

SF₆ Emissions Reductions through Recovery/Recycling/Reuse

EPA SF6 Workshop, Phoenix, AZ

Lukas Rothlisberger DILO Company, Inc. Odessa, FL 727-232-0050 Lukasr@dilo.com www.dilo.com

SF₆ Handling - Introduction

Discussing simple, economical ways to handle and re-use SF_6

- Processing SF₆ on site for immediate re-use
- Internationally accepted purity requirements
- Eliminating SF₆ handling losses
- Classifying SF₆ for personnel protection
- Transportation issues
- Common sense safety issues

Topics of Discussion

- **General information**
- Contaminants
- DOT/Transportation considerations
- Safety considerations
- SF₆ Handling during breaker maintenance
 Environmental issues

General Information - History

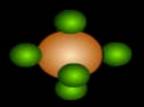
 Discovered in the late 1800's by Henri Moissan

 Le fluor et ses composes (Fluorine and its compounds) published in 1900

Used as a dielectric since the 1960's

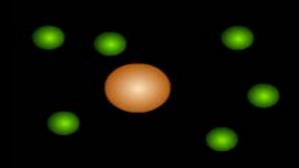
Other uses

Electronics, Linear Accelerators, Radar Systems, Sound Insulation, Magnesium casting, Medical uses

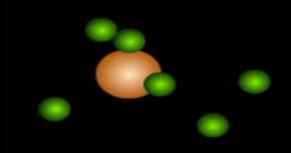

Manmade

- Colorless, odorless, non-toxic, non-flammable
- Inert will not react with other materials
- Thermally stable up to > 350 degrees F
- Excellent thermal transfer characteristics
- Unmatched dielectric strength and arc quenching capabilities
 - ◆ Dielectric 2.3 2.5 (N2 = 1)
 - Arc quenching 100 x better than air
- Self healing / re-association

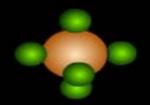
Reaction of SF₆ when exposed to heat



6



2/17/2009



2/17/2009

8

2/17/2009

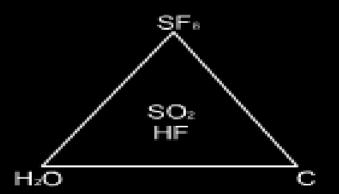
9

SF₆ Contaminants

Moisture

- Formation of by-products
- Decomposition by-products
 - Acidic and highly corrosive
 - Health hazard
- Air
 - Lowers dielectric strength
- Oil
 - Reaction with desiccants

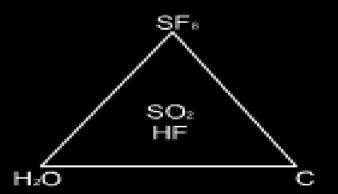
SF₆ Contaminants – Sources


Moisture / H2O

- Present due to adsorption, leakage, handling errors
- **Decomposition by-products / SO₂, SOF₂, HF**
 - Present due to electrical discharges, mechanical generation of particles, reaction with H₂O
- Air
 - Present due to handling errors / faulty handling equipment
- Oil
 - Present due to handling errors / faulty handling equipment

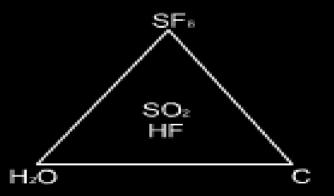
SF₆ Contaminants - Decomposition

Could be solid (visible powder) or in vapor form
 SF₆ - e- SF₄ / H₂O = SOF₂ + HF


2/17/2009

SF₆ Contaminants - Decomposition

Could be solid (visible powder) or in vapor form
 SF₆ - e- SF₄ / H₂O = SOF₂ + HF


2/17/2009

13 -

SF₆ Contaminants - Decomposition

Can be solid (visible powder) or in vapor form SF₆ - e- SF₄ / H₂O = SOF₂ + HF

SF₆ Contaminants - Filtration

Moisture & By-Products Particle filter (powder), drying filter (mixture of aluminum oxide and molecular sieve) On-site removal generally possible Non reactive Gases (Air/N₂) Cryogenic process * Off-site removal only Oil Removal Activated charcoal filtration On-site removal generally possible

Maximum Contaminant Levels

Established by CIGRE International Council on Large Electrical **Systems** Publication 234 / TF B3.02.01 / Rev. 2003 IEC 60480 Currently reviewed by IEEE and NEMA Table 1: SF₆ contaminants; main origins, deteriorating effects, maximum tolerable levels in equipment, proposed maximum tolerable impurity levels for reuse of reclaimed SF₆, and practical impurity detection sensitivities.

Contaminant	Main origin	Deteriorating effects	Maximum tolerable impurity levels in equipment	Proposed maximum tolerable impurity levels for reuse	Practical impurity detection sensitivity
Non-reactive gases: Air	Handling	Reduction of switching performance	3% vol	3% vol total	< 1% vol
CF₄	Switching	Reduction of insulation performance			
Reactive gases or vapours:					
SF4, WF6	Arcing	Toxicity	100 ppmv	50 ppmv total ¹)	~ 10 ppmv total
SOF ₄ , SO ₂ F ₂ SOF ₂ , SO ₂ , HF	Partial discharge Follow-up reactions	Surface insulation by corrosion	2000 ppmv		total
Moisture	Desorption from surfaces and polymers	Surface insulation by liquid condensation	р _{нго} <400Ра ²)	p _{H20} < 150 Pa (T _d < -15 °C) 750 ppmv for p < 200 kPa ³) 200 ppmv for p < 850 kPa ³)	< 10 Pa ⁴)
Oil	Pumps, iubrication, bushings to oil insulated equipment	Surface insulation by carbonisation	not quantified	10 mg/m³ ⁵)	< 1 mg/m³
Dust Carbon Dust/particles	Arcing, partial discharges Assembling, mechanical	Surface insulation by conducting deposits, gas	Not quantified	Should be removed by dust filter of pore size	
Switching dust: CuF ₂ , WO _x F _y ,	wear Contact erosion by arcing	and surface insulation		< 1 µm	

1) or, equivalently, 12 ppmv SO₂ + SOF₂, see Appendix 2, Section 2. 2) Based on IEC 60694 and corresponding to a dew point of $T_d = -5^{\circ}C$.

3) Within the complete range of reuse pressures p < 850 kPa, covering all possible applications (both HV and MV insulation systems as well as all circuit breakers), the low reuse pressure range p < 200 kPa</p> has been defined to highlight low pressure insulation systems (typically applied in MV distribution). 4) corresponding to a dew point $T_d = -45$ °C

5) Corresponding to 0.3 ppmw in pure SFe at 500 kPa

DILO

Packaging Issues ♦ > 25 PSIG @ 68 F classified as HAZMAT by DOT Includes all Class 2.2 gases (SF₆, N₂) Only transport in approved vessels (49CFR173.115(b)) Vessel must bear DOT approval stamp ★ DOT3AA2015 (example) Minimal Pressure Rating 1,000 PSIG ★ Within 5 years (10 years with *) of test date

Weight restrictions / Paperwork requirements

Condition:	Classification:	Limitations:	
No single package >220 lbs, and/or combined packages >440 lbs	Materials of Trade (MOT)	None	
Single package >220 lbs, and/or combined packages >440 <i>but</i> <1001 lbs.	Bulk Hazardous Exempt	Material Safety Data Sheet (MSDS) <i>and</i> Shipping Manifest	
Combined weight >1000 lbs.	Bulk Hazardous	Same as above, but Class 2.2 (UN1080) placards on all sides of vehicle <u>and</u> driver must carry HazMat endorsed driver's license	

Common Mistakes

- DOT weight references are gross-aggregate
- Any class 2.2 gas (N₂, dry air) on vehicle must be included in gross-aggregate weight calculation
- SF₆ Circuit Breakers (even on mobile substations) are not DOT approved vessels
- Loading a non DOT approved vessel on a flatbed is still illegal
- Tow vehicle/trailer combination are considered single vehicle
- Only HAZMAT endorsed drivers may transport vehicles with placards FMCSA383.93(b)

Cylinder markings

Cylinder markings

SF₆ Handling - Safety

Harmless in the presence of air

- Will displace air / asphyxiation
- Will decompose at temperatures > 350 F
 - Breaker operations
 - Welding
 - Running engines / heaters / open flames
 - Smoking
 - ★ Temperature during drawing up to 700 C (1292 F)

Source: http://www.physlink.com/education/askexperts/ae1.cfm

SF₆ Handling – Safety

Faulted / Arced SF₆

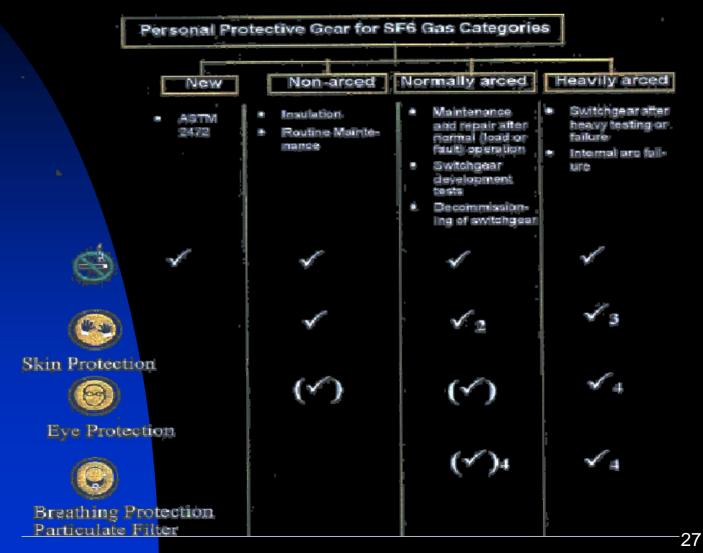
- Corrosive, highly acidic (SOF/SOF₂, HF)
- Present as solid (powder) as well as vapor
- Consequences of exposure
 - Respiratory irritant
 - Acid burn / Skin rash
 - Eye irritation
 - Serious health risk

SF₆ Handling - Safety

Exposure Limits / TLV / PEL \bullet SF₆ = 1,000 ppmV \bullet SO₂/SOF₂ = 5 ppmV \bullet HF = 3 ppmV

★ All levels per OR-OSHA / airborne concentrations

Additional information available at www.cdc.gov/niosh



SF₆ Handling - Safety

Dealing with decomposition by-products Test and classify SF₆ before degassing GIE ♦ New SF₆ Gas in original cylinder Non Arced \star < 100 ppmV SO₂ + SOF₂ Normally Arced \star > 100 ppmV SO₂ + SOF₂ < 1% Heavily Arced $\star > 1\% ppmV SO_2 + SOF_2$

SF₆ Handling – Safety PPE – What to wear, when to wear it

SF₆ Handling - Safety

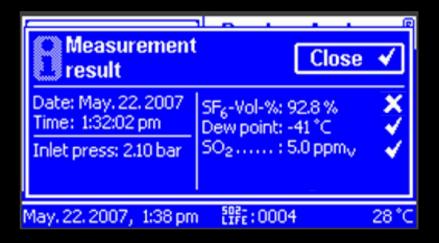
Handling heavily arced SF₆

- Heavily arced SF₆ generally a result of catastrophic equipment failure
- GIE will need extensive repairs or need to be replaced
- No urgency to clean / repair GIE
- Use specialized Hazmat contractor

USE COMMON SENSE

SF6 Handling – Quality Check

Testing SF₆ prior to degassing GIE \diamond SO₂/SOF₂ Personnel safety ★ Filter selection Volume % / Purity ★ Required Storage Ability to bring replacement SF₆ Moisture ★ Filter selection



SF₆ Handling – Quality Check

Gas analysis test result

Measurement result		Close	~	
Date: May, 22, 2007 Time: 1:38:02 pm Inlet press: 2.10 bar	SF ₆ -Vol-%: Dew point: SO ₂ : Result: O	5.0 ppm _V	***	
May.22.2007, 1:38 pm 🛛 👯 🗧: 0004				

SF₆ Handling – Recovery Preparation

Provide adequate storage

 Enough in-date cylinders on hand

 Use Pre-Filter as needed

 Normally or heavily arced SF₆
 High moisture levels

 Leak check hoses / fittings (vacuum raise test)

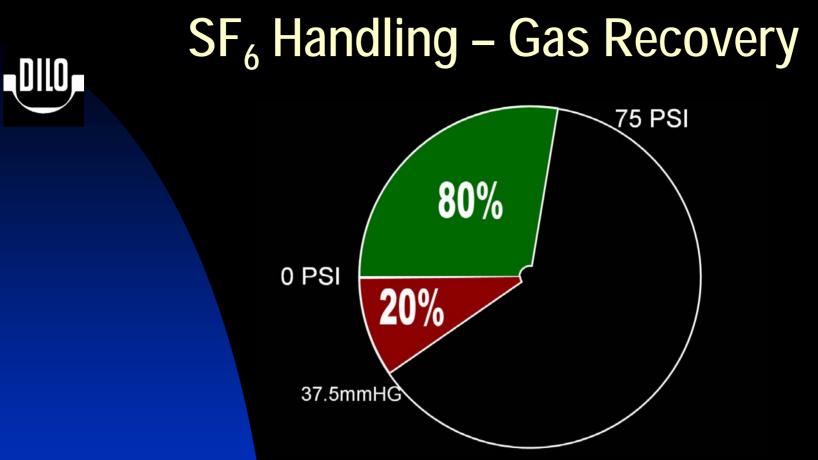
DIIO

SF₆ Handling – Gas Recovery

Determining how much SF₆ has been recovered:

$$\left(\frac{P_I - P_F}{P_I}\right) \times 100 = \% re \operatorname{cov} ered$$

P_I = Initial breaker pressure in mmHg(absolute) P_F = Final breaker pressure in mmHg(absolute)

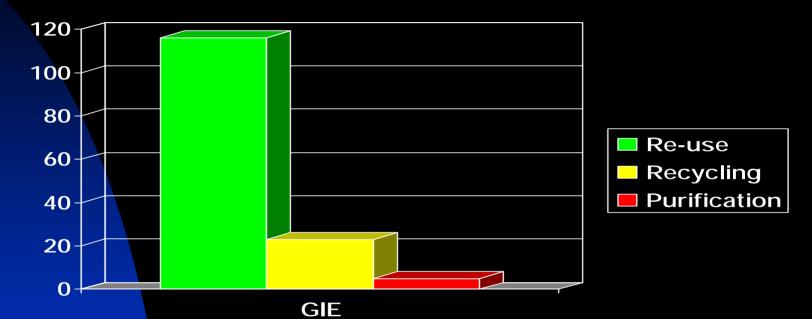

SF₆ Handling – Gas Recovery

SF₆ recovery comparison GIE containing 2,200 lbs @ 87 PSIG operating

pressure

- ♦ Recovery to 0 PSIG = 85.71% SF₆ removal
 ★ 315 lbs of SF₆ lost
- Recovery to 200 mmHg = 96.21% SF₆ removal • 86 lbs of SF₆ lost
- BLANK OFF PRESSURE AT THE END OF RECOVERY PROCESS SHOULD BE < 50 mbar / 37.5 mmHg (Torr)

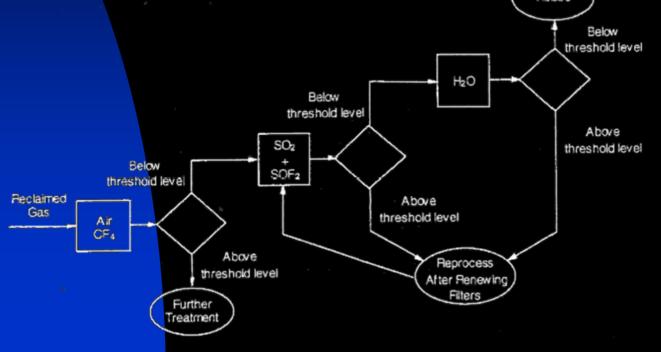
- Breakers with known leakage
 - Initially stop recovery process at 2 PSIG
 - Recover and store residual SF₆ into separate cylinders


SF₆ Handling – Gas Recovery

Suggestions / Avoiding mistakes Always analyze/test gas before recovery Standardize GIE fittings Use properly sized recovery system/compressor No replacement for displacement ♦ Complete SF₆ recovery from GIE Understand residual / blank-off pressure Do not purposely release SF₆ to avoid air intrusion during recovery process (GIE leakage)

Real Life – In GIE SF₆ Quality

- 144 pieces of GIE recently tested by DILO
- 116 (80.6%) qualified for immediate re-use
- 23 (16%) required recycling due to high H₂0 or decomposition
- **5 (3.4%) requi**red purification due to non-reactive gases


2/17/2009

SF₆ Handling - Testing

Following the standard check will allow field personnel to determine if the recovered SF_6 can be re-used

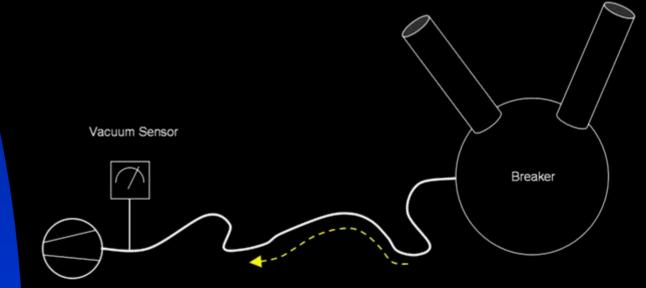
37

SF₆ Handling – Breaker Entry

- After SF₆ recovery, GIE will be in substantial vacuum
 - Whenever possible, purge vacuum with N₂/dry air
 - Wear proper PPE
 - If powder present, clean surfaces with HEPA vacuum
 - Clean surfaces with OEM approved solvents only

SF₆ Handling – Desiccant Disposal

Spent desiccant / cleaning supplies need to be neutralized for disposal


- Place in metal or plastic container
- Add water and baking soda
 - ★ Will produce heat / caustic steam
- Test PH to ensure solution is neutralized
- Dispose in accordance with Local/State/Federal Regulations

SF₆ Handling - Vacuuming

Vacuum pump setup

Vacuum Pump

2/17/2009

SF₆ Handling – Vacuuming

- Before closing breaker add new desiccant
- Immediate air and moisture removal once GIE has been sealed
- Vacuum reading only accurate at static pressure
- Proper vacuuming instructions *must* include level (example: 1 Torr) *and* hold time (example: 1 hour)
 - This requires that after having the pump stopped for 1 hour, vacuum level is = < 1 Torr
- Gas-scavenging will speed up the process

SF₆ Handling - Vacuuming

Suggestions / avoiding mistakes
Use gas-scavenging whenever possible
Use properly sized vacuum pump

No replacement for displacement

Use least restrictive hose/fitting/connection
Properly perform vacuum raise test

SF₆ Handling - Filling

Fill GIE using regulators only Fill from upright cylinders only

 Exception: Using filling equipment with integrated evaporator and filter

Apply heat to cylinders before filling

- Use only thermostatically controlled heating blankets
- ◆ Limit heat to < 120 F</p>
- Test SF₆ again before energizing equipment

SF₆ Cylinder Handling

- Only use weight to determine SF₆ content in cylinders
- As SF₆ is liquefied in cylinder, static vapor pressure cannot be used to determine SF₆ content
- Cylinders in storage should be separated
 - ◆ Full
 - Partial
 - Empty

Environmental Considerations

SF₆ is *not* an ozone depleting One of (6) gases listed under Kyoto Protocol GWP 24,000 times higher than CO2 Estimated atmospheric lifespan 3,200 years **EPA SF6** Emission Reduction Partnership www.epa.gov/electricpower-sf6 As of 2006 approximately 85 US Utility Partners

Summary

- Indefinite re-use of recovered SF₆ generally possible
- Immediate re-use (using CIGRE / IEC standards) of recovered SF₆ even in new GIE generally possible
- Properly trained personnel will be able to minimize/eliminate handling losses and exposure to harmful by-products
- Provide specialized training for personnel involved in SF6 handling

SF₆ Handling – Questions QUESTIONS?

Contact:

Lukas Rothlisberger DILO Company, Inc. 727-232-0050 Iukasr@dilo.com

