

Advances in Leak Detection in the Manufacturing Process

Víctor Hermosillo / Michael Broglio / Mike Kelly ALSTOM Grid Inc., 1 Power Lane, Charleroi, PA 15022

2. SF₆ Leak Detection Methods

3. Implementation

4. Benefits

5. Conclusions

SF6 Leak Detection Dead-Tank Circuit Breakers - 5/28/2014 - P 2 © Alstom Grid Inc.

2. SF₆ Leak Detection Methods

3. Implementation

4. Benefits

5. Conclusions

SF6 Leak Detection Dead-Tank Circuit Breakers - 5/28/2014 - P 3 © Alstom Grid Inc.

- Reduction of leak rates in high-voltage SF_6 insulated circuit breakers (1.0% to less than 0.5% per year).
- Implementation of leak detection method into production environment.
- Challenge to keep cycle time within constraints while being capable to verify low leak rates.
- Test on fully assembled circuit breakers.
- Impact on detection rates, process feedback, product reliability, field incidents.

2. SF₆ Leak Detection Methods

3. Implementation

4. Benefits

5. Conclusions

SF6 Leak Detection Dead-Tank Circuit Breakers - 5/28/2014 - P 5 © Alstom Grid Inc.

SF₆ Leak Detection Methods

Comparison of detection methods

		Ratio vs.
	Sensitivity	bubble
Method	(kg/year)	test
Vacuum increase	10	10
Infrared camera	1	1
Bubble test	1	1
Density monitor	0.6	1.7
Infrared absorption spectroscopy	0.06	16.7
Negative ion detector	0.02	50.0
Electron capture detector	0.002	500.0
Helium mass spectrometer	0.002	500.0
Photo-acoustic infrared spectroscopy	0.0002	5000.0

Greatest Sensitivity and Accuracy

Method used by ALSTOM Grid for Type Tests and Production

Photo-Acoustic Infrared Spectroscopy

Photo-Acoustic Infrared Spectroscopy

- Highest sensitivity method for leak detection
 - 5000x sensitivity of bubble test or infrared camera.
 - 10x sensitivity of helium mass spectrometer method
 - > 2g/year vs. 0.2 g/year.

• Allows to accurately measure and verify <0.5% per year leakage rate in a production environment.

2. SF₆ Leak Detection Methods

3. Implementation

4. Benefits

5. Conclusions

SF6 Leak Detection Dead-Tank Circuit Breakers - 5/28/2014 - P 9 © Alstom Grid Inc.

Concept and Prototype Test Chamber

• Testing Criteria:

- Pass/Fail Leak Rate: Acceptable SF6 gas loss rate is any rate less than 0.5% of the initial breaker SF6 gas content per year.
 - A new 72kV breaker contains 29 lbs. of SF6 🗉 67 psi pressure.
 - 0.5% of 29 lbs. = 0.145 lbs. per year (10,730 cm^3 per year).
 - Adjusted Rate for Testing = $.0204 \text{ cm}^3 \text{ per minute}$.
 - Chamber Volume = Approximately 25.5x10⁶ cm³
 - The equivalent SFG concentration change in the chamber is equal to 36 Parts Per Billion (PPB) over a 45 minute test period.
 - Concentration adjusted for reduced chamber volume with breaker present.

• Production testing

- Initiated December 2010.
- Has greatly reduced reported field leaks.
- High first pass yield for breaker tested.

Optimizing the Testing Procedure

SF6 Leak Detection Dead-Tank Circuit Breakers - 5/28/2014 - P 12 © Alstom Grid Inc.

Optimizing the Testing Procedure

SF6 Leak Detection Dead-Tank Circuit Breakers - 5/28/2014 - P 13 © Alstom Grid Inc.

Case Study

- Details:
 - This breaker passed the current standard tightness test procedure.
 - An SF6 hand 'Sniffer' tool (comparative gas) was used to examine the joints and potential leak points on the breaker.
 - No leaks were detected.
 - The breaker exhibited a leak 4x greater than the acceptable rate after less than 15 minutes in the Volumetric Test Chamber.
 - The breaker was pulled from the chamber and re-checked with the hand sniffer much more rigorously than the standard procedure.
 - The leak was found only after the tip of the was placed this close breaker.
 - Graphs of the test are shown on the following pages.

Case Study

Graph of Leak Indication

SF6 Leak Detection Dead-Tank Circuit Breakers - 5/28/2014 - P 15 © Alstom Grid Inc. **Case Study**

Graph after Leak Repair

SF6 Leak Detection Dead-Tank Circuit Breakers - 5/28/2014 - P 16 © Alstom Grid Inc.

Example: Typical Production Test Graph

SF6 Leak Detection Dead-Tank Circuit Breakers - 5/28/2014 - P 17 © Alstom Grid Inc.

Test Chamber Integrity Validation

• Pressurized Smoke Test

- Chamber filled with smoke and pressurized.
 - Utilized smoke cartridges and supply air blower only, exhaust vent sealed.
- Leaks detectable by smell and sight.
- Minimal Leaks found and addressed.
- Also used to verify chamber gas evacuation times.
- Extended Chamber Monitoring
 - Performed with and without a pre-charge of SF6 gas.
 - Performed with a 50 cm³ pre-charge of SF6 to detect SF6 concentration loss to the lower background SF6 gas levels outside of the test chamber.
 - Performed without a pre-charge of SF6 to detect SF6 concentration increase from the higher background SF6 gas levels outside of the test chamber.

Test Chamber Integrity Validation

Extended Chamber Monitoring – With SF6 Charge

ALST<mark>O</mark>M

SFG Leak Detection Dead-Tank Circuit Breakers - 5/28/2014 - P 19 🖸 Alstom Grid Inc.

Dual Test Chambers in High Volume Production Test Line

SF6 Leak Detection Dead-Tank Circuit Breakers - 5/28/2014 - P 20 🗉 Alstom Grid Inc.

SAFETY | QUALITY | COST | DELIVERY

Production Test Lab with Dedicated Mechanical Bays and SF6 Volumetric Tightness Chambers

we are shaping the future ALSTOM

2. SF₆ Leak Detection Methods

3. Implementation

4. Benefits

5. Conclusions

SF6 Leak Detection Dead-Tank Circuit Breakers - 5/28/2014 - P 22 🗈 Alstom Grid Inc.

- First installation of Accumulation Chamber (AC) \sim Jan 2011
- Fully assembled breaker tested
- Products tested in original AC
 - ≻ DTI 38 FK
 - ▶ DT1 72.5 FK
- Additional AC installation for all product lines
 - > 2 new chambers currently to test 38 kV 170 kV dead tank products
 - \succ Future chambers to test all other products
- Internal and External Improvements

Benefits

SF6 Leak Detection Dead-Tank Circuit Breakers - 5/28/2014 - P 24 © Alstom Grid Inc. Benefits

• Historical Mean time to reported site SF6 leakage:

= Date leakage reported – Manufacture Date

= 15.2 months (DT1-72.5 FK Product)

- Reliable Data:
 - = ~ Today 15.2 months
 - = January 2013 (any data prior to this date considered reliable)
- Δ Mean % Leak Rate:
 - = Mean prior to AC installation = 19.5(X) %
 - = Mean after AC installation = X %

Benefits

SF6 Leak Detection Dead-Tank Circuit Breakers - 5/28/2014 - P 27 © Alstom Grid Inc.

- Δ Mean % Leak Rate:
 - = Mean prior to AC installation = 19.5(X) %
 - = Mean after AC installation = X %

- Reduction:
 - > Overall % reduction = 19.5(X) % X % = **R** %
 - > % reduction of existing leakage rate = R% / 19.5(X)% = 94.87%

ALST

2. SF₆ Leak Detection Methods

3. Implementation

4. Benefits

5. Conclusions

SF6 Leak Detection Dead-Tank Circuit Breakers - 5/28/2014 - P 29 🖸 Alstom Grid Inc.

- ALSTOM has successfully implemented a high accuracy SF6 leak detection test system for use in a production assembly facility.
- The system supports fully-loaded production flow requirements.
- Reliability data indicates this method is immediately effective.
- The volumetric tightness testing system ensures product quality and reliability.
- This testing system reduces product leak emissions ...

