
Providing innovative technologies...

...for the energy industry.

SF₆ Leak Detection with Low-Cost Wireless Sensors

Steve Willard P.E., Product Development Manager, Avistar Inc.
US EPA 4th International Conference on SF₆ and the Environment,
Nov 28, 2006

Who is Avistar?

Avistar Inc. is the non-regulated subsidiary of PNM Resources (NYSE: PNM) and sister company to

- PNM (gas and electricity utility in New Mexico)
- Texas-New Mexico Power (electricity utility in New Mexico, electricity transmission and distribution company in Texas).
- First Choice Power (competitive retail electricity provider in Texas).

Avistar develops innovative technologies to address our sister utilities' operational challenges; commercializes those technologies that succeed Avistar maintains multiple products available for license and/or sale:

- Reliadigm: reliability analysis software for any capital-intensive industry, such as power generation.
- AP-20: a phase-detection tool for utility line personnel and other field workers.
- Mutual Inductance Bridge (MIB): an NDT system for detecting boiler wall thinning in power plants and other process industries.
- Mosaic: a wireless technology platform for tracking SF₆ levels in breakers

Not only are major assets antiquated their control systems are also out of date.

Circuit Breakers

- 21% of the fleet is 30-40 years old
- 17% is over 40 years
- Fleet includes numerous breaker types
- At > 69kV, majority are bulk oil breakers (50%) followed by dead tank SF6 breakers (36%)

Control Systems

- Provide minimal system condition information and utilize decades-old technology
- Data networks serving as an interface were not installed or spec'd to accommodate high bandwidths
- Not suitable for Asset
 Management based users

SF₆ Monitoring Needs – What Our Utilities Want

Low cost

Current technologies afford

High cost leak detection

Medium cost monitoring

Lower cost monitoring needed

Retrofits

Installation costs can double the project cost

Use of wireless communication minimizes retrofit costs - do not use SCADA

Predictive

 O&M costs will be reduced by preventing over-time response to low pressure alarms

Accurate

- Current monitors only show larger leaks
- Need to accurately accommodate for diurnal and annual pressure changes due to ambient temperature variations

Environmental Sustainability

Although small overall GHG contribution SF₆ is deemed "low hanging fruit"

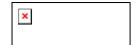
Utilize Available Technological Advances

Wireless mesh networks

- Low-cost radios or motes, and receptive gateways
- Operate even in high EMF noise conditions
- Each radio transmits, also receives and retransmits signals from neighbor radios
- Self-configuring, self-healing

Silicon based and micro-machined transducers

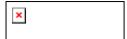
- Increased accuracy
- Decreased size
- Decreased cost


IEDs

- Perform more analysis on the sensor chip
- Sharp reduction in size and associated power consumption

Algorithms

- Advances in the software codes coupled with advances in chip technology
- More analysis at the sensor, less on desktop

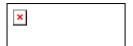


Solution is a low cost on-line SF₆ monitor

Outcome

- Detects and forecasts leak rates much more accurately
- Allows utility personnel to manage and maintain the SF₆ breakers more efficiently (scheduled maintenance is cheaper than unscheduled)
- Provides data source for Environmental Sustainability – "you can't control what you don't measure"

SF₆ Solution - Components


IEDs

- Perform much more analysis on the sensor chip
- Sharp reduction in chip size and power consumption
- Size reduction has already led to significant cost reductions
- Radio costs are expected to drop even more with increased manufacturing - \$50 per sensor (mature OEM)
- Overall low power consumption extends battery life

Batteries

- Lithium Ion technology indicates life of 3-5 years for lower data sampling rates
- Integrated into the sensor package to allow easy replacement

Benefits of Wireless Communication

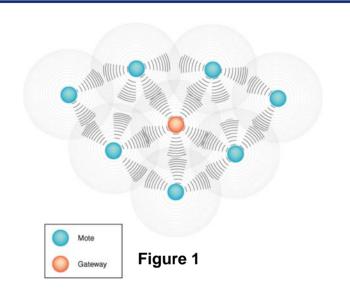
Wireless Communication

Mesh Network

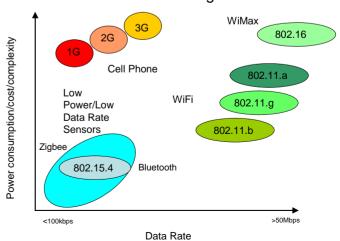
Utilizes 913MHz frequency IEEE 902.15 standard Much more viable than 2.4GHz in a substation environment

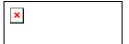
Gateway web server

Can talk a variety of standard protocols over Ethernet or RS232 Working on DNP3 Future focus in IEC61850

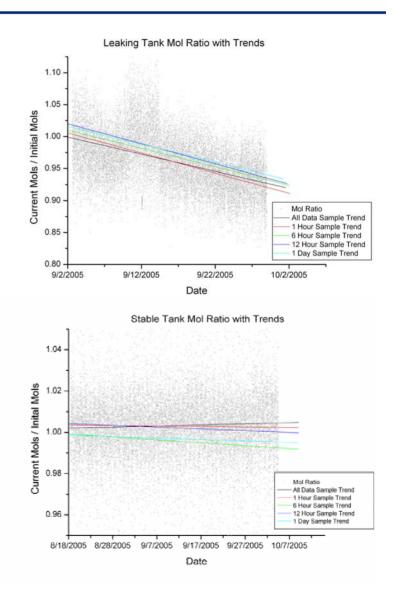

Security

Password & site certificate encrypted with SHA

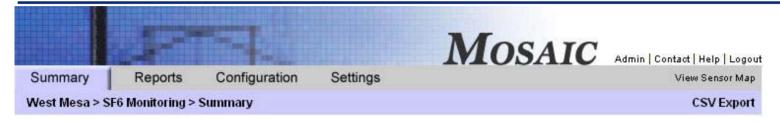

Outbound communications options


Wired – Ethernet Wireless

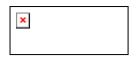
- Digital Cell Modem,
- CDMA 56kbs
- ~\$300 hardware, \$60/month



SF₆ Measurement Approach


Algorithms

- Measure accurately and accommodate for diurnal swings
- Employ ideal gas equation to determine molar content
- Require temperature and pressure of the gas at a given time
- Probing of interior of breaker for temperature not allowable
- Enhance sensitivity of pressure sensor by creating ratios of initial readings to current time reading
- Derive the initial molar content of the gas and compares ensuing molar content to the initial reading


SF₆ Measurement Approach

ID▲	Name	Current Data Timestamp (MDT)	Expected Gas Alert Date	Gas Level	Leak Rate (monthly)	Battery Level	Sensor Status
1	Breaker 21382	11/08/2006 14:19:57	N/A	100.0% 🎺	0.0% 🎺	100.0%	1
2	Breaker 17982	11/08/2006 14:14:00	03/11/2007	100.0%	6.2%	100.0% 🗸	1
3	Breaker 23582-2	11/08/2006 14:37:04	N/A	100.0% 🎺	0.0% 🍑	100.0% 🎺	1
4	Breaker 22482-2	11/08/2006 13:36:06	N/A	100.0%	0.0% 🎺	100.0% 🎺	- 1
5	Breaker 23582-1	11/08/2006 13:52:46	N/A	100.0% 🎺	1.4% 🍑	100.0% 🎺	1
6	Breaker 22482-1	11/08/2006 13:35:21	N/A	99.2% 🗸	0.0% 🎺	100.0%	V

@ 2006 Avistar Inc. All rights reserved.

Quantifying the Numerous Benefits of Enhanced Monitoring

Decreased O&M costs

- Unscheduled repairs meant overtime, unscheduled dispatch
- Forecasted SF₆ levels allow for improved scheduling

Increased Reliability

Outages due to leaks can be extremely costly from a whole system perspective

N-x redundancy

Improved Environmental Sustainability

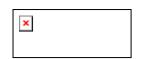
- Low cost of enhanced monitoring + high GHG factor of SF₆ = a compelling argument for better monitoring
- From a cap and trade perspective with CO₂ at \$5/ton, the benefits can easily outweigh the costs of the sensor and gateway

Scalable communications platform -

up to 200 low data rate sensors per gateway

O & M Savings – Limit Overtime Call Outs

Based on 2005-6 Data


Used actual leak rates

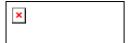
Segmented for leaking population of puffers and 2 pressure breakers

- Industry average = ~3% (from EPRI)
 Other sources indicate anywhere from <1% to 10%
- Avoidance of overtime call outs

	2 Pressure	Puffers
Total leak population	73%	17%
Payback*	.6 – 2.5 years	.7 – 4 years
Average Savings	\$329	\$441
Traditional method "Rolling the Truck"	\$500	\$500

*payback calculated when windshield time, 20% cost of gas (\$6/lb) factored into savings and a cost of \$500.

Reliability Impact – Understanding Critical Assets


Utility Perspective: for critical breakers 4 hour leakage outage can place a n-1 into a n-0 condition with backup reliance on aged breakers – greatly increased risk profile

EPRI Study: SF6 monitoring is a key issue in overall knowledge of CB Monitoring and Management

Significant cost of MF

CIGRE Study – "Problems with the tightness of SF6 CBs (7.2% of MF and 39.6% mf) demand improvement of sealing systems.. .failures of the density supervision itself is responsible for 4% MF and 10.7% of mf."

IEEE Study: FMEA of breakers can make case for CB monitoring

Environmental – Additional Savings

Current Driver - Stewardship

- SF6 targeted as a key component of Environmental Sustainability Efforts
- Scan of major utilities environmental web pages often feature SF6

Value of database for sensor data

Establishes basis for cap & trade - data is:

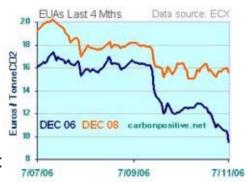
Measurable

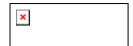
Quantifiable

Verifiable

Future Driver - Cap & Trade Allowances

Future Driver – Cap & Trade Allowances


- 1 lb leaked = 11 tons of CO2 equivalent
- \$4-7/ton projected allowance US (current \$4.5 on Chicago
- US Regional Cap & Trade efforts being defined


SF6 listed as offset

Cap recently authorized by CA Energy Commission

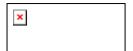
Increased regulation on SF6 tracking foreseen in EU short term

- Containment regulations on "F gases" Jan 06
- Recent price drop of CO2 in EU market for 1st phase allowances due to surplus
- 2nd phase prices holding steady

Environmental - Continued

Environmental

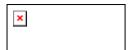
 Assume that a sensor allows for 20% of leak mitigation through better knowledge of gas content


Apply \$5/ton projected allowance to PNM breaker fleet

Entire Fleet

				SF6	Unit
Utility	avg leak	avg lbs	CO2 equiv	Monitor	Allowance
Breaker	rate	leaked	tons	Mitigation	@\$5/ton
SF6 Puffer	1.5%	3	35	20%	\$ 35.00
2 Pressure	6.9%	120	1429	20%	\$1,429.47

Leaking Fleet Only


				SF6	Unit
Utility	avg leak	avg lbs	CO2 equiv	Monitor	Allowance
Breaker	rate	leaked	tons	Mitigation	@\$5/ton
SF6 Puffer	20.4%	33	391	20%	\$ 390.58
2 Pressure	10.0%	162	1940	20%	\$1,940.00

SF₆ Solution is Scalable

Additional sensors under evaluation include:

- Transformer temperature sensors to be aligned in conjunction with online DGA monitors
- SF₆ online monitoring for chemical degradation
- Air compressor run-time monitors for two pressure breakers
- Intrusion detection monitors for security purposes
- Traditional status point reporting for specific substation operating points that aren't currently monitored – using low-cost cell modems to transfer data into the utility LAN & other data environments

SF₆ Solution is Scalable

This path to enhanced monitoring allows for:

- Benefits that more clearly outweigh costs because they are identified on an individual rather than a collective analysis
- Incremental funding that allows for one automation step to be taken at a time while creating a cost efficiency for future steps
- Economic justification made because the criticality of each piece of substation equipment tends to be analyzed separately, not only as it relates to overall system reliability but as it relates to everyday O&M activities and environmental impact
- Implementation of appropriate technology through the use of the latest advances in robust wireless communication that functions in high EMF noise environments
- Focused management philosophy in which incremental solutions are presented with defensible cost-benefit ratios