HGI

Sulfuryl Fluoride (SO₂F₂): An Alternative to SF₆ for Blanketing in the Mg Industry J. Peter Hobbs Halide Group, Inc. hobbsip@halidegroup.com

Outline

- What makes an Ideal Substitute?
- Why SO_2F_2 ?
- Evaluation of SO₂F₂ in Mg blanketing applications
 - Mg Sand caster trial
 - Mg die caster trial
 - Primary Mg producer trials
- Issues to address in the use of SO₂F₂
- Properties and Handling

What makes an Ideal Substitute?

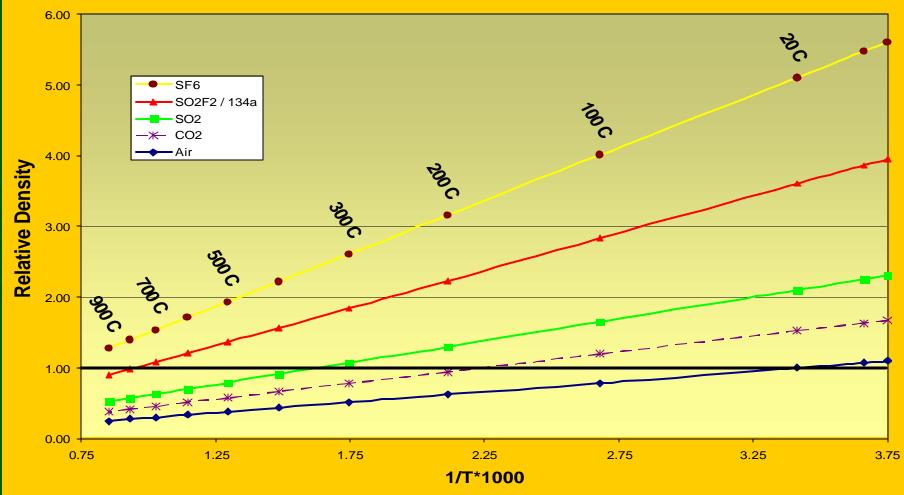
- Environment both Substitute and By-products
 - No Ozone Layer depletion, No/Low GWP
 - Short life, No/Low toxicity, No Biological Uptake

On the plant floor

- Ease of use; "what we know"
- Stable, but Reactive on & over Melt
- Dense "hangs" in pot well
- Forgiving
- Nontoxic

In Front Office

Cost of ownership



	GWP ₁₀₀	life	BP °C	SG	PEL ppm	By-product
SF ₆	23,900	3,200 yr	-64 sub	5.1	1000	SO ₂
SO ₂ F ₂	~0	18 min - 3 day	-55.2	3.6	5	SO ₂
134a	1,300	14.6 yr	-26.5	3.5	1000*	HF, PFC
SO ₂	~0	~0	-10	2.1	3	SO ₂
Novec 612	~0	<10 day	49	?	150 [†]	PFIB,COF ₂ , PFC
HFE-7100	320	4.1 yr	60	8.6	750*	HF, PFIB, COF ₂ , PFC

² * ACGIH TLV, † 3M

Impact of Temperature on Relative Density

Blanketing Density Relative to Room Air

2

Why SO₂F₂?

Advantages

- 0 GWP
- Gas at room temperature
- Good gas density (~2x CO₂)
- Non-hygroscopic, non-corrosive
- By-products like SF₆
- No high toxicity or high GWP by-products
 PFIB, PFC
- Does not produce HF
- Gas cost lower in most cases

Why SO₂F₂?

Disadvantages

- Poisonous gas, CAS# 002699-79-8
 - toxicity SF_6 , 134a < Novec 612 << SO_2F_2 < $SO_2 < HF$
- OSHA PEL is 5 ppm
- IDLH is 1000 ppm
- Equipment upgrade alarms, gas blender

Availability of SO₂F₂

Commercially available

- Insecticidal fumigant Vikane[®] Dow AgroSciences
- Solvay Fluor

Evaluating SO₂F₂ in Mg Metal Blanketing Applications

Site	Site SF ₆ Standard	SO ₂ F ₂
Sand Caster	1.7-1.9% in CO ₂ /air	2900 ppm in CO ₂ /air
ZE-41	26 scfh	54 scfh
Die Caster	3000 ppm in dry air	1500 ppm in CO ₂ /air
AM-60	88 scfh	88 scfh

Evaluating SO₂F₂ in Mg Metal Blanketing Applications

Site	Site SF ₆ Standard	SO ₂ F ₂	
Primary Trial 1 Pure Mg, AZ91, WE54	1.7% in CO ₂ /air	1500 ppm in CO ₂ /air 3 slpm	
Primary Trial 2 Pure Mg, and other alloys	3 slpm	950 ppm in CO ₂ /air 3 slpm	

- SO₂F₂ Commercial Trial Results 4 tests, 3 venues
- Thin, flexible, adherent, silver/grey skin formed
- Bottom dross levels similar to SF₆
- Yttrium loss levels similar to SF₆
- Higher temperatures appear to be tolerated
- Off-gas analysis (FT-IR) from melt:
 - Similar to SF₆ SO₂, CO, no HF, no CF_x

Commercial Trial Results

 SO₂F₂ not observed outside of pot (at operator positions)

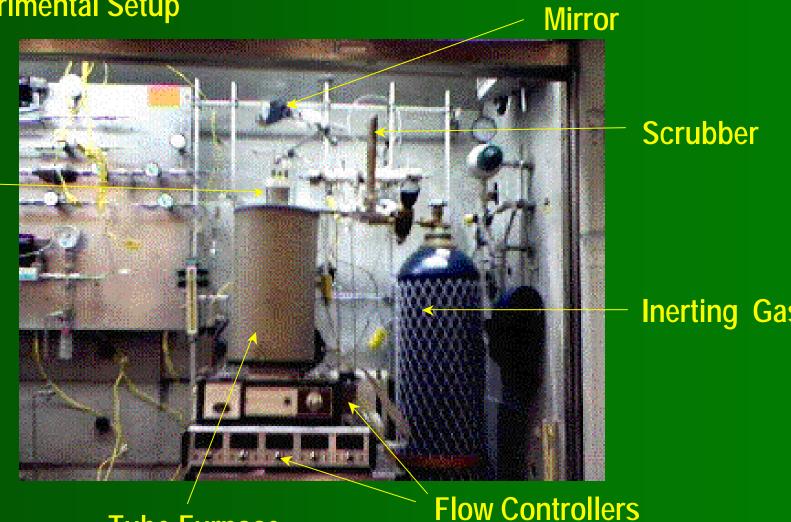
Effective blanketing achieved:

good metal quality obtained

Head-to-head comparison of SO₂F₂ and SF₆ shows a usage ratio SO₂F₂/SF₆ of 0.1 to 0.5 (volume)

Technical feasibility of using SO₂F₂ established

Lab Evaluations of SO₂F₂


Compare videos from laboratory:

- Pure Mg SO_2F_2
 - @ 825 °C (1517°F)
 - under 1000 ppm SO_2F_2 in 33% CO_2 / air
- Pure Mg SF_6
 - @ 760 °C (1400°F)
 - under 2500 ppm SF₆ in 33% CO₂ / air

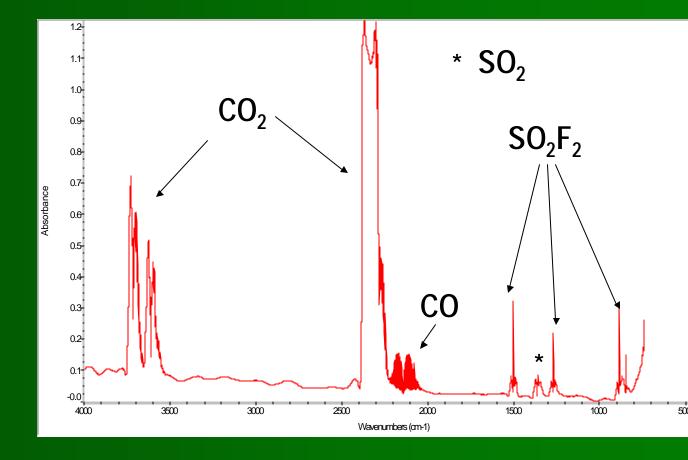
AP Experimental Setup

Reactor

2

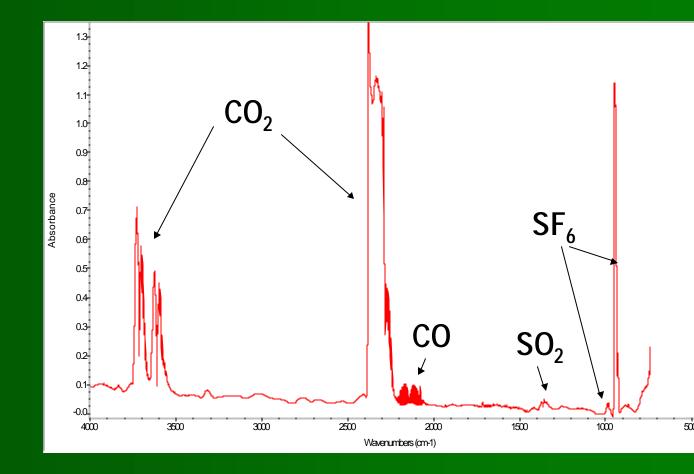
Tube Furnace

Mg under SO₂F₂ in CO₂/Air


- 1000 PPM SO₂F₂
- 33% CO₂ & Air
- 825 °C (1517 °F)
- No Flares
- Exposed surface retains shine

Mg under SF₆ in CO₂/Air

- 2500 PPM SF₆
- 33% CO₂ & Air
- 760 °C (1400 °F)
- No Flares
- Skin tarnishes slowly


Mg - Exhaust Gas for SO₂F₂ in 33% CO₂ and Air

1000 PPM SO₂F₂
 33% CO₂ & Air
 825 °C (1517 °F)

Mg - Exhaust Gas for SF₆ in 33% CO₂ and Air

2500 PPM SF₆ 33% CO₂ & Air 750 °C (1382 °F)

Issues Being Addressed

Installation of SO₂F₂ Alarms

Qualify reliable, cost effective alarm systems

Delivery-Supply

Establish a secure/safe supply chain

Delivery-Blend/Use

- SO₂F₂ use concentrations 2-10x lower than SF₆
- Upgrade or replace equipment

- SO₂F₂ Detectors
 IR
 - Commercial portable unit available (SF₆ issue)
 - 10cm gas cell, <1ppm
 - Electrochemical
 - One system has been evaluated
 - SO₂F₂ is reproducibly detectable to <2.0 ppm
 - Useful well below the PEL of SO₂F₂ (5 ppm)
 - A personal monitor has been identified but needs additional testing
- Odorization of SO_2F_2 is possible i.e. Banana Oil

- **Issues Delivery**
- SO₂F₂ Supply
 - Product Stewardship essential
- SO₂F₂ Blend/Point of Application
 - Pressure/Mass flow blenders work
 - on line verification of composition
 - Flow tube blenders generally inadequate
 - Low leakage supply system
 - Adequate local ventilation required

Forward Plan

Laboratory evaluations completed

 USP 639884: "Blanketing Molten Nonferrous Metals and Alloys with Gases having Reduced Global Warming Potential"

AP will participate in the IMA program at SINTEF SO₂F₂ has been shipped to Norway

 HGI is actively seeking one or more partners for commercializing this technology

Halide Group, Inc.

- Suite 120, Commerce Plaza
- **5050 Tilghman Street**
- Allentown, PA 18104
- (610) 398-1400
- A private consulting and process development company

 Experienced in design and operation of specialty gas systems for handling high purity, toxic and/or corrosive fluorine based gases and fluorine.

<u>hobbsjp@halidegroup.con</u>

Thank you

Physical Properties of SO₂F₂

 Thermally stable, non-flammable, non-corrosive, colorless, and odorless gas

- Vapor density = 4.4 g/l @20°C (0.27 lb/ft3) Relative = 3.64
- Molecular weight = 102
- Boiling point = -55.4 °C
- Freezing Point = -137°C
- Critical Point : T = 91.8°C, P = 50.5 atm (727 psig)
- Cylinder pressure (liquefied gas) = 217 psig @21.1 °C

- Chemical Properties of SO₂F₂
 - Solubility in H₂O ~ 750ppm
 - Inert:
 - Stable to 400-600°C
 - Does not hydrolyze in neutral water to 150°C
 - Hydrolyzed by aqueous base (KOH, NaOH)
 - GWP ~ 0
 - **t**₅₀ = 18 min to 3 days

Mg under Stagnant Air

 Stagnant Air (low Oxygen)

- 750 °C
 (1382 °F)
- Thick Oxide Layer
- Ignition / Smoke (at melt)

Mg under Flowing Air

- Flowing Air (~0.75 changes /minute)
- 700 °C (1292 °F)
- Thick Oxide Layer
- Ignition / Smoke (at melt)

Mg under SF₆ in Air

- 5700 PPM SF₆
- 780 °C (1436 °F)
- Flares then
 Extinguishes

Mg under SF₆ in CO₂/Air

- 2820 PPM SF₆
- 50% CO₂ & Air
- 785 °C (1445 °F)
- No Flares

2

 Skin tarnishes rapidly May be due to residual oxide layer

Mg under SF₆ in CO₂/Air

- 2820 PPM SF₆
- Air (CO_2 off)
- 785 °C (1445 °F)
- Flares

Mg under SO₂F₂ in Air

- 900 PPM SO₂F₂
- 745 °C (1373 °F)
- Flares then extinguishes
- Exposed surface retains shine

Mg under SF₆ in CO₂/Air

- 2500 PPM SF₆
- 33% CO₂ & Air
- 760 °C (1400 °F)
- No Flares
- Skin tarnishes slowly

Mg under SO₂F₂ in CO₂/Air

- 1000 PPM SO₂F₂
- 33% CO₂ & Air
- 825 °C (1517 °F)
- No Flares
- Exposed surface retains shine