EPA – Conference 2012, Atlanta

Pressure and Temperature Measurement

Mitigating Potential SF₆ Leaks

Through Early Leak Detection

Thomas Heckler, WIKA

Who we are and what we do ...

We take care of your assets

Baseline: SF₆ in Electrical Equipment – an Estimation

Gas zones in Service

WIKA has equipped more than 1,000,000 gas tanks worldwide with:

750.000	Gas Density Monitors
200.000	Gas Density Indicators
50.000	Gas Density Switches
25.000	Gas Density Transmitters

- Baseline banked SF₆ in electrical Equipment
 - At least 2,0 Mio. Gas zones are in service

Pressure and Temperature Measurement

- Average fill pressure = 6 bar (abs)
- Average Density = $40 \text{ g} / 1 \text{ or } 40 \text{ kg} / m^3$
- Average Volume Gas Zone = 700 I

Conclusion

- Mass per Zone = $40 \text{ kg/m}^3 \times 0.7 \text{ m}^3$
- Mass per Zone = 28 kg/Gas zone
- Bank $SF_6 = Zones x Mass$
- Bank SF₆=2,0 Mio. Zones x 28 kg/ Gas zone
- Bank SF₆ = 56.000.000 metric kg
- Bank SF₆ = 56.000 metric tones

Bank $SF_6 = 56.000$ metric tones equal to 1.276.800.000 metric tones CO_2 eq.

Ecofys Emission Scenario Initiative on SF₆ Electric Industry

Global annual consumption of SF₆

Annual consumption & projection for the electric industry

Projection: Aggregated SF6 bank development

Estimated SF₆ mass in the equipment

- Bank $SF_6 = 58.000$ metric tones
- Bank SF₆ = 1.322.400.000 metric tones CO₂ eq.

Some simple figures

- 10 % of Bank $SF_6 = 132.240.000$ metric tones CO_2 eq.
- 2,5 % of Bank $SF_6 = 33.060.000$ metric tones CO_2 eq.
- 1 % of Bank SF_6 = 13.224.000 metric tones CO_2 eq.
- 0,5 % of Bank $SF_6 = 6.612.000$ metric tones CO_2 eq.

Conclusion

- Proactive leak detection reduces the contribution to CO₂
 Emissions even more
- More precise methods for leak detection allow emission reductions

Global Concentrations of SF₆

Global SF₆ Concentration

Pressure and Temperature Measurement

CAGR %Compound average growth rate

Source: Sulfur hexaflouride data from the NOAA/ESRL halocarbons in situ program. Sulfur hexaflouride (SF6) hemispheric and global monthly means from the NOAA/ESRL Recent data (less than 1.5 years) are considered preliminary. Average Values are calculated based on the global monthly means. John F. Kennedy: We chose to go to the moon

SF₆ Emission Pyramid

Why going online ?

Benefits of SF₆ online monitoring as part of a proactive strategy

Predictive Maintenance

- Keep equipment in safe condition
- Proactive maintenance strategies vs. reactive strategies from online monitoring ensure that switchgear is in safe condition
- Detect issues during warranty period and get them fixed
- Prepare Pareto profiles of top leakers to optimize maintenance strategies and avoid any potential issues of non switching

Simplified emission reporting

- Accurately capture SF₆ gas usage across entire gas tank fleet online and in near real time providing fully auditable system
- Avoidance of human error or poor calibration of weighing equipment as part of the reporting process
- Improve ecological and environmental standing
- Know precisely how much gas is needed to fill any given tank (no over fill or under fill)

Multiple parameter sensors are essential for a proactive CBM strategy

- Transmitters with integrated pressure, temperature & moisture sensors minimize overall costs for the monitoring
- Digital Communication safes costs for wiring significantly

Why advanced sensor technology ?

Humidity (One Embedded Sensor)

- ⇒ Root Cause (Humidity / Oxygen / Energy)
- ⇒ Dielectric Strength influenced dramatically
- \Rightarrow Acidic Atmosphere (SO₂, HF, SOF₄...)

Pressure (One Embedded Sensor)

- ⇒ High Precision Sensor 0,06 % FSD
- High Sampling Rate allow identification tanks effected by PD events
- ⇒ Basis of the density calculations

Temperature (Three Embedded Sensors)

- ⇒ 2 Temperature sensors exposed to the gas
- ⇒ 1 Temperature sensor close to ambient
- ⇒ Thermal Image (Thermodynamics)

Density (calculated; Density = F (p,t))

- Operational Safety
- Early / Proactive Leak Detection

John F. Kennedy: We choose the moon

Proactive Emission Monitoring

Pressure and Temperature Measurement

- Combined Gas Density-Humidity Transmitter, digital, MODBUS, (Option: DNP 3.0) RS485
- High Accuracy of the density signal 0,5 % of full scale over a wide temperature range
- Excellent Long-term Stability
- Early Leak Detection (Operational Safety)
- Leak Trending (Maintenance & Emission Reporting)
- Early Moisture Detection (Operational Safety)

Nationwide Emission Reporting

Pressure and Temperature Measurement

Precise Information

- ⇒ Density
- ⇒ Humidity

Early Leak Detection

- Reduces Emissions
- ⇒ Allow planned outages

Software

- ⇒ Modular Concept
- ⇒ Software Platforms

Reporting

- ⇒ Substation Level
- ⇒ Utility Level
- Nationwide Level

Advanced embedded Sensor technology SOP (start of production) in spring 2013

Identify & Fix

Precise Information

- ⇒ Density
- ⇒ Humidity

Early Leak Detection

- Reduces Emissions
- ⇒ Allow planned outages

Software

- ⇒ Modular Concept
- ⇒ Software Platforms

Reporting

- ⇒ Substation Level
- ⇒ Utility Level
- ⇒ Nation Wide Level

Advanced embedded Sensor technology SOP (start of production) in spring 2013

Measure

Precise Information

- ⇒ Density
- ⇒ Humidity

Early Leak Detection

- Reduces Emissions
- ⇒ Allow planned outages

Software

- ⇒ Modular Concept
- ⇒ Software Platforms

Reporting

- ⇒ Substation Level
- ⇒ Utility Level
- ⇒ Nation Wide Level

Advanced embedded Sensor technology SOP (start of production) in spring 2013

Control the corrective action

Pressure and Temperature Measurement

Precise Information

- ⇒ Density
- ⇒ Humidity

Early Leak Detection

- ⇒ Reduces Emissions
- ⇒ Allow planned outages

Software

- ⇒ Modular Concept
- ⇒ Software Platforms

Reporting

- ⇒ Substation Level
- ⇒ Utility Level
- Nation Wide Level

Advanced embedded Sensor technology SOP (start of production) in spring 2013

Zero Emission Initative

Pressure and Temperature Measurement

Precise Information

- ⇒ Density
- ⇒ Humidity

Early Leak Detection

- Reduces Emissions
- ⇒ Allow planned outages

Software

- ⇒ Modular Concept
- ⇒ Software Platforms

Reporting

- ⇒ Substation Level
- ⇒ Utility Level
- ⇒ Nation Wide Level

Advanced embedded Sensor technology SOP (start of production) in spring 2013

Zero Emission Initiative - USA

Precise Information

- ⇒ Density
- ⇒ Humidity

Early Leak Detection

- Reduces Emissions
- ⇒ Allow planed outages

Software

- Modular Concept
- ⇒ Software Platforms

Reporting

- Substation Level
- ⇒ Utility Level
- ⇒ Nation Wide Level

Advanced embedded Sensortechnology SOP (start of production) in spring 2013

Samples are currently tested in some pilot substations around the globe

Precise Information is mitigation potential !

Conclusion

Precise Information

- ⇒ Density (early leak / emission reporting Fix it now and not later)
- → Humidity (additional Information = asset protection)

Significantly improve the accuracy of the reporting

⇒ In all levels of the reporting scheme

Example:

(Based on Bank $SF_6 = 1.276.000.000$ metric tons CO_2 eq.; see page 4)

Accuracy of the reporting is based on the instrumentation (gauges, leak detectors,

transducers, scales, cameras)

A threshold of 10 % of the nominal density means: 132.240.000 metric tones CO_2 eq is emitted before you act.

2,5 % Accuracy allows reporting in a level of $\pm 33.060.000$ metric tones CO₂ eq.

0,5 % Accuracy allows reporting in a level of \pm 6.612.000 metric tones CO₂ eq.

Thats all - Thank you

Questions ?

Pressure and Temperature Measurement

