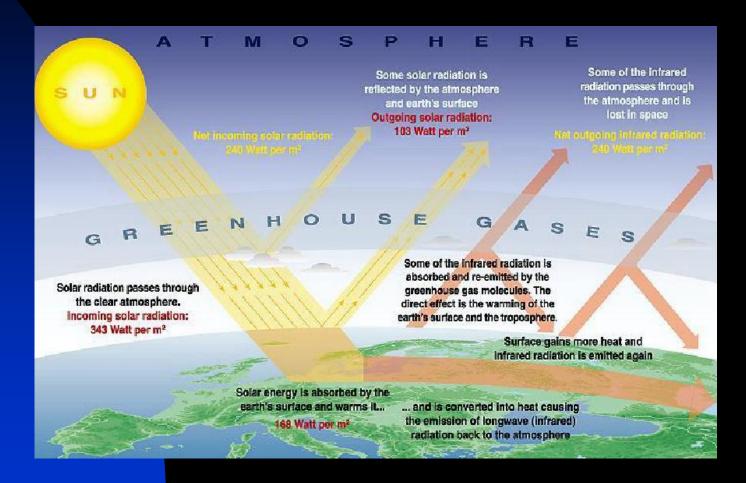


SF₆ Nameplate Inaccuracies Impact on Greenhouse Gas Reporting

Lukas Rothlisberger DILO Company, Inc.

EPA SF6 Workshop Long Beach, CA May 7, 2014


Topics of Discussion

- General Information
- Mandatory Greenhouse Gas Reporting Rule
- Possible Reasons for Nameplate Inaccuracies
- Eliminating Emissions
- Determining Exact amount of SF₆ in any Vessel

•

Environmental Considerations

Environmental Considerations GHG Comparison


Compound	Atmospheric	Global Warming
	Lifetime	Potential
	(Years)	(100-year time horizon)*
CO_2	2,00	1
CH_4	12,	2.1
HFC-134a	14.6	1,300
CF ₄	50,000	6,500
SF ₆	3,200	23,900

5/28/2014 4

Environmental Considerations GHG Emissions

Contribution of various gases to the green house effect

(Source: BMU, Kyota summit am elimote change 1997)

Kyoto summit on alimate change:

- 1st group of greenhouse gases:
 - Carbon dioxide (CO₂) from lourning of fossil fuels
 - Methane (CH₄) from intensive cattle farming
 - Dinitrogen monoxide (N₂O)
 from nitrogen fertilization
- 2nd group of greenhouse gases:
 - Hydrofluor carbons (HFC)
 - Perfluor carbons (PFC)
 - Sulfur hexafluoride (SF₆)

Reduction of the emission in Europe: 8 % (basis 1990/95) until 2010

Environmental Regulations

- Mandatory Greenhouse Gas Reporting Rule (40 CFR Part 98) Subpart DD (Users of Electrical Equipment) Subpart SS (OEM's)
- USEPA Requires users with at least 17,820 lbs nameplate capacity to report emissions annually
- Certain States have similar mandatory reporting requirements
 - ◆ CA (Air Resources Board)
 - MA (Proposed)

•

State of California / CARB

- Establishes an annual maximum emission rate at 10% of nameplate capacity
- Requires GIE owners to reduce their annual emission rate by 1% per year over a ten year period from 2011 to 2020
- Beginning in 2020, sets maximum emission rate not to exceed 1%

-

Mass Balance Equation

- User Emissions = (Decrease in Storage Inventory) + (Acquisitions) (Disbursements) (Net increase in Total Nameplate Capacity of Equipment Operated)
- Nameplate capacity refers to the full and proper charge of equipment, in pounds (lbs) of SF₆, rather than actual charge, which may (amongst other things) reflect leakage

-

Under / Over Estimation

Underestimation

 True value is 300 lbs / Nameplate is 280 lbs = Negative emission of 20 lbs

Overestimation

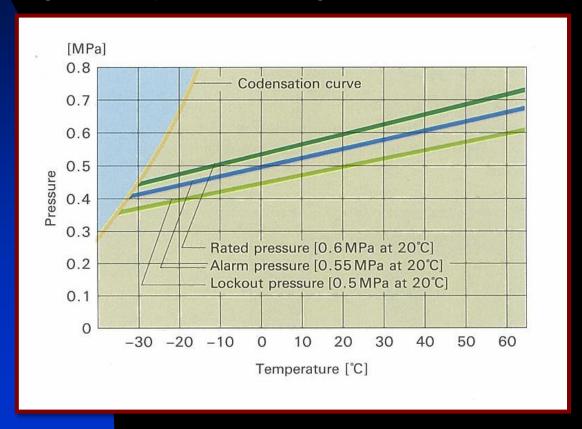
True value is 280 lbs / Nameplate is 300 lbs = "Phantom Emission" of 20 lbs

Anecdotal evidence suggests that a large percentage of GIE will fall into either of the above categories

Incorrect Nameplate?

- SF₆ Leakage from GIE
- GIE Under/Over filled
- SF₆ Emission during Recovery
- GIE Inaccurate Nameplate

-


SF₆ Leakage from GIE

- Leakage will result in GIE containing lower amount of SF₆ compared to nameplate
- Actual leak will/should be reported as emission
- Will create issue if user isn't aware of leak
 - Slow leak on large volume vessel
 - Leak hasn't resulted in noticeable pressure drop or low pressure alarm

Under/Over Fill

GIE is generally filled using temperature/pressure curve

--

Under/Over Fill

- Accidental or Intentional (Over Fill Only)
- Any deviation of temperature/pressure reading will lead to discrepancy
 - Example: Vessel containing 200 lbs @ 87 PSIG if originally only filled to 85 PSIG = 4 lbs Phantom Emission.
- Result of inaccurate temperature or pressure measurement
- Direct vs Equipment assisted fill

--

-DILO

Direct vs Equipment Assisted Filling

- GIE is filled either directly from cylinders or through Recovery System that may contain heaters/evaporators
- Operators utilizing GIE OEM temperature/pressure curve generally assume ambient = gas temperature
- Controlled tests using the following equipment:
 - ◆ 1,000 I ASME Pressure Tank
 - Precision Pressure Gauge K040R13
 - Mass flow scale B152R41
 - Cylinder weighing scale D-230-R002

Filling Procedure

- 1,000 I tank filled to 80 PSIG
- Filling directly from cylinder required 88.97 lbs SF₆ gas
 - Heat loss during vaporization
 - ◆ Temperatures < 25 F possible</p>
- Filling through heater/evaporator required 87.50 lbs SF₆ gas
 - Gas temperature 90 F
- Alternate equipment use resulted potential phantom emission of 1.47 lbs / 1.66 %

-DILO-

Measuring / Weighing Issues

- Weight Scale Inaccuracies
 - Use Weight Scales with specified accuracy and calibrate at required intervals
- Residual Recovery System Pressure
 - Utilize Mass Flow Scales at GIE
- Incorrect Cylinder TW Stamps
 - Weigh and re-stamp empties during re-test

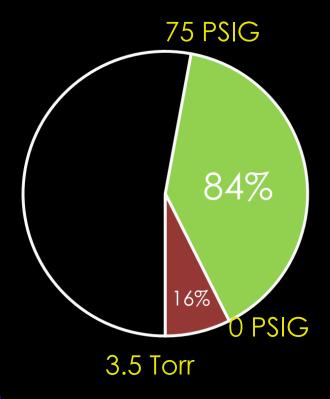
Residual Recovery System Pressure

•Ollo•

Measuring / Weighing Issues

- Gauges without displayed value
 - Requires external gauge for exact/accurate measurement
 - Commonly used on HV and MV Equipment
 - Gauges providing PSIG / bar / kPa reading preferred

--


SF₆ Recovery Emission

- Failure to reach an acceptable blank off pressure (Recovery System limitation or operator error) will result in SF₆ emission
- Resulting emission easy to calculate
- Recommended blank off pressure 3.5 Torr / mmHg minimum
 - ◆ Guarantees > 99.9% SF₆ Recovery

-

SF Recovery Emission Residual Pressure

5/28/2014 20

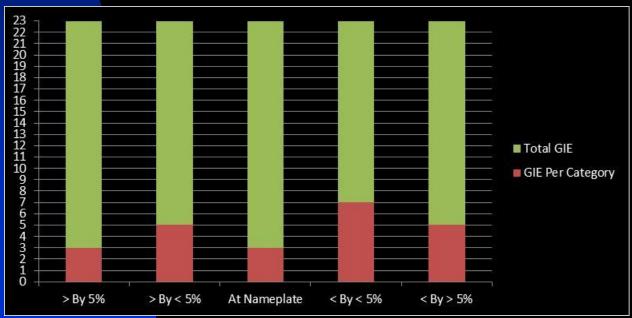
SF₆ Recovery Emission Determining Recovery %

- Circuit breaker containing 200 lbs of SF₆ @ 80 PSIG
- Blank-off pressure 3.5 Torr
 - ◆ 99.93% recovery / SF₆ emission = 0.14 lbs
- Blank-off pressure 200 Torr
 - ◆ 95.92% recovery / SF₆ emission = 8.16 lbs

$$\left(\frac{P_I - P_F}{P_I}\right) \times 100 = \% re \text{ cov } ered$$

P_I = Initial breaker pressure in mmHg(absolute)
P_F = Final breaker pressure in mmHg(absolute)

Verifying Nameplate Test Subjects


- Sample group 23 HV Circuit Breakers
 - ◆ Temperature/Pressure deviation < 1%</p>
 - Non leaking
 - ★ > 2 years in service w/o top off
 - Verified by blanking off < 1 Torr and performing raise test</p>
 - OEM Specified Nameplate capacity
 - Minimum Nameplate capacity 25 lbs

•

Inaccurate Nameplate

- Under/Over Fill, Leakage, Recovery Emission were all eliminated for testing
- Possible reasons for wrong nameplate:
- Inaccurate calculation / measurement
- Design change affecting internal volume
- Human error

•

Determine Exact SF₆ Weight

- Variables needed:
 - ◆ Initial System Pressure / PI a
 - Final System Pressure / PF b
 - Amount (in lbs) of SF6 Recovered c
- Formula:

$$\left(\frac{a-b}{a}\right) \times 100 = \% \ recovered \ (y)$$

$$\frac{c \times 100}{y} = lbs \ of \ SF_6$$

Required Equipment

- Precision gauge, mass flow scale, compressor, sample cylinder
- Recovery < 2 lbs or 2 PSIG
- 15 min per GIE Equipment to be de-energized

Temperature Irrelevant

•

Conclusions / Recommendations

- Discrepancies in installed GIE highly likely
- Actual discrepancies > 1% very likely the norm
- Current data (Emission rate compared to Nameplate) questionable at best
- Entities required to report need ability to correct baseline numbers
- Convert all SF6 handling (Receiving, filling/top off) to True Mass Monitoring
- Check Temperature/Pressure before degassing
- Retest cylinders to include accurate TW stamps

Questions?

Contact:

- ⋆ Lukas Rothlisberger
- ⋆ DILO Company, Inc.
- ★ 11642 Pyramid Drive
- ★ Odessa, FL 33556
- *** 727-376-5593**
- * lukasr@dilo.com