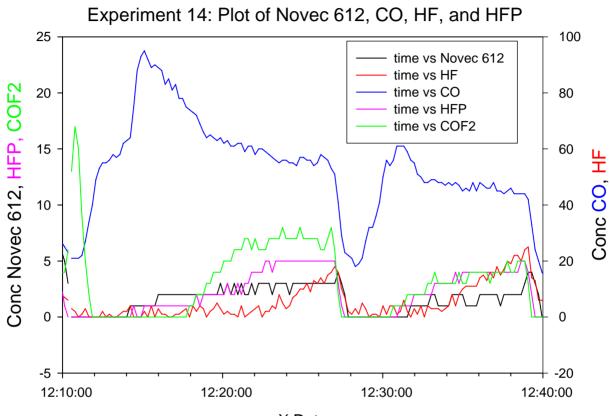




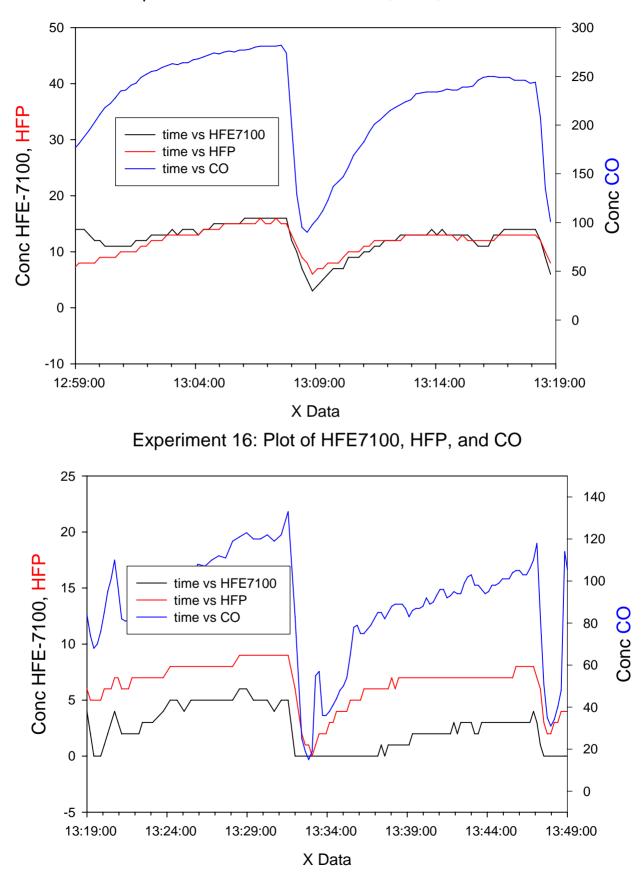

Experiment 5: Plot of Novec 612, CO, HF and SO2

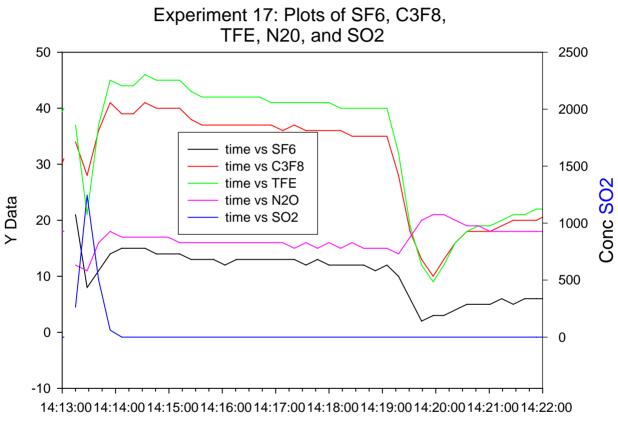


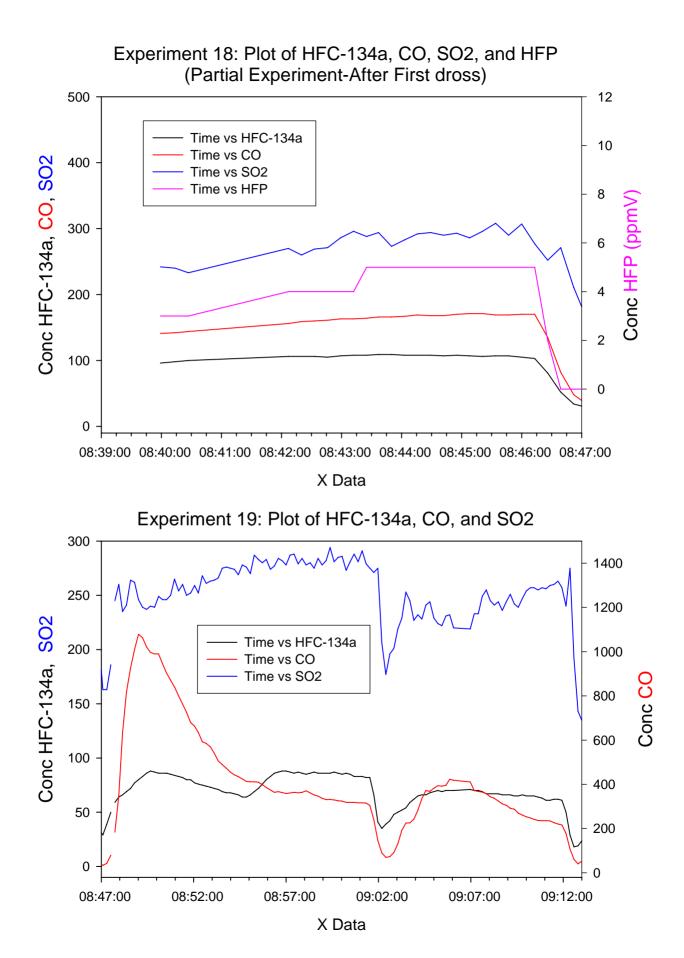


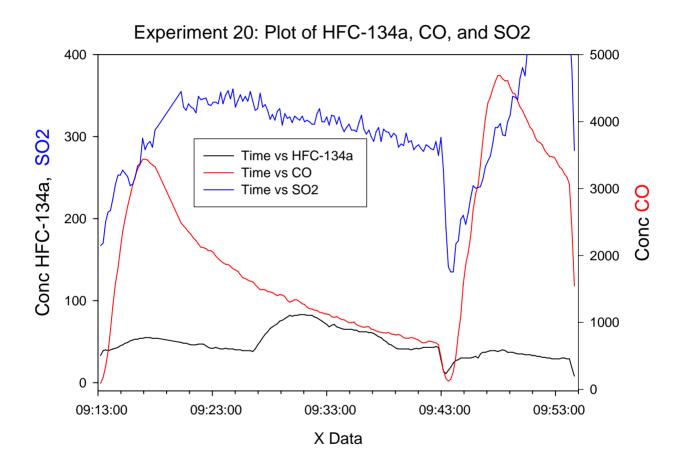

X Data

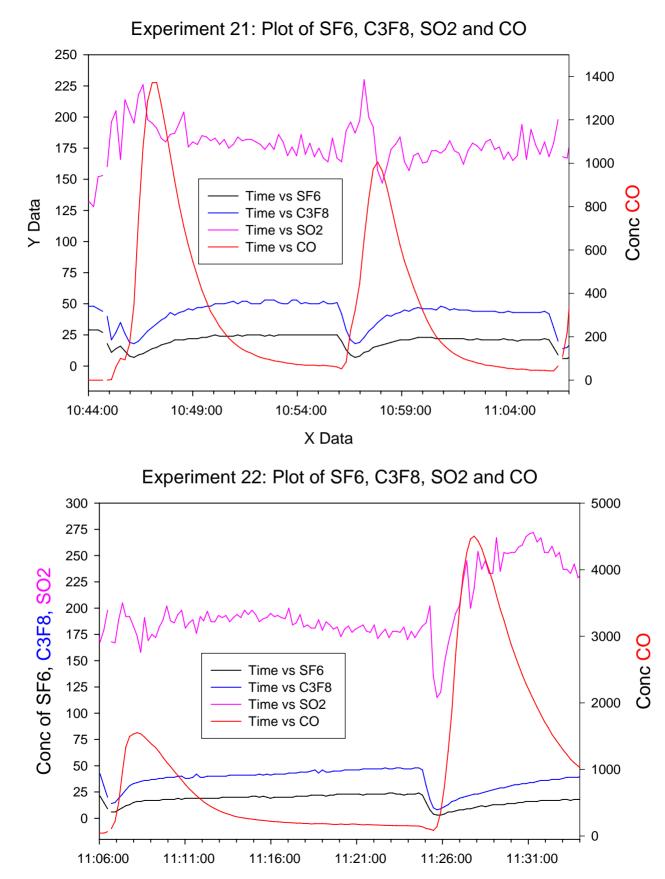
X Data

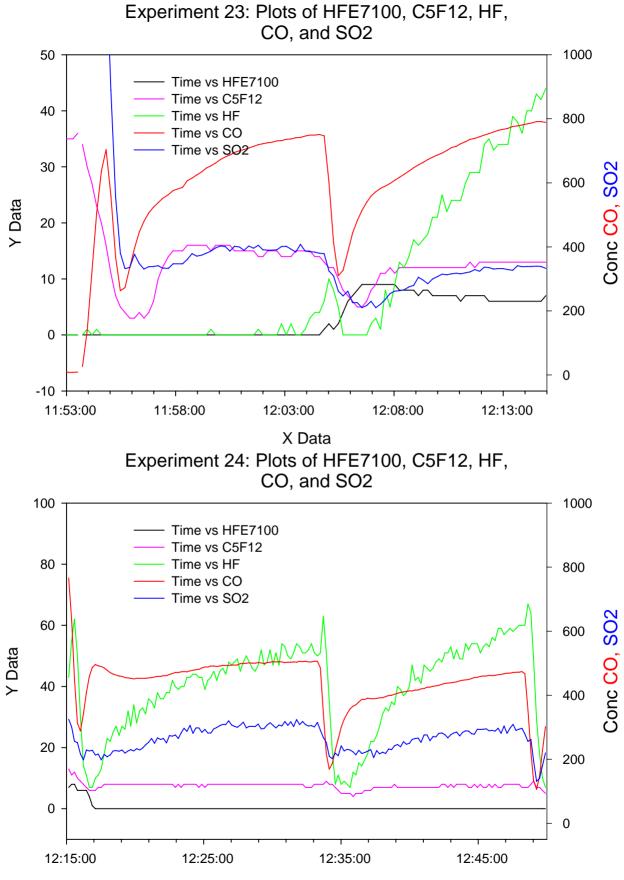




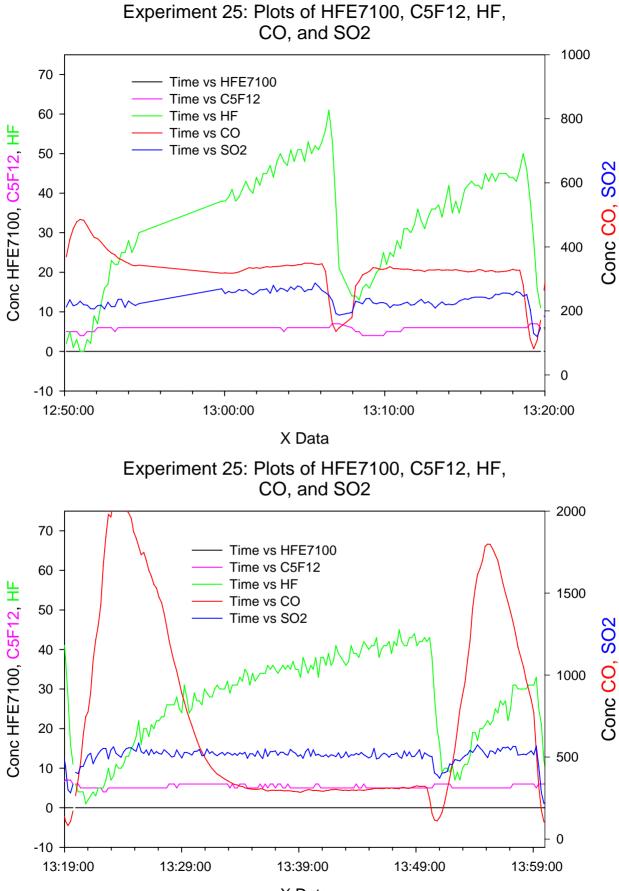

X Data

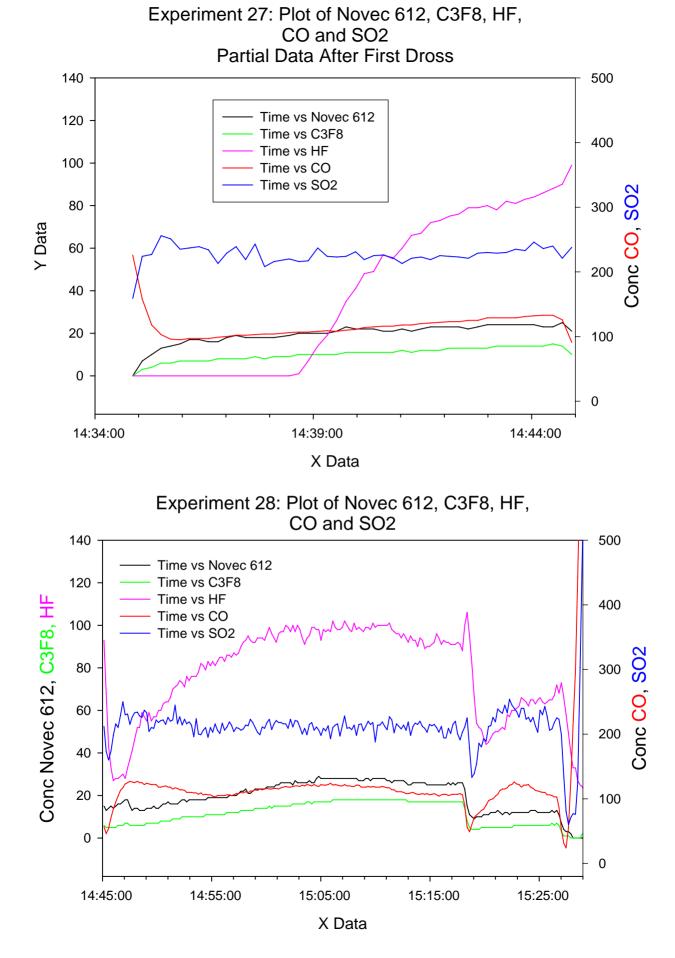

Experiment 15: Plot of HFE7100, HFP, and CO

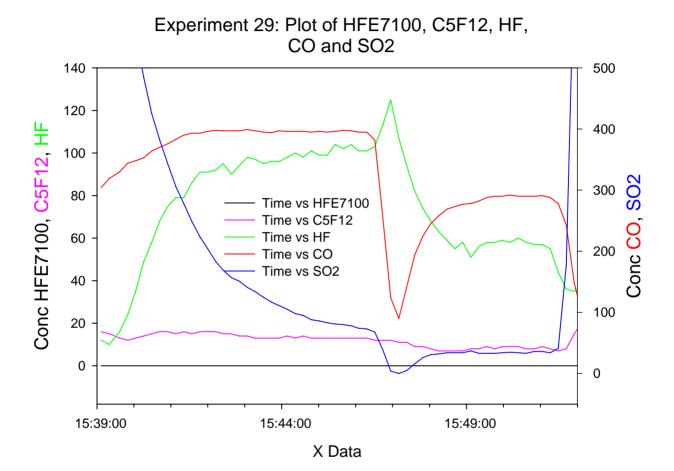


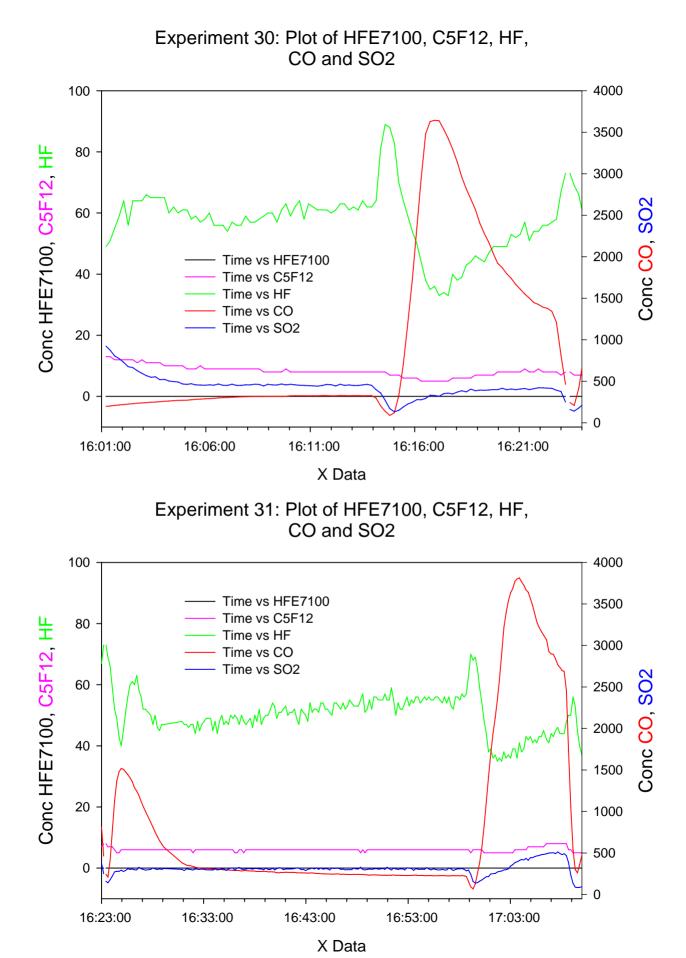


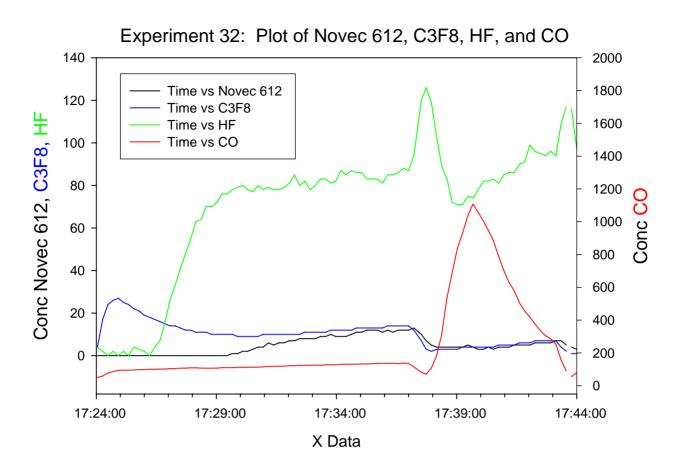
X Data

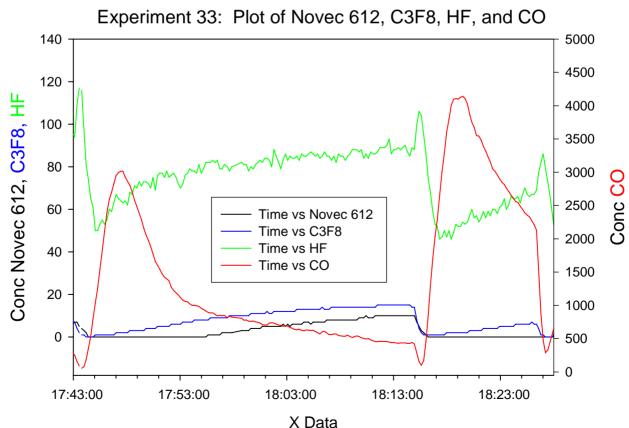


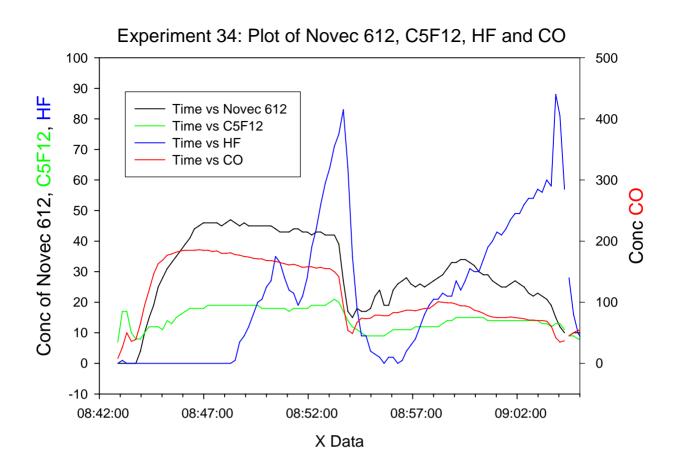


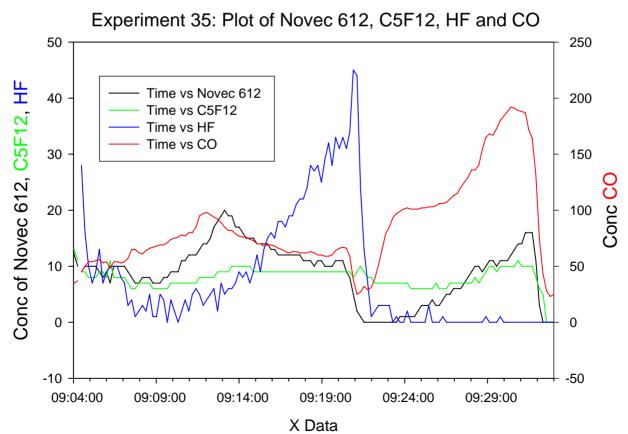


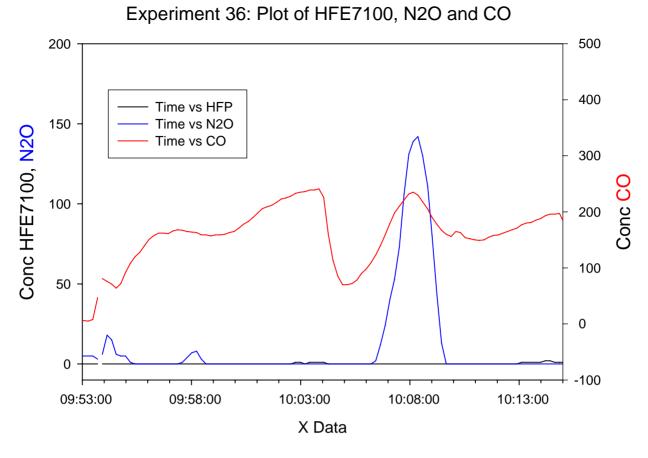

X Data

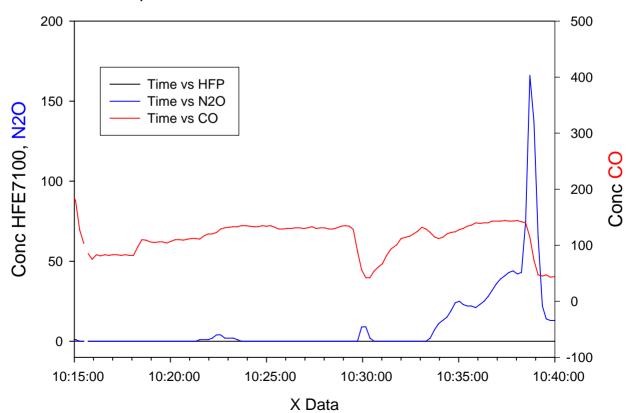


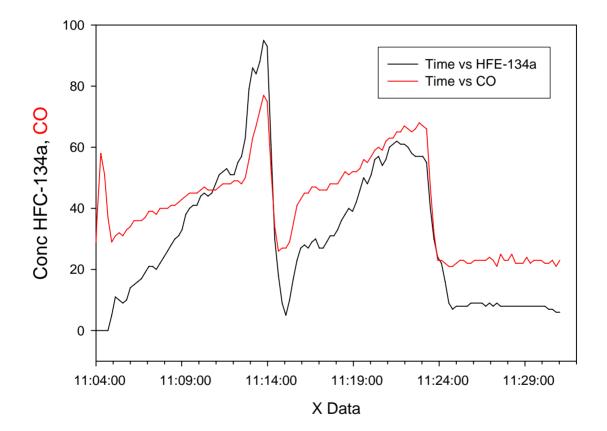

X Data

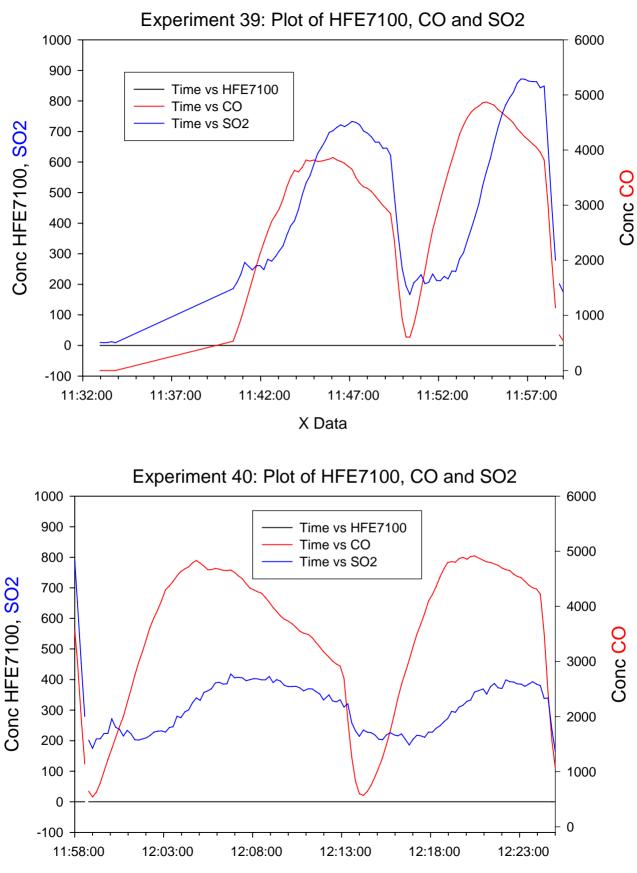


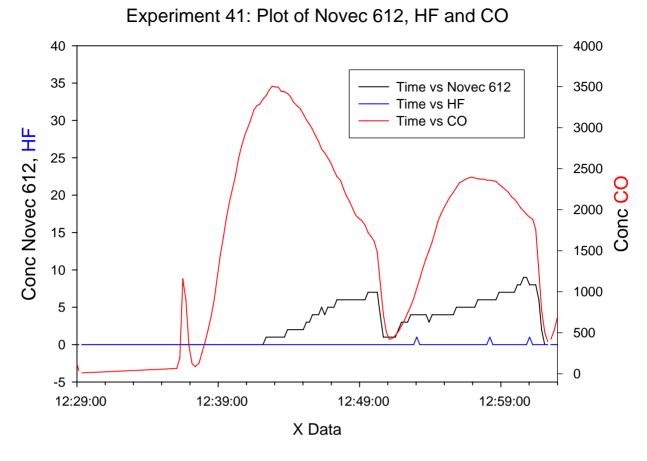


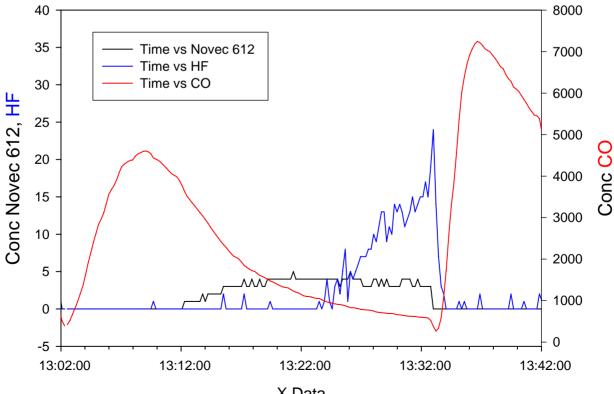


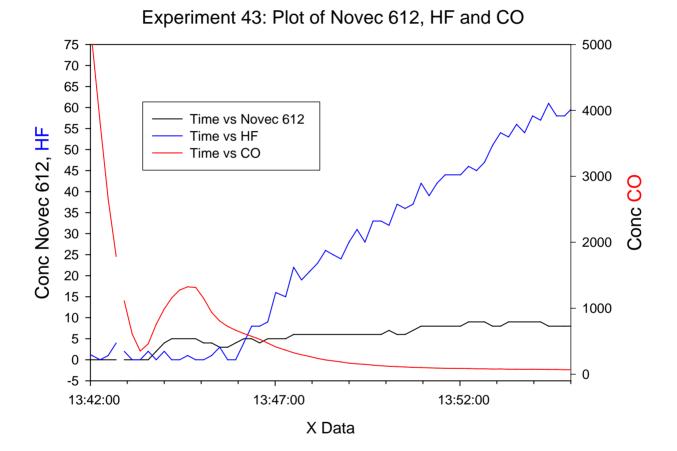







Experiment 37: Plot of HFE7100, N2O and CO




Experiment 38: Plot of HFC-134a, CO

Experiment 42: Plot of Novec 612, HF and CO

