Cooperative Study of Magnesium Melt Protection Technologies: Emissions Characterization and Occupational Exposure Holger Brandt, Lunt Manufacturing and Scott Bartos, U.S. EPA

Magnesium Die-Casting

A Study in the Use of AM-Cover[™], MTG-Shield[™], SO₂, and SF₆ November 28, 2006

Lunt Manufacturing Co., Inc.

- Privately owned company started in 1973 by Helmut Brandt.
- Lunt is one of the few die casting companies exclusively devoted to magnesium alloy die casting and has one of the most diversified application portfolios.
- Lunt produces over 200 different magnesium parts for Automotive, Power Tool, Recreation and Computer/Electronics industries.
- Lunt has 19 cold-chamber die cast machines ranging in size from 400t to 4000t and has significant secondary operation capabilities.
- We were the first to introduce a centralized SF₆ system into production for die cast melt production in 1977. It was a readily available gas, highly effective & non-toxic.

Lunt's Environmental Leadership

Environmental commitment

- ISO 14000 Certified
- Elimination of SF₆ by end of 2007.
- Participant in the EPA's SF₆ Emission Reduction Partnership since 1999
- Recognized by White House and EPA for support of Climate VISION in 2003
- Volunteered to host the melt protection measurement study in June 2006

Cooperative Study Details

 Strong support from industry suppliers Careful coordination of numerous parties Lunt facility in Hampshire, IL Where: When: August, 2006 Lunt Manufacturing Co., Inc. Who: **US Environmental Protection Agency Advanced Magnesium Technologies** Matheson Tri-Gas/Taiyo Nippon Sanso Corporation **Polycontrols Technologies** 3M **ICF** International **URS** Corporation

> 4th International Conference on SF6 & Environment San Antonio, Texas

Study Details - Parameters Study Parameters: Automated 400t Cold-chamber die casting cell • • Cover gases evaluated: AM-Cover[™] (HFC-134a) w/ N₂ carrier MTG-Shield[™] (Novec[™] 612) w/ CO₂ carrier SO₂ w/ dry air carrier SF₆ w/ dry air carrier Extractive FTIR sampling of crucible head-space and worker areas

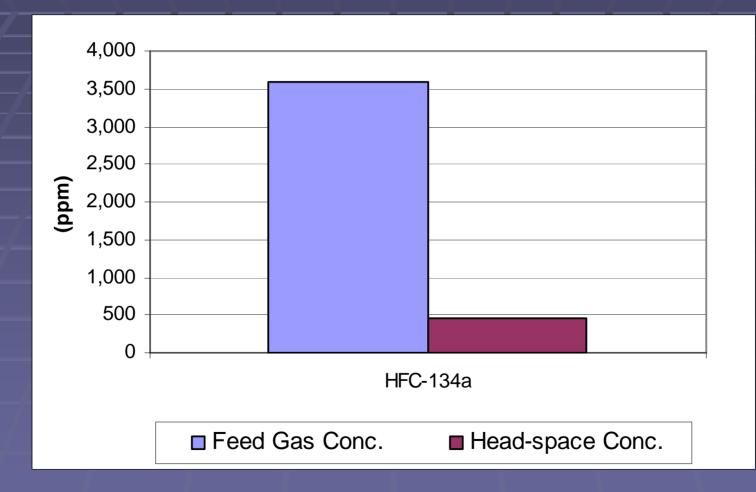
Study Objectives

Four Objectives:

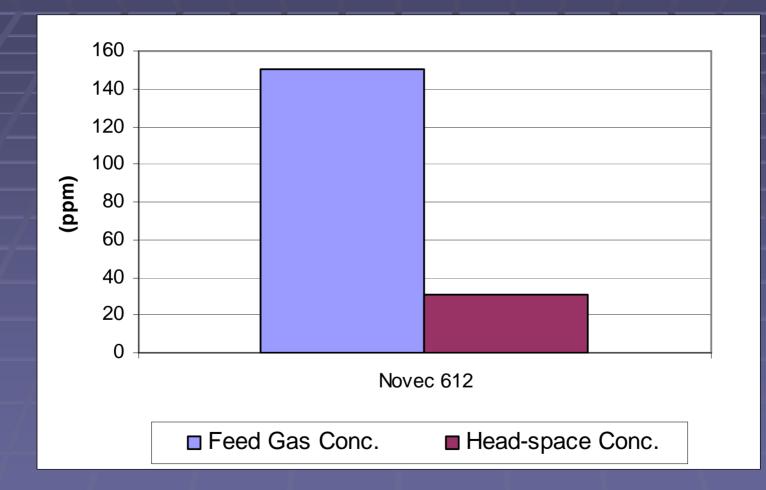
- 1.Estimate cover gas destruction in the crucible head-space
- 2. Monitor the production of byproducts
- 3.Estimate relative GHG emission reduction potential of alternative technologies compared to SF₆
- 4. Identify potential occupational exposure concerns

Global Warming Potential

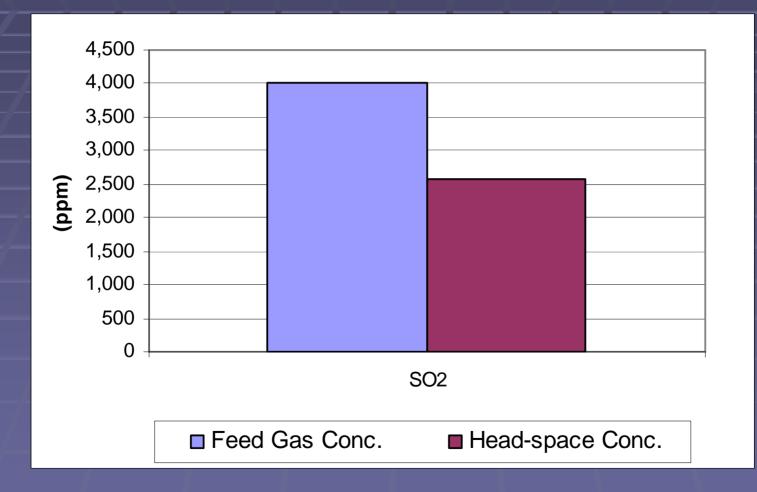
The climate impact of a given substance (e.g., cover gas) may be determined by understanding the mass of actual emissions and the GWP of the gases Input gases react and transform in the crucible to varying degrees 100 year GWP – relative to CO_2 : Chemical <u>GWP Value</u> CO_2 1 SF₆ 23,900 AM-Cover[™] (HFC-134a) 1,300 MTG-Shield [™] (Novec[™] 612) ~1 (estimated) SO_2 ()

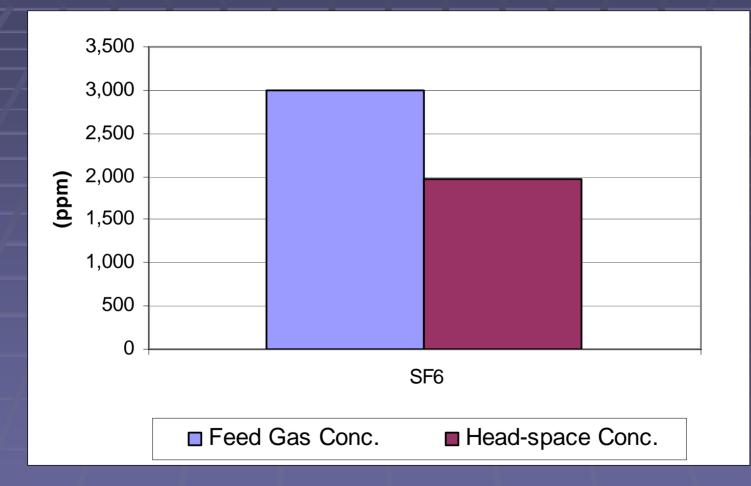

Climate Impacts / Potential Benefits

Average Amount of Destruction*:



*Within the crucible head-space and across multiple cover gas concentrations; values are corrected for dilution


HFC-134a Concentrations


NovecTM 612 Concentrations

SO₂ Concentrations

SF₆ Concentrations

Preliminary Results Summary Relative Climate Benefit Melt Protection: AM-Cover[™], MTG-Shield[™], and SO₂ displayed melt protection characteristics similar to SF₆

Global Warming Potential Comparison:

Cover Gas	SF ₆	AM-Cover™	MTG-Shield [™]	SO ₂
GWP ¹	100	3	2	0

¹GWP normalized to an SF₆ value of 100

Preliminary Results – Reaction Byproducts

Byproducts (head-space):

Melt	
Protection	Detected Byproducts
AM-Cover [™]	CO, HF, COF_2, CH_2O
MTG-Shield [™]	$CO, HF, COF_2, CH_2O, C_2F_6, C_3F_8, CHF_3$
SO ₂	None detected*
SF ₆	HF, SO ₂

 $*H_2SO_4$ and SO_3 were below detectable limits.

Preliminary Results – Exposure Hazards

Occupational Exposure Monitoring:

- HFC-134a and Novec[™] 612 byproducts such as HF, H₂CO (formaldehyde), and COF₂ (carbonyl fluoride) were not detectable during continuous monitoring of ambient air at the operator platform and around the furnace.
- SO₂ concentrations at the crucible were well below the permissible exposure limit (PEL)*

* A single measurement did approach the SO₂ PEL of 2 ppm when the ingot door was open for a prolonged period due to an ingot loading malfunction

Final Report to be Released by Early 2007

Moving Forward

Lunt Manufacturing is presently conducting longterm trials of the alternative melt protection technologies in order to evaluate robustness of the systems and economic viability.

Expect to begin installation of alternative melt protection by 3rd Qtr 2007 and achieve Partnership goal of eliminating emissions by end of 2007!