Strategy to Reduce and Replace Emissions of SF₈ in Magnesium Operations

SF, and the Environment: Emission Reduction Strategies November 2-3, 2000

The Industry Continues to Focus on the Reduction of SF, Emissions

- Reduced consumption of SF₆
 - Improved smelting and casting equipment
 - Training of operators and managers
 - Sharing of R&D results and "Best Practice"

International Magnesium Association Technical Report: Recommended Practices for the Conservation of Sulfur Hexafluoride in Magnesium Melting Operations (1998)

- Recycling SF₆ from the casting process off-gases
 - Suppliers of SF₆ are working to develop recycling based on membrane and/or adsorption technologies

Greenpeace Position

HFC/PFC/SF₆ emissions present a real danger
Alternatives exist in virtually all applications
SF₆ should immediately be banned globally

Casting of Ingots Requires Melt Surface Protection

Locol HYDRO

SF₆ emissions are typically 0.4-1.0 kg/ton of Mg ingots produced

Reduction at Hydro Magnesium

- Step 1 awareness
 - Training
 - Discipline
 - Detection
 - Costs
- Step 2 reduction of existing limitations
 - Determine lowest usable values
 - Tightening of system components
 - Computer modeling of convection, drafts, etc.
 - Extensive attention to casting stations
- Step 3 continuing cooperation
 - Norwegian and Canadian governments
 - Competitors through IMA

Hydro Magnesium Melt Protection Gas Usage (**HMN**)

Consumption of SF6: 1990-1999

Hydro Magnesium Melt Protection Gas Usage (HMC)

Consumption of SF6: 1990-1999

Hydro Magnesium Melt Protection Gas Usage (HMC, **HMN**)

Consumption of SF6: 1990-1999

High Pressure Diecasting Is the Preferred Fabrication Process

Engine Parts

Cyl. Head Cover Intake Manifold Oil Pump Housing Accy. Dr. Bracket Electrical Connector Oil Pan Engine Block

Present Applications Projected Applications Drivetrain Parts Man. Trans. Housing 4WD Transfer Case Automatic Transmission Housing

Hydro Magnesium Approach for Diecasting

Assisted in sulfur hexafluoride reduction

- Protection of Molten Magnesium from Oxidation at Diecasters (1996)
- Diecaster Bulletin (1997)
- Encouraging diecasters to evaluate SO₂
 - Developed a gas mixing unit for air-sulfur dioxide
 - Offering in-plant trials to demonstrate safe handling
 - Gas Protection of Molten Magnesium Alloys; SO₂ as a Replacement for SF₆ (1996)
 - Progress to Eliminate SF₆ as a Protective Gas in Magnesium Diecasting (1998)
 - Use of SO₂ as Protection Gas in Magnesium Diecasting (2000)

Magnesium Diecasting Requires Protection of the Melt Surface

The total SF₆ emissions are typically 1.0-2.5 kg/ton of diecast components, including ingot production, diecasting process, and recycling of process scrap

Sulfur Hexafluoride Reduction

Important factors

Gas mixing unit for stable conc. is a prerequisite

- Crucibles with high volume to surface area preferred
- Well-tightened furnace lids and hatches
- Horizontal sliding hatches/locks for ingot feeding
- Minimize gas volume over furnace
- Keep metal level as constant as possible
- Dry air (<0.1 wt. pct. humidity) is necessary</p>
- Gas tube system designed for efficient distribution

Using SO₂ for Melt Protection

Proven and reliable technology

- More than 50 years experience in Europe
- Recent experience in North America and Japan
- Concentration and flow parameters established
- Compatible mixing and furnace equipment available

No global warming

Establishes superiority for magnesium in Life Cycle Analysis

Cost-effective solution

Disadvantages

- Toxic (2 ppm occupational exposure limit for 8 hrs working)
- Potential acidic precipitation

Alternatives to SF_s and SO₂

Under Development

Hatch patented "MagShield" system

- Technology based on the gas BF₃, produced in situ, mixed with air
- BF₃: LC₅₀ = 1180 mg/m³/4h, classified as highly toxic
- SO₂: LC₅₀ = 2520 mg/m³/4h, classified as toxic

Australian patent application

- HFC-134a: LC₅₀ = 1500 g/m³/4h, assumed to be non-toxic
- HF generation is a concern

Brochot patent

- ▶ Using a mixture of 70% CO₂, 20% Ar, and 1% Xe plus air
- Assumed to be non-toxic, but limited effectiveness

Evolution of HF from HFC-134a with Increasing Melt Temperature

Outlook for Other Gases

Argon as a cover gas

- Inert; thus no reaction with Mg
- Evaporation of unreacted Mg results in condensation of a highly reactive dust
- Subsequent entrance of air generates an explosion
- Melt protection with nitrogen
 - Reacts with Mg vapor to form nitrides
 - Likely ammonia generation
- Other candidates have been identified, but are also significant global warmers

European Initiatives

European Commission activities

- Approximately 120 casting companies
- Workshop on policy measures for climate gases
- Continued focus for SF₆ is to reduce emissions
- Move toward replacement with SO₂
- Introduced idea of "green taxes" on CO₂-equivalents
- Voluntary agreements under consideration: feasibility outside Europe considered unlikely
- Conferences to reduce non-CO₂ emissions in industrialised countries and establish global co-operation for emissions reduction
- SFT has established a maximum limit for SF₆ emissions from Hydro Magnesium's primary plant in Norway

