

IMPLEMENTATION OF TREATMENT & RECOVERY OF THE SF₆ GAS CONTAINING A HIGH AMOUNT OF DECOMPOSITION PRODUCTS DUE TO HIGH VOLTAGE ELECTRICAL INTERRUPTIONS

> J.L. Bessede, E. Huet, G.F. Montillet, AREVA T&D. E.Barbier, J. Micozzi, AVANTEC.

Scottsdale, AZ, December 1-3, 2004

TABLE OF CONTENTS

1 - The Impact of SF₆ on the Environment

2 - The AREVA T&D / AVANTEC Procedure for SF₆ Recovery & Recycling

- **3 Gas Analysis**
- 4 Handling of SF₆
- **5 SF₆ Purification Techniques**
- 6 Destruction & Assessment
- 7 Conclusions

1 - The Impact of SF₆ on the Environment

Impact of SF₆ on the environment

SF₆ AND ELECTRICITY SECTOR:

O.1 % of man made GWP gases Contribution of electricity sector: 0.012 % W&E European electricity contribution: 0.008 %

* Source CAPIEL

Life Cycle Assessment (LCA)

LCA of medium voltage network:

Major global warming is due to the energy losses during the life of the equipment.

Ref: "Life Cycle Assessment: SF₆-GIS technology for Power Distribution Medium Voltage" Study commissioned by ABB, AREVA T&D, EnBW Regional, RWE Energies, SIEMENS, SOLVAY.

Life Cycle Assessment (2)

LCA for High Voltage Network

Studies show that the total environment impact of Air Insulated Switchgear is higher than Gas Insulated Substations.

The Switchgear represents less than 10% of the total networks Global Warming Impact.

Ref: "Life Cycle Assessment: SF₆-GIS technology for Power Distribution Medium Voltage" Study commissioned by ABB, EnBW Regional, RWE Energies, SIEMENS, & SOLVAY.

Electrical Industry

Electrical Initiatives to Reduce SF₆ Emissions

- Improvement of the Gas handling procedure.
- Systematic gas re-uses.
- Voluntary emission reduction programs.

Electrical Industry Initiatives

WG B3.02 TF 01 "Guide to SF₆ Handling" then became "SF₆ Recycling Guide". Brochure 234.

IEC Technical Report 61634 about "Use and Handling of SF_6 in HV Switchgear and Control gear. Under revision.

IEC 60 376 Under revision. (2005)

IEC 60 480 Ed 2. Oct. 2004

Evolution of the IEC Standards

Evolution of the Standards

Improvement in SF₆ recovery and on site purification

Gas recovery units

User Analysis on Site

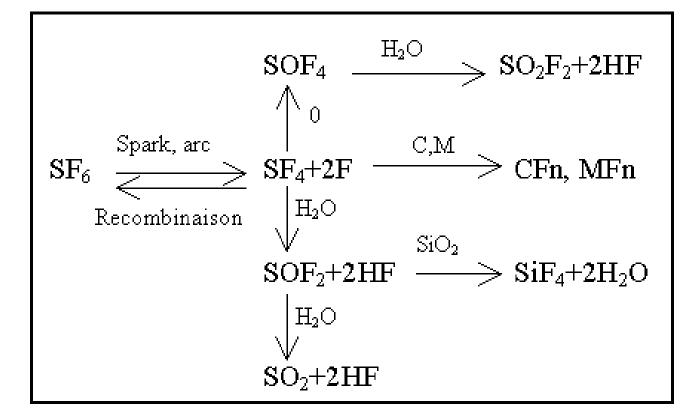
Electrical Industry Initiatives

IEC 60376 Ed.1	Standard	IEC 60376 Ed. 2 (Proposal)	IEC 60480 Ed.1	IEC 60480 Ed.2		
				Rated absolute pressure <200kPa	Rated absolute pressure >200kPa	
<0.05%w	Air and/or CF ₄	Air<1% vol CF4<0.4% vol		<3% vol	<3% vol	
15 ppmw	H ₂ O	25 ppmw	No maximum acceptable	95 ppmw	25 ppmw	
10 ppmw	Mineral oil	10 ppmw	impurity levels specified	10 ppmw 50 µl/l total or 12 µl/l for (SO2+SOF2) or 25 µl/l HF		
Acidity expressed in HF:0.3 ppmw Hydrolysable fluorides expressed as HF:1.0 ppmw	Total gas decomposition products	Acidity expressed in HF:6 ppm vol				

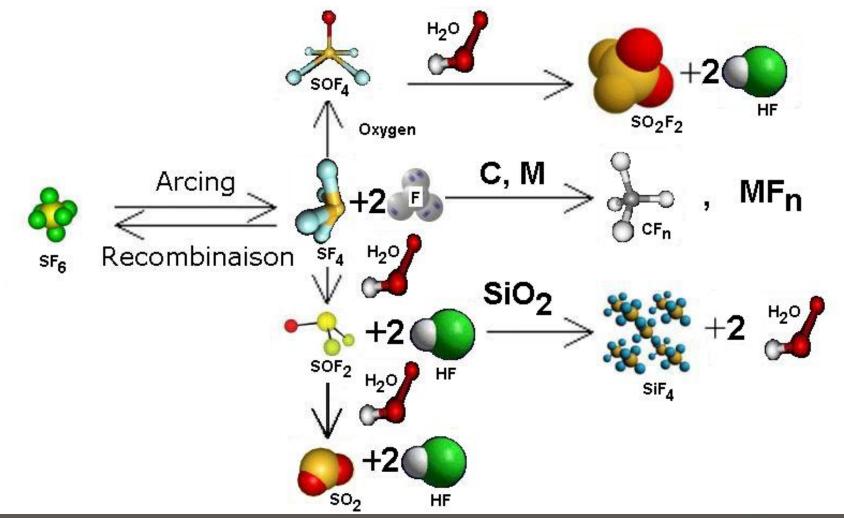
2 - The AREVA T&D / AVANTEC Procedure for SF₆ Recovery & Recycling

11 Scottsdale, AZ, December 1-3, 2004

AREVA T&D / AVANTEC Procedure for Recovery & Recycling


Recycling of SF6 and its re-use Reclaiming + Analysis << From cradle to cradle >> Recycling << From cradle to grave >> Destruction

Normal Current Interruption in SF₆



Reaction diagram showing the decomposition of stable products

Normal Current Interruption in SF₆

3 - Gas Analysis

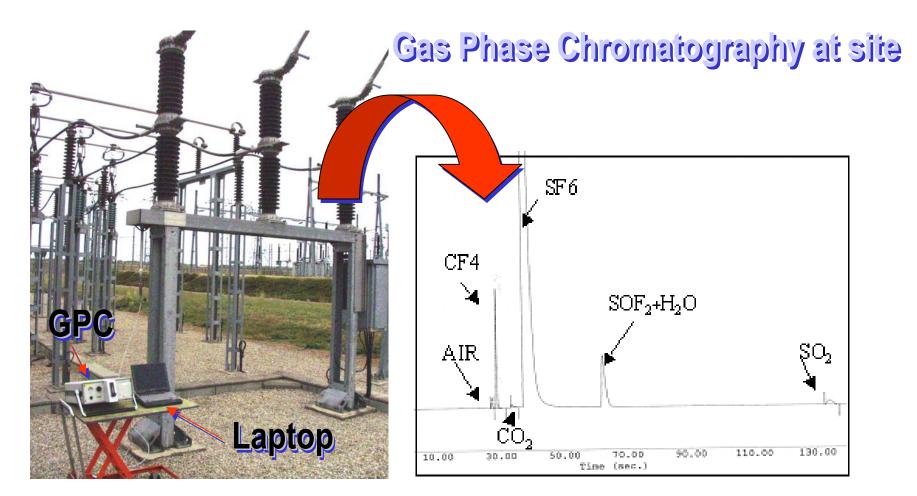
15 Scottsdale, AZ, December 1-3, 2004

Gas analysis

Gas Phase Chromatography (GPC) at site.

AREVA T&D GPC and laptop

Limits of the gas sample to be reclaimed (in ppmw):


- Acidity level less than 4,000 ppm
- Or/and non-condensable gases less than or equal to 7,500 ppm or CF_4 less than or equal to 1,000 ppm

Characteristics of gas

Example of result of an analysis

Air	CF₄	CO2	COS	SO2	SO ₂ F ₂	SOF2	S ₂ F ₁₀	Acidity
(% y)	(% ⊻)	(p.p.mv)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(ppbw)	(ppmv HF)
0.676	0.215	88	35	2270	/	2289	25	

Laboratories Analysis

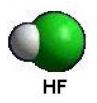
Sample taking of liquid phase:

- checking of the purity,
- checking the acidity in terms of HF and CF_4 content,
- non-condensable gases

ANALYSIS AT RECLAIMING CENTER METHOD USED BY AVANTEC

Laboratories Analysis

- The purity of SF₆ by the GPC Method.
- The water content (Karl Fisher method).
- Non condensable gases.
- Acidity in terms of HF.



Laboratories Analysis

The S₂F₁₀ content by the Perkin Elmer-Auto system XI (Turbochrom software).

- The non-volatile residues.
- The oil content by infrared absorption.

After the recycling of the gas, controls are processed in order to check if the gas purity is in accordance to standard IEC 60480 Ed. 2 (Oct. 2004) or better with the specification for technical grade SF_6 , IEC 60376 Ed. 2. (to be published in 2005).

4 - Handling of the SF₆

Scottsdale, AZ, December 1-3, 2004

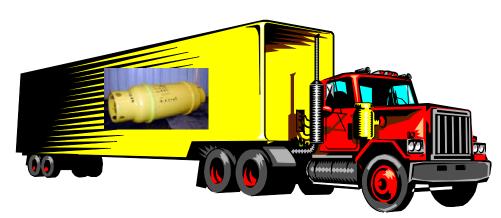
Filling procedure for gas recovery containers

Containers used specially for transport and for containing used SF₆ which may contain TOXIC and CORROSIVE impurities.

- Each container is tested every five years.
- Checking the filling ratio (70 bars filling ratio is 1.04 Kg/I.)
- Checking the filling weight and avoid overfilling.

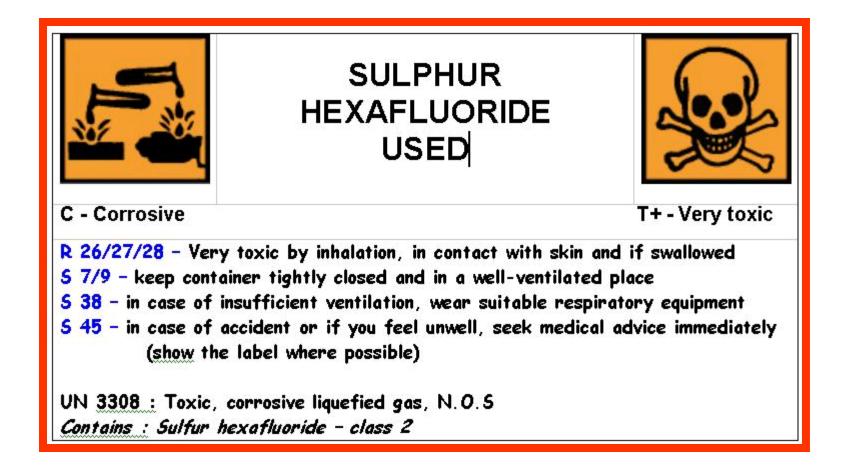
Gas recovery unit in a GIS substation

Site Gas Recovery Units



Transportation of used gas

Procedure for the Return of Packaging of used SF₆ to the Plant.



Label for Transport of used gas

5 - SF₆ Gas Purification Techniques

Scottsdale, AZ, December 1-3, 2004

30

SF₆ Gas Purification Techniques

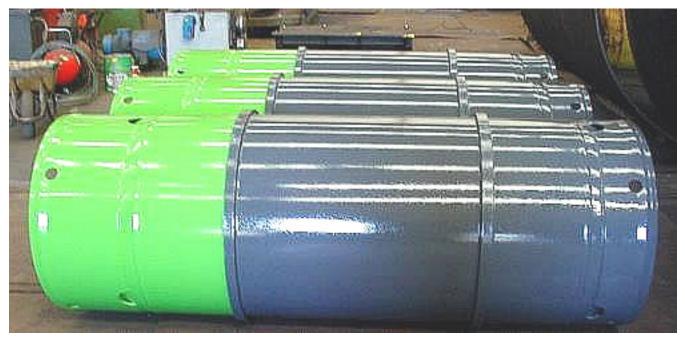
- As a pre-treatment, when the content of non-condensable gases in SF₆ is too high (more than 7,500 ppm weight) a process of distillation has to be used by separation between the gas phases of air and SF₆.

- Then the purification process is run.
- Regeneration in the liquid phase.

SF₆ Gas Purification Techniques

- Polluted SF_6 is pushed with a pneumatic pump, then rises inside the process column, passes through adsorbents layers, filtered through a 5 microns filter and recovered.

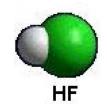
- A valve allows a direct sampling to determine the purity level of the recovered gas.



SF₆ Gas Purification Techniques

SF₆ Gas Recycled

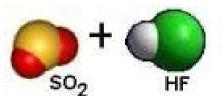
6 - Destruction & Assessment


Destruction

- When the gas contains more than 4,000 ppmv of acidity, expressed in HF, is it too corrosive to be passed through the purification process.

- Also, when the SF_6 contains more than 7,500 ppmv of air, the efficiency of the process is very poor.

Gas must be destroyed.



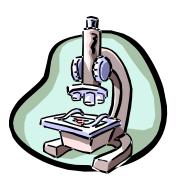
- When the gas is heated above $1,000 \,^{\circ}\text{C}$, SF₆ starts to dissociate into reactive fragments, mainly Hydrogen and Oxygen to form SO₂ and HF.

- At 1,200 °C the gas is destroyed at 99%.
- Products of the reaction are removed by passing through a calcium hydroxide solution in order to neutralize the acids and form sulfates and fluorides.

Assessment

- Target: to meet new standard IEC 60480 Ed. 2. and even better, the future IEC 60 376 Ed. 2.
- Experience shows that typical concentration of impurities is much better :
- Three years of experience have shown that several tens of tons of SF₆ gas have been processed with a total loss of less than 2 %.
- Objective: to reduce the losses to 0.5 %.

37


Performance Chemicals

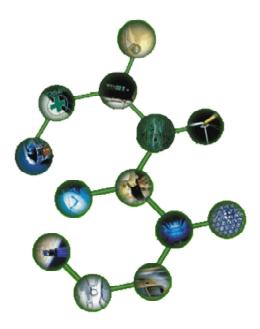
7 - Conclusions

Scottsdale, AZ, December 1-3, 2004

Conclusions: Recycling

Environmental Advantage:

- Save energy
- Decrease need of new SF₆ gas
- Available purification on site (Reduce waste transportation)


FINANCIAL ADVANTAGE

Thank you for your attention.

Time for Questions.

