MTG Shield Magnesium Melt Protection System

A Presentation for EPA SF₆ Conference 2006

Ron Geib Technical Marketing Manager Matheson Tri-Gas, Inc.

Sherry Everett, Project Contractor

Agenda

- Matheson Tri-Gas Company Overview
- Why Stop Using SF₆?
- MTG Shield Overview
 - Active Ingredient
 - Process
 - Advantages
 - Successes
 - Economics
- Summary
- Q&A

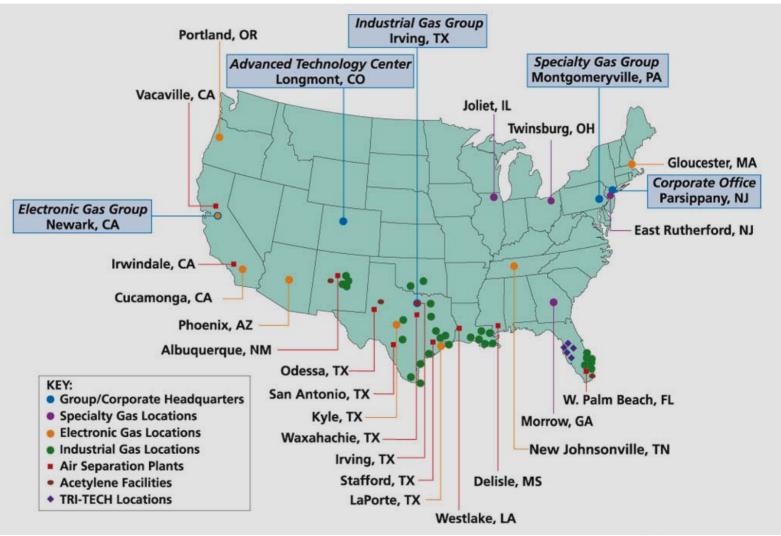
Matheson Tri-Gas, Inc.

Matheson Gas Products:

Founded in 1927

Over 1000 employees worldwide

Largest Subsidiary of Taiyo Nippon Sanso Corporation (the largest and most influential industrial gas company in Japan)

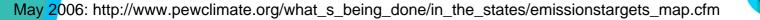


Taiyo Nippon Sanso Corporation

Matheson Tri-Gas

Why Stop Using SF6?

- International: Kyoto Treaty
- European Union: Discontinue SF₆ Use in Casting Industry by Year-End 2008
- Feb 2003 EPA's Partners and the IMA Committed to Eliminate SF₆ Emissions by Year-End 2010



Why Stop Using SF6? U.S. Greenhouse Gas Initiatives

 Currently 12 States have Greenhouse Gas Emissions Targets

- First U.S. Regulation to Put a Hold on Global Warming Gas Emissions
 - California Warming Solutions Act of 2006

Why Stop Using SF6?

- Viable and Sustainable SF6 Replacement Technology Now Exists
- August 2006: Partnership Demonstrates New Technologies for the Magnesium Industry

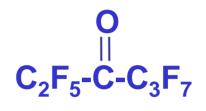
"Led by the <u>SF6 Emission Reduction Partnership for the</u> <u>Magnesium Industry</u>, a group of companies and researchers from Australia, Canada, Japan, and the U.S. conducted pilot tests and emission measurements for cutting-edge, climatefriendly melt protection technologies that promise significant environmental benefits."

- http://www.epa.gov/highgwp/magnesium-sf6/resources.html#media

MTG Shield Overview

- Integrated Magnesium Melt Protection System
 - Patented in Japan
 - US & Europe Patent Pending
- MTG Shield Active Ingredient
 - Fluoroketone Liquid Mixture
 - 1.4% Novec 612 in Balance CO₂
 - Supplied in Cylinders

MTG Shield Overview


- MTG Shield Equipment
 - Cabinet which holds 2
 Cylinders
 - Gas Mixing Panel (Required option)
 - Gas Distribution Panel (option)
 - Heated Regulator for CO₂ Supply (Required option for CO₂ Dilution)

MTG Shield Active Ingredient Overview

- Physical Properties
 - Fluorinated Ketone Liquid (3M's Novec[™] 612)

- Vapor Pressure @20°C 32.6 kPa (~5 psia)
- Max. Gas Mix Concentration: 0.7% in 800 psi CO2
- Gas Density @80°C, 1 atm: 0.011 g/mL
 (Air is <0.001 g/ml)
- Nonflammable

Chemical Registry

- 3M's Novec[™] 612 Internationally Registered
- U.S. EPA under TSCA
- ELINCS in Europe
- CDSL in Canada

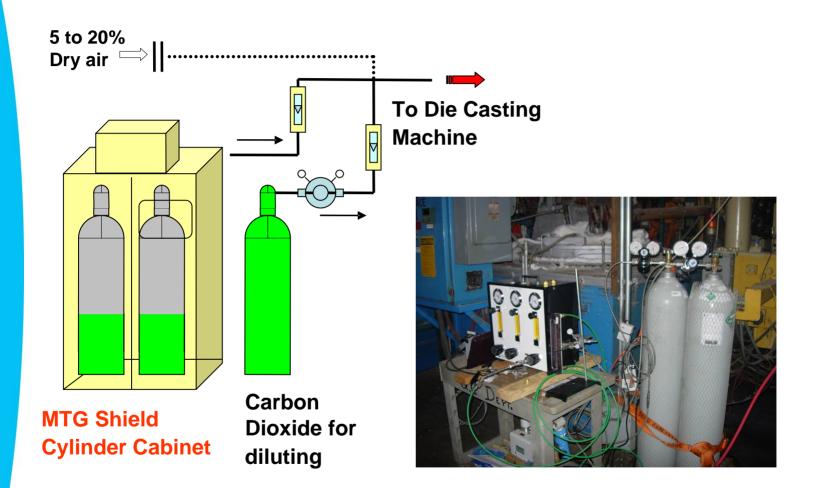
MTG Shield Active Ingredient Overview

- Environmentally Friendly
 - Atmospheric Lifetime = 0.014 yrs (~ 5 days)
 - Low Global Warming Potential (GWP = 1 Same as CO₂)
 - No Stratospheric Ozone Depletion Potential

Environmental Properties	SF_6	SO ₂	HFC-134a	Novec™ 612 Agent
Atmospheric Lifetime (years)	3200		140	0.014
Global Warming Potential (GWP)	23,900	1	1300	1

MTG Shield Active Ingredient Overview

- Safe to Use Nontoxic at Room Temp
- Performance Comparable to SF₆ at a Much Lower Use Concentration
 - Concentration/Flowrate are 5 to 30% that of SF_6
 - More Reactive than SF₆
- Minimal (Manageable) Thermal Decomposition Products
- Sustainability
 - Viable and NOT Currently Subject to any Foreseeable Regulatory Actions



MTG Shield Process Overview

- Gas Supply Cabinet
 - Heats MTG Shield Cylinders to Supercritical State
 - Output is Concentrated MTG Shield Gas Mixture
- Concentrated MTG Shield Gas Mixture is Diluted to Final Working Concentration with Carrier Gas
- Preferred Carrier Gas
 - CO₂ with up to 20% Dry Air
 - Diecaster Furnaces Require O₂

MTG Shield Process Overview

MTG Shield Cover Gas Distribution

- Performance Factors
 - Alloy Being Cast
 - Type of Casting Process
 - Furnace Heating Geometry
 - Ingot Addition Point
 - Operating Procedures Including Dross/Sludge
 Removal Methods and Frequency
 - Cover Gas Distribution and Flow Control

MTG Shield Cover Gas Distribution

- MTG Shield Cover Gas is Denser Than SF₆
 - More Limited Carry Than SF₆
- *Even* Distribution of Cover Gas is Very Important For All SF₆ Substitutes
 - Much More Reactive
- **Uneven** Distribution Requires Higher
 Concentration and Higher Flow Rates
 - Higher Emissions of HF, Carbonyl Fluoride and Trace PFCs

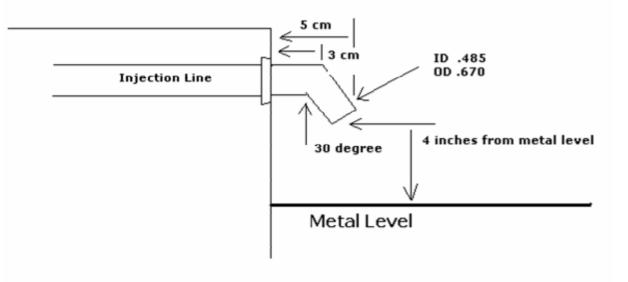
SF₆ Cover Gas: Single Point Addition

Courtesy of Dean Milbrath, 3M Company

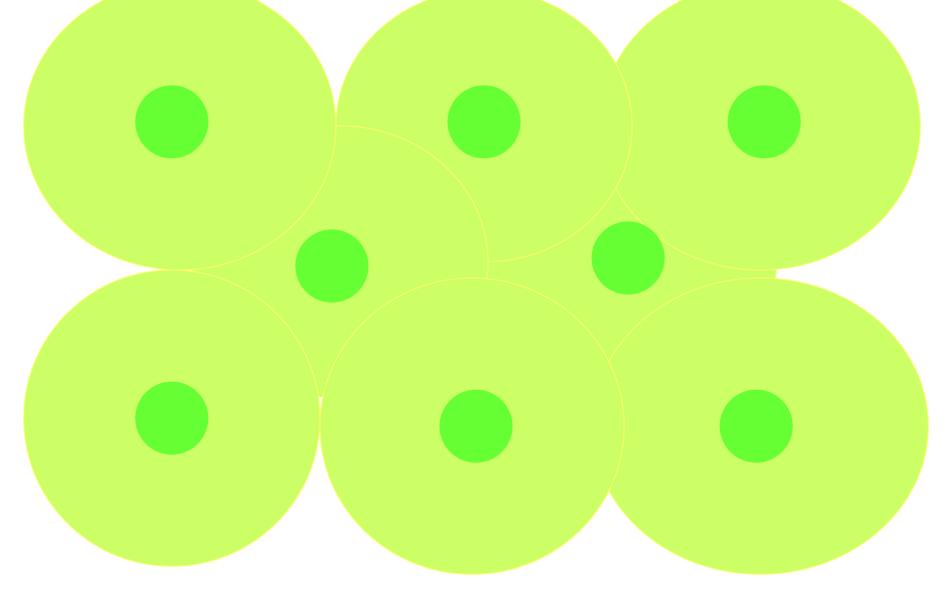
Reactive Cover Gas: Single Point Addition

Courtesy of Dean Milbrath, 3M Company

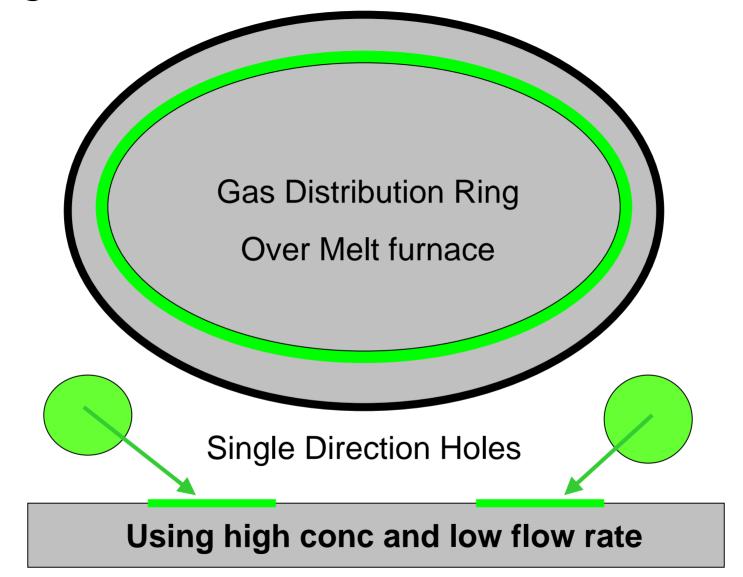
Reactions of NovecTM 612 $\begin{array}{c} & \text{``MgF}_2\text{''} + CO_2 \\ & & & & \text{Mg}^0 \\ & & & & \text{Mg}^0 \\ & & & & \text{C}_2F_5\text{-}C\text{-}C_3F_7 & \xrightarrow{-CO} & & & & \text{C}_2F_5 & + & \text{C}_3F_7 \end{array}$

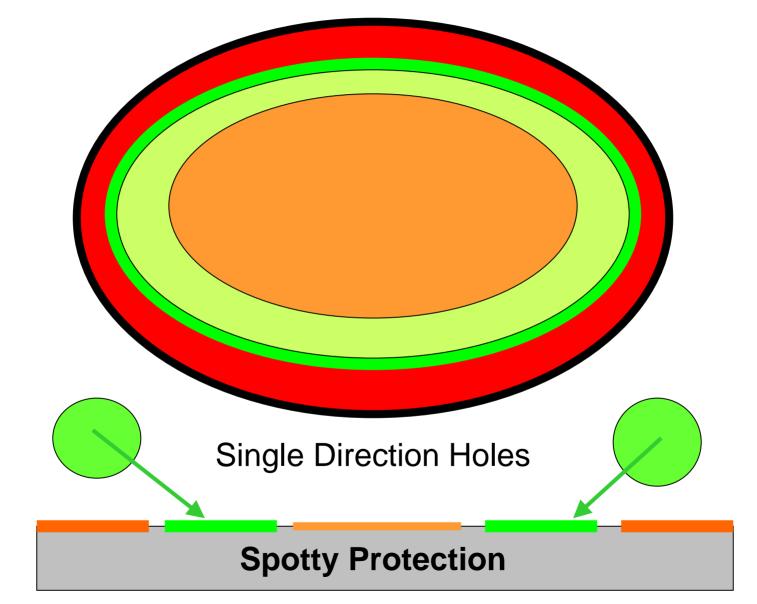

TRI•GAS®

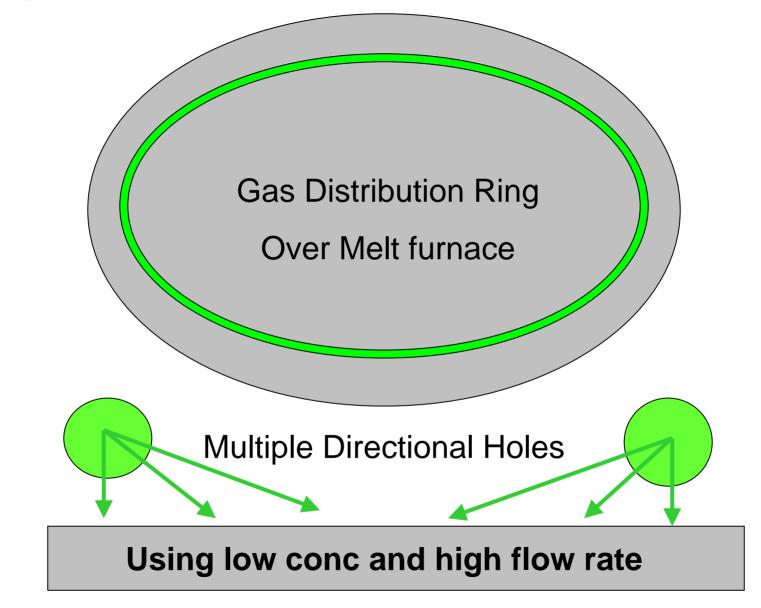
ask. . . The Gas Professionals

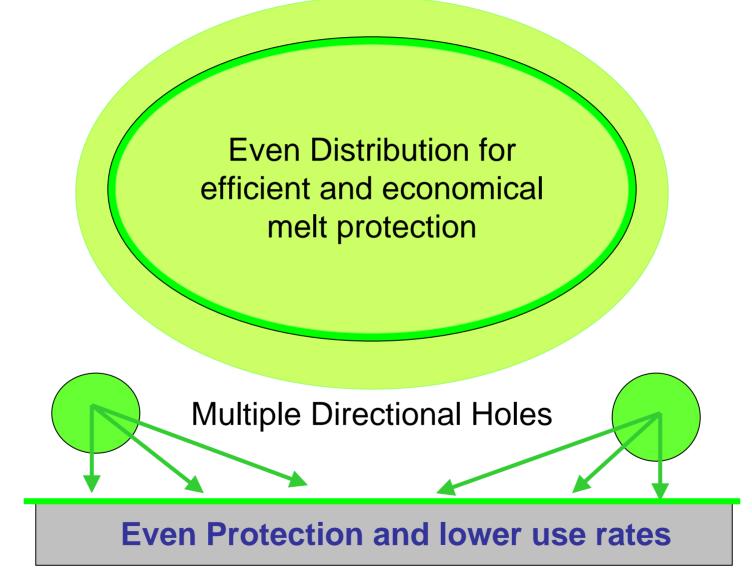

Cover Gas Distribution

- In Furnaces, Multiple Point Addition Preferred
 Over Single Point Addition
- Vertical Nozzles, Downward Flow Introduction
 Preferred



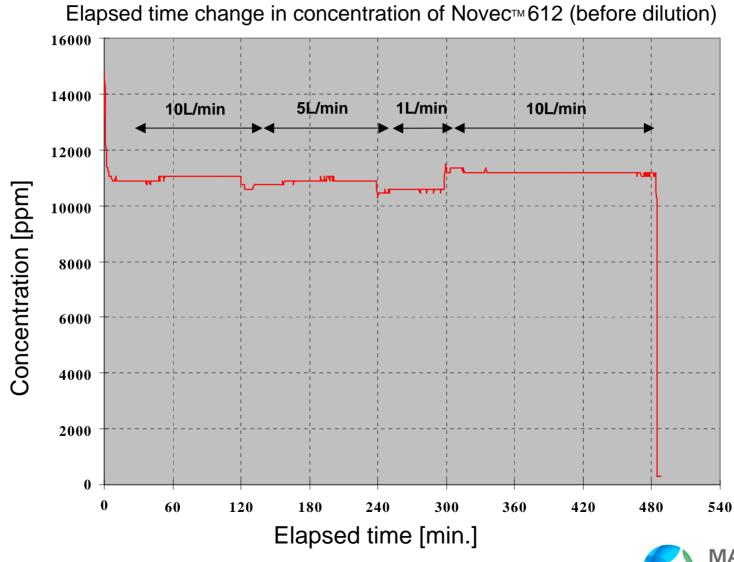

Reactive Cover Gas: Multiple Point Addition


Courtesy of Dean Milbrath, 3M Company


Courtesy of Dean Milbrath, 3M Company

Courtesy of Dean Milbrath, 3M Company

Courtesy of Dean Milbrath, 3M Company


Courtesy of Dean Milbrath, 3M Company

MTG Shield Advantages

- Simple Supply Configuration Using a Proven Cover Gas Agent
- Cylinder Supply Makes it Easy to Control Cover Gas Concentration
 - Enables Constant Cover Gas Supply
 - Consistent Concentration
 - Precise Consumption
 - Less Chance of Generating Toxic and Corrosive gases
- Allows Continued Cover Gas Supply for a Period of Time in the Case of Power Failure

MTG Shield Consistency of Supply

MTG Shield Successes

- Tokai Rika, Otowa Plant, Japan Installation
- Several Additional Pilot Trials Completed and Currently Underway
- TNSC Presented with Japan Magnesium Association Technology Award for Mg Shield
- Successful EPA Die Casting Trial Conducted August 2006

US MTG Shield Die Casting Trial

- Conditions
 - Cold Chamber Die Casting
 - AZ91 Alloy
 - 0.3% SF6 Bal Air
 - 35 l/min flow rate
- MTG Shield Results
 - Excellent coverage at 150 ppm
 - Less than 50 ppm HF in the furnace

US MTG Shield Die Casting Trial

(Uncorrected Trial Data: In-furnace Measurements)

Novec Conc In	400 ppm	200 ppm	~150 ppm
Going In Novec	343 ppm	190 ppm	152 ppm
Time:	8:50 a.m.	9:50 a.m.	3:25 p.m.
Furnace Concs:			
Novec ppm	178	86	28
HF ppm	128	177	48
COF2 ppm	0	0	0
H2O %	0.29	0.27	0.56
CO2 %	59.4	disc.	disc.
Oxygen	1%	1%	1%

Japan MTG Shield Sand Casting Trial

Specification				
Туре	Sand Casting			
Molten metal capacity	100 kg			
Melting Temp	750			
Casting Temp	750			
Magnesium Material	ZE41A Mg 4% Zn 1% RE			

Cover Gas

SF6	2.0% SF ₆ , 10L/min, 100% CO ₂
MG Shield	0.14% Novec 612, 20L/min, 100% CO ₂

Lower Volume Application Options

- No Capital Option
- Pre-Mix: 1400 ppm Novec 612 balance CO₂
- Dilution System Only Required
- Pre-Mix: 0.7% Novec 612 balance CO₂

Cover Gas Economic Optimization

- Specific Magnesium Alloy
- Melt and Surface Temperature
- Exact Melt Furnace: Size and Configuration
- Furnace Lid and Cover Gas Ports
- Sealing at Lid, Doors and Ports
- Operating Procedures
- Carrier Gas Used (CO₂ vs Air vs CO₂/Air)

MTG Shield Melt Protection System: Conclusions

- Virtually Eliminates GHG Emissions
- Commercially Proven and Viable
- Enables Tight, Stable and Consistent Supply of Cover Gas at Very Low Use Concentrations
- Optimized Conditions Result in Little to No HF and Byproduct Formation and More Economical and Efficient Operations

Thank You

MTG Shield Contacts for More Information:

Ron Geib: rgeib@matheson-trigas.com Sherry Everett: sherryleverett@comcast.net

