SF₆ in the Atmosphere: Using Top-Down Measurements to Inform Public Policy

Brad Hall

NOAA Earth System Research Lab

Boulder, CO

Collaborators: Geoff Dutton, Gabrielle Petron, Ed Dlugokencky, Matt Rigby, James Elkins

- Goals
- SF₆ Observations
- SF₆ Growth Rates
- Inferred Emission
- Challenges

Atmospheric Science Community

- Observations of Trace Gases
 - Long-term Trends
 - Sources/Sinks
 - Independent Verification
 - does policy have the desired effect?
 - e.g.. Montreal Protocol
 - (CFCs)

- Requirements
 - Long-term commitment
 - High Precision
 - Cooperative Effort
 - Reliable, Traceable Standards

NOAA's Contribution

- Global Background Observing Sites
- US regional Sites (CO₂ focus) but also SF₆, HCFCs, HFCs
- Profiles (aircraft)
- World Calibration Standards

Calibration: An Essential Element

- NOAA serves as the Central Calibration Laboratory for
 - CO₂, CH₄, CO, N₂O, SF₆
 - Develop and maintain calibration scales for use by the WMO/GAW community

Global Networks that Measure SF₆

History of SF_6 in the atmosphere

Cape Grim and NH est. from Maiss and Brenninkmeijer, Env. Sci. Tech., 1998.

Recent NOAA SF₆ Observations

Global Growth Rate of Atmospheric SF₆

SF6 growth rate (ppt/yr)

Global SF₆ Emissions

Global SF₆ Emissions

Regional Emissions

SF₆ at different latitudes

What's Needed?

- Good Measurements
- Good Models
- Cooperative Efforts
- Extensive Comparisons

Regional Emissions

 Correlate "Pollution Events" with other trace gases

Infer "unknown" emissions
to "known" emission by ratio

e.g.. dichloromethane, carbon monoxide

from Bakwin et al, 1997

SF₆ measured at Niwot Ridge, Colorado

Recent Work

Levin et al., 2010

"...which suggests, that Annex I reported UNFCCC emissions during the 1990s (and possibly until today) are too low. "

Top-down estimates complicated by uncertainties in model transport

More measurement sites are needed to resolve regional or country emissions.

Rigby *et al.*, 2010

Emissions growth 2004-2008 can be attributed to non-UNFCCC Asian countries

Current data not sufficient to resolve differences between EDGAR and UNFCCC reported emissions for the U.S.

Emissions are poorly constrained in most regions.

Levin *et al.*, The global SF₆ source inferred from long-term high precision atmospheric measurements and its comparison with emission inventories, Atmos. Chem. Phys., 10, 2655–2662, 2010

M. Rigby *et al.*, History of atmospheric SF₆ from 1973 to 2008. Submitted to Atmos. Chem. Phys. Discuss., May 2010.

Summary

- NOAA collaborates with other groups to measure SF₆ around the globe
- Global SF₆ emissions increased gradually from 1999-2005 rapidly from 2005-2008. The rapid increase may be ending.
- Inferring regional emissions will be challenging
 - 1) more observing sites
 - 2 better precision, better models, and strategic site placement
 - 3 1 and 2 go hand in hand with other GHG

Extra Slides

•SF₆ loss rate (1/t) is estimated as 2 times the integral over the northern vortex of the measured fractional loss, times the mass density, divided by total atmospheric mass.

SF₆ atmospheric lifetime (t) calculated from:

Linear extrapolation $t = 595 \pm 105$ years

Error includes in quadrature:

- ± 35 years for statistical uncertainty in SF6 measurements.
- ± 65 years for residuals of smooth fit to flight profiles.
- ± 76 years for uncertainty in the vortex size.

Constant extrapolation t = 747 years

* Vortex size used is an average between Manney's estimate for this year and Waugh's climatological mean.

* The above assumptions only leave room for unmeasured loss. Thus, the above measured lifetimes represent an upper limit.