Measured SF₆ Emissions From Magnesium Die Casting Operations

International Conference on SF₆ and the Environment: Emission Reduction Strategies November, 21, 2002

Ravi Kantamaneni, ICF Consulting

Acknowledgement

 Special Thanks to the Staff at Product Technologies Inc.

Jeff Rivers, CFO

 Ron Smith, Environmental, Health & Safety Manager

Outline

- Background
- Past Studies
- Experimental Setup
- Results
- Summary

Background

- EPA's Voluntary Partnership
 - 17 Partners: 100% Primary Production; 80% Casting
 - Partners Track and Report Annual SF₆ Usage
- Industry Emission Estimates based on IPCC Methodology
 - -100% SF₆ Consumption =100% SF₆ Emissions
- Extent of SF₆ Destruction May Vary

 Industry Opinion Speculates Between 10 to 50%
- Implement Measurement Study to Quantify Degree of SF₆ Destruction

Past Studies

- Hanawalt, J.D. (1972)
 - At approx. 2" above the melt surface, potential SF_6 byproducts, including SO_2 and MgF_2 , were identified
- Couling S., et al. (1977)
 - Reported potential SF₆ destruction
- Couling, S., Leontis, T. (1980)
 - Identified CO and HF decomposition products at melt surface
- Tranell et al. (2001)
 - Proposed mechanism for SF₆ melt protection: SF6 dissociates to highly reactive fluorine species. These species form a dense protective film containing MgF₂

Experimental Setup

- Measurements were Conducted on 2 Hot Chambered Die Casting Machines
 – Furnace temp. 650°C; Furnace volumes the same
- Cover Gas Mixture
 - 0.3-0.4% SF₆; 17% CO₂; 83% Dry Air
- Cover Gas Supply
 - Approx. 5 l/min
- Magnesium Alloy Ingot Feeding
 - Every 7-9 minutes

Die Casting Machine

Experimental Design

- Real-Time SF₆ Monitoring using FTIR Systems
- Monel Sample Probe Placed in Furnace Enclosure at Approx. 1-2" above Melt Surface
- FTIR Sample Flow Maintained at 2-3 I/min
- Signal Averaging over Approx. 2 Minute Periods
- Sample Cell/PFA-Grade Teflon Extraction Lines Maintained at 150°C to Preclude Formation of HF and Prevent Condensation Losses

Experimental Design.....contd.

- Test for Homogeneity of Cover Gas in Furnace Head Space
 - Used 2 FTIR systems of 20.1 and 5.1 meter fixed cell path lengths
 - Confirmed uniform distribution of compound concentrations throughout the furnace enclosure
- Gas grab samples taken for GC analysis
 - For CO_2 , GC/FTIR samples agree within \pm 9 percent
 - For SF₆, GC/FTIR samples agree within \pm 30 percent

Time Series Plots of SF₆/CO₂ – Machine 1

Assumptions

- Reactivity of CO₂ was estimated to be < 0.3% conversion to CO
- Consequently, it was assumed that the observed reduction in measured CO₂, compared to its feed cover gas concentration, is almost solely attributable to ambient air dilution and leakage
- Used CO₂ measurements to estimate dilution/leakage effects, i.e., ratio of headspace concentration to average cover gas content
- Quantity of SF₆ destroyed is defined as the difference between the concentration of SF₆ that was expected to be in the furnace headspace, after factoring in dilution/leakage effects, and the SF₆ that was present in the cover gas feed

SF₆ Dilution and Destruction – Machine 1

SF₆ Dilution and Destruction – Machine 2

Observations

- There appears to be a correlation between SF₆ decomposition and dilution spikes, with an increase in destruction occurring during ingot feeding.
- During ingot feeding, magnesium alloy ingots are added to the furnace via the access lid, which disrupts the SF₆ protective film by creating surface turbulence.
- Also, since SF₆ destruction drops to near zero during work stoppages, it can be concluded that the percent destruction is increased during die casting operations

Results

Operation	Average SF ₆ Destruction
Ingot Feeding Periods	15.7 – 20.1 %
Non-Feeding Periods	6.5 – 12.5 %
Staff Breaks/Shift Changes	0.6 – 1.4 %

Measured Byproducts

- FTIR spectral analysis identified HF and SO₂ as the primary reaction byproducts
- No other byproducts were detected above the noise level of the FTIR
- HF and SO₂ concentrations remained low, on the order of 20 ppmv total
- Since there is little release of gaseous byproducts, most of the SF₆ decomposition may occur at the melt surface

Summary

- Maximum SF₆ destruction was observed to occur during ingot feeding operations, and ranged from 16 to 20 percent
- During non-feeding periods the level of destruction decreased to approximately half that observed during feeding periods
- Low levels of byproducts detected possibility that most of the SF₆ decomposition occurs at the molten metal surface

Acknowledgements

- Ron Smith, Product Technologies Inc.
- Scott Bartos, EPA
- Curtis Laush, URS Corp.
- Jerry Marks, J. Marks & Associates