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= Goals

= Sk, Observations
= Sk, Growth Rates
= Inferred Emission

= Challenges



Atmospheric Science Community

Observations of Trace Requirements

Gases ® |Long-term commitment

® Long-term Trends ® High Precision

® Sources/Sinks ® Cooperative Effort

® Independent Verification ® Reliable, Traceable Standards

does policy have the
desired effect?

e.g.. Montreal Protocol e
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NOAA’s Contribution

¢ Global Background Observing
Sites

® US regional Sites (CO, focus)
but also SF;, HCFCs, HFCs

® Profiles (aircraft)

* World Calibration Standards




Calibration: An Essential Element

NOAA serves as the Central
Calibration Laboratory for

e CO,, CH,, CO, N,O, SF,

® Develop and maintain
calibration scales for use
by the WMO/GAW
community
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Global Networks that Measure Sk
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History of SF4 in the atmosphere
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Recent NOAA SF, Observations
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Global Growth Rate of Atmospheric SF,
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Global SF; Emissions
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A NOAA air archive

SF6 Emissions (Gg/yr)




SF6 Emissions (Gg/yr)

Global SF4 Emissions

— NOAA flask + in situ

— EDGAR
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Regional Emissions

stratosphere




SF; at different latitudes
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SFg (pmol mol™)

SFe (pmol mol™)

Mouna Loa, Hawaii, United States
~ Corbon Cycle Surfoce Flosks (Somple Intoke Height: 3402 mosl)
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What’s Needed?

Good Measurements
Good Models

Cooperative Efforts

Extensive Comparisons




ﬁt}

e HP ECD (5.35 ppt)
6.04 ppt)

gs—a
o Valco ECD (3-5 ppt)

A HPECD
s HPECD

I
u
-

2.5 —
2.0

(9) uoisioaud 945




Regional Emissions

¢ Correlate “Pollution Events”
with other trace gases

1000 2000 000

® Infer “unknown” emissions

to “known” emission by ratio

e.g.. dichloromethane,
carbon monoxide




SF; measured at
Niwot Ridge, Colorado
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SF6 Emissions (Gg/yr)
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Recent Work

Levin et al., 2010

“...which suggests, that Annex |
reported UNFCCC emissions during the
1990s (and possibly until today) are too
low. “

Top-down estimates complicated by
uncertainties in model transport

More measurement sites are needed to
resolve regional or country emissions.

Rigby et al., 2010

Emissions growth 2004-2008 can be
attributed to non-UNFCCC Asian
countries

Current data not sufficient to resolve

differences between EDGAR and
UNFCCC reported emissions for the
U.S.

Emissions are poorly constrained in
most regions.

Levin et al., The global SF, source inferred from long-term high precision atmospheric measurements and its comparison

with emission inventories, Atmos. Chem. Phys., 10, 2655-2662, 2010

M. Rigby et al., History of atmospheric SF, from 1973 to 2008. Submitted to Atmos. Chem. Phys. Discuss., May 2010.




Summary

NOAA collaborates with other groups to measure Sk,
around the globe

Global SF, emissions increased gradually from 1999-
2005 rapidly from 2005-2008. The rapid increase may
be ending.

Inferring regional emissions will be challenging

® more observing sites

@ better precision, better models, and strategic site placement
® 1 and 2 go hand in hand with other GHG



Extra Slides



Atmospherlc Sk and World GDP

SF6 Growth Rate (ppt/ yr)
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o SFg Lossabove 45km ]
In the Mesosphere
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*SF¢ loss rate (1/t) is estimated as 2 times the integral over the northern vortex of the measured
fractional loss, times the mass density, divided by total atmospheric mass.
SF¢ atmospheric lifetime (t) calculated from:

Linear extrapolation  t =595 * 105 years
Error includes in quadrature:
+ 35 years for statistical uncertainty in SF6 measurements.
+ 65 years for residuals of smooth fit to flight profiles.
+ 76 years for uncertainty in the vortex size.

Constant extrapolation t= 747 years
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