A Tailor-Made Membrane for SF₆ Recycling: An Environmentally Friendly Method To Reduce Costs. Gil Dagan, Giora Agam, Vitaly Krakov, Len Kaplan,

Carbon Membranes Ltd, Israel.

ACKNOWLEDGMENTS: Dr. A. Soffer

Natalia Larisa

And all the other devoted members of the CML team...

A Tailor-Made Membrane for SF₆ Recycling: An Environmentally Friendly Method

To Reduce Costs.

... To Reduce Costs.

For 1 m² melt surface, (assuming 100 liters enclosure volume) SF_6 consumption is about 10 g per hour.

In other words,

for every 1 m² melt surface, 25 cents goes up in smoke every hour...

The whole Mg industry consumes many millions of dollars worth of SF_6 a year...

... An Environmentally Friendly...

SF₆ global warming potential is 24,900 times greater than that of CO₂...

And what about moving back to SO₂? **DANGER!**

SO_2 has a TLV of 2 ppm (!).

...for SF₆ Recycling:

A Tailor-Made Membrane for SF₆...

How is it produced and tailored?

How does it work?

How efficient is it?

To form one coherent separation module

Such modules are currently composed of:

100 fibers (0.02 m²) or 1,000 fibers (0.2 m²) or 10,000 fibers (4 m²)

Controlling the pore size distribution *C.M.L*

After cross section, After op Digoating After carbonization

	Molecules diameter		
	O_2		3.2 Å
	N ₂		3.6 Å
l A	SF ₆		5.02 Å

The molecular sieving separation mechanism

C.M.L

High flux of small molecules

Complete retention of big molecules 🧬

C.M.L

Conclusions:

 SF_6 's high cost, together with its environmental impact, drives the search for methods to reduce the emission of this gas.

Membranes can efficiently separate SF_6 , and thus the design of cost-effective recycling systems is possible.

Carbon molecular sieve membranes have extremely high selectivity. With these membranes more than 99.5% of the SF_6 can be recovered.

