

SF6 Leak Reduction Using On-line Leak Sealing

Presented by:

Liisa Colby Client Service, Power Services Division THE COLT GROUP

On-line Leak Sealing

Temps: Cryogenic – 1,500 F

Under pressure: Vacuum up to 5000 PSI

The History of Leak Sealing

Early On-Line Steam Leak Repair

PHOTOGRAPH NO. 1 — SET UP NO. 1 THE FURMANITE SALES COMPANY NORFOLK, VA.

Sealing Leaks in Transformers and Circuit Breakers

Thirty+ Years Later

Statistically proven process

- 12,484 repairs completed as of 8/01/13
- 5,482 Flanges
- 5,007 Packings
- 813 Drain plugs
- 799 Custom clamps & enclosures
- 230 Cover plates
- 153 Misc.

□ 93.1% sealed on first visit. 6.9% repump rate

Benefits of online leak repair

- A cost-effective option
- Should not be used to replace re-gasketing
- No need to drain the oil or depressurize
- Some repairs can be made while energized

Comparison: OCB E Leak	Bushing Flange	
	Leak Repair	Conventional Repair
	20 hours, including	
Personnel Resources	switching and grounding	96 hours
	Repair:	Replacement:
Parts	\$ 2,000	\$ 5,000
Other	None	Oil tanker, gaskets, etc
Total Cost	\$ 3,000 - \$ 5,000	\$ 10,000 - \$ 12,000

Your options for dealing with leaks

Let it leak

But if oil or gas are getting out, air and moisture are getting in. Also environmental concerns and regulations.

 Regasket or replace Your number one choice in a perfect world. Requires outage time, budget and personnel resources. Replacement parts not always available

In-house Repair Not always effective

On-line Leak Repair Specialists
 An alternative worth considering in certain situations

A good case for on-line leak repair

Leak repair methodology

- Drill and Tap Technique (oil leaks)
- Custom enclosures (oil, nitrogen, SF6)
- Sealant is not an epoxy. Easy to remove

Specially formulated for use with electrical apparatus – allows for movement due to temperature changes and vibration.

1) Drill and Tap technique

Four bolt flapper valve

O-Ring / Packing type seal

FIG. 2. Cutaway View of Valve in Closed Position.

On-Line Repair of Flapper Valve Flange using Drill & Tap Technique

A Flapper Valve Flange That Has Been Drilled & Tapped - Ready For Injection

- Injection valves are placed into the gasket area
- A two part sealant is injected and cures
- Injectors are removed after sealant cures
- Teflon coated pipe plugs are installed

Flapper Valve Packing

Injector will be removed

Valve still operates

- Follower nut is backed out.
- Valve remains operable.

Radiator flanges

Cover plates

Bushing Flange

2) Custom Enclosures

Damaged/Cracked Flange

Before

Custom Enclosure Job Examples: Drain/Fill/Sample valves

Before

Offset Bushing Flange Clamp

SF6 Leak Repairs

Typical SF6 Leak Locations:

- Between the porcelain and aluminum
- Between the flange ID and the porcelain
- Tank flanges
- Tanks
- Instrument lines, fittings and valves
- Pores in the casting

The SF6 Leak Repair Process

- Determine point of leak
- Technician takes precise measurements for a containment device
- Engineer designs a clamp or enclosure
- Clamp/enclosure is bolted around the leak and hydraulically injected with sealant

SF6 Leak Repair Case Story Eddyville Substation 69 kv SF6 Breaker

Alliant SF6 Case Story

- 1. Leave as is not an option
- Re-gasket time to take the breaker out of service was the primary issue
 5 days of down time, loss transmission & \$20,000.00 due to placement of breaker
- Repair Installing custom enclosure and injecting sealant was determined optimal solution

Justification: Reduced downtime for critical apparatus. Just 1 day of down time and \$20,860.00 to fix all leaking components

Precise measurements taken

SF6 90 + max Grs Breaker DG EDDYVILLE, IA. 12-19-11 1/6 ALUANT ENERGY 11361 MULTICE BUSHING MULTICE BU	ALLIANT 11361 SFG 90 [#] MAX 10 ³ /4 10 ³ /4 10 ³ /4 10 ³ /4 2,8 ⁵⁰ 5 ⁵ /10
21030 913/16 715 21030 913/16 715/1 1.675 1015/16 1.675 1015/16 1.675 1015/16 NOTE BUSHING LEAU 1015/16 NOTE BUSHING LEAU 1016/16 NOTE 10016 NOTE 10016 NOTE 10000 NOTE 100000 NOTE 100000 NOTE 100000 NOTE 100000 NOTE 1000000 NOTE 1000000 NOTE 1000000 NOTE 1000000	

DESIGN CALCULATIONS	J0105F SHEET 2 OF 2
WORKING LOAD PER STRONGBACK STU	<u></u>
T = THRUST WL = TN = NUMBER OF BOLTS NWL = LOAD/BOLT	_ = <u>1954.35</u> 6 = <u>325.73 LBS/BOLT</u>
MAX ALLOWABLE LOAD PER STUD	
S = MAX ALLOW. STRESS/STUD ML = A * S A = TENSILE OR ROOT AREA/STUD ML = MAX ALLOW LOAD/STUD	= .126 * 18800 = 2363.16 LBS/BOLT STUD SIZE: 1/2 X 13UNC B8MCL1

Other examples: 345 KV SF6 Breaker Leak - Before

SF6 Leak – After

Other SF6 Repairs Before...

After

Before

After

Before

After

SF6 Repair on Insulated Bus

SF6 Tubing Leak

Thank you

Liisa Colby *Client Service* **THE COLT GROUP, Power Services Division**

www.coltpowerservices.com