Fundamentals of Asset Management

Background: Optimized Investment Decision Making

A Hands-On Approach

View 6: AM plan 10-step process

Three fundamental management decisions

- What are my work crews doing, where are they doing it—and why?
- 2. *What* CIP projects should be done—*and when*?
- 3. When should I *repair*, when should I *rehab*, when should I *replace*?

These decisions typically account for *over 80%* of a utility's annual expenditures

Asset decision framework

Big picture

- Whole portfolio perspective
 - Trends
 - Macro forces
- Policy framework
- Budget arena

Micro view

- Event based
- Specific asset focus
- Case-by-case decision points

Maintain? Repair? Refurbish? Replace? Augment?

There exists for every asset, a theoretical "best" investment

Advancing Asset Management

Managing the "asset consumption" process

Advancing Asset Management

Bringing it all together

Repair-refurbish-replace decision

- 1. Fix when broken (run to failure)
- 2. End of prescriptive life
 - 12 years old
 - 3,000 run-time hours
 - 35,000 miles
- 3. Rule of thumb
 - 3 breaks per mile or in 24 hours
 - Poor condition (and worst first)
 - FCI > 6% (Facility condition index—O&M as a percentage of replacement cost)
- 4. Optimized renewal decision making (ORDM)

What is optimized decision making?

- Systematic search for lowest-cost renewal investment
- Based on interaction of
 - Cost trends (direct O&M, indirect)
 - Condition trends (decay/survivor curve)
 - Risk-consequence trends
- Three major approaches
 - Valued expert judgment
 - Lowest projected average life-cycle cost per year of residual life;
 - Operational costs
 - Risk-weighted, full economic costs
 - Intervention factors; condition, performance, reliability, Business Risk Exposure, etc.

Three levels of ORDM

- Level 1 Decision tables/trees
 - Structured, often substantially qualitative, value judgment-based
 - Event-focused, scenario-based
- Level 2 Lowest average PV life cycle cost scenario analysis
 - Specific decision event-focused
 - Spreadsheet-driven
 - Can be used to refine decision tables/trees
- Level 3 Integrated intervention and full economic life cycle cost optimization
 - Sophisticated modeling
 - Objective function-driven
 - Both portfolio- and event-driven

So, what to we mean by...

Minimum life cycle cost strategies

- Fundamental asset management options available to the management team are:
 - Do nothing (zero-based strategy)
 - Status quo
 - Operate differently
 - Maintain differently—run to failure, preventive-based, predictive-based (condition, usage)
 - Repair
 - Refurbish/rehabilitate
 - Replace
 - Decommission
 - Non asset-based
- Which strategy for each asset?
- Combinations over life cycle

It's *all* investment!

What do we mean by "alternative (management) treatment options"?

Our "decision rule"

Estimated total costs for the effective life of the solution (capital, operations, & maintenance)

Look for "alternative treatment" with lowest *average annual* (present value) cost (average annual cost = total annual cost/year)

ORDM decision rules

- Which strategies are most cost effective here?
 Lowest average annual cost (PV) is used to determine which strategies to use
- *When* to change strategies?
 - Lowest marginal cost is used to determine when to transition to the next strategy, or
 - When an intervention point is triggered by interaction of "constraint" trend lines (maximum business risk exposure, minimum tolerable condition, etc.)

PV is present value

ORDM future costs

ORDM - where do the savings come from?

ORDM - timing the renewal

ORDM is optimized renewal decision-making, LTD is life to date

Setting up the basic analysis: lowest annual life cycle cost

Discount Rate	5.0%	Avg Annual \$														
Repair/Maintenance	Total			1	2		3	4	5							
Capital	\$ 4,500		\$	4,500	\$ -	\$	-	\$ -								
Operations	\$ 2,034		\$	350	\$ 403	\$	415	\$ 427	\$ 440							
Maintenance	\$ 1,803		\$	350	\$ 355	\$	361	\$ 366	\$ 371							
Total Costs	\$ 8,337	\$ 1,667	\$	5,200	\$ 758	\$	775	\$ 793	\$ 811							
PV Total Costs	\$ 7,977	\$ 1,595	\$	5,200	\$ 722	\$	703	\$ 685	\$ 667							
Pofurbich				1	2		3	4	5	6		7		8	٩	10
Capital	\$ 35,500		\$	1 775	\$ 1 775	\$	1 775	\$ 1 775	\$ 1 775	\$ 1 775	\$	1 775	\$	1 775	\$ 1 775	\$ 1 775
Operations	\$ 7,515		¢	325	\$ 330	\$	335	\$ 340	\$ 345	\$ 350	ŝ	355	\$	361	\$ 366	\$ 372
Maintenance	\$ 6,888		ŝ	275	\$ 279	ŝ	283	\$ 288	\$ 292	\$ 296	Ś	301	Ś	305	\$ 310	\$ 319
Total Costs	\$ 49,903	\$ 2,495	\$	2 375	\$ 2 384	\$	2 393	\$ 2 402	\$ 2 4 1 2	\$ 2 4 2 1	\$	2 431	\$	2 441	\$ 2 451	\$ 2 466
PV Total Costs	\$ 32,329	\$ 1,616	\$	2,375	\$ 2,270	\$	2,000	\$ 2,075	\$ 1,984	\$ 1,897	\$	1,814	\$	1,735	\$ 1,659	\$ 1,589
			-				,	,								,
Replace			-	1	 2		3	 4	 5	 6		7		8	 9	 10
Capital	\$ 61,000		\$	1,525	\$ 1,525	\$	1,525	\$ 1,525	\$ 1,525	\$ 1,525	\$	1,525	\$	1,525	\$ 1,525	\$ 1,525
Operations	\$ 10,854		\$	200	\$ 203	\$	206	\$ 209	\$ 212	\$ 215	\$	219	\$	222	\$ 225	\$ 229
Maintenance	\$ 12,244		\$	200	\$ 200	\$	200	\$ 200	\$ 200	\$ 225	\$	228	\$	232	\$ 235	\$ 239
Total Costs	\$ 84,097	\$ 2,102	\$	1,925	\$ 1,928	\$	1,931	\$ 1,934	\$ 1,937	\$ 1,965	\$	1,972	\$	1,979	\$ 1,986	\$ 1,992
PV Total Costs	\$ 36,707	\$ 918	\$	1,925	\$ 1,836	\$	1,752	\$ 1,671	\$ 1,594	\$ 1,540	\$	1,472	\$	1,406	\$ 1,344	\$ 1,284

Setting up the basic analysis: lowest annual life cycle cost

Discount Rate	1.0%	Avg Annual \$										
Repair/Maintenance	Total		1	2	3	4	5					
Capital	\$ 4,500		\$ 4,500	\$ -	\$ -	\$ -						
Operations	\$ 2,034		\$ 350	\$ 403	\$ 415	\$ 427	\$ 440					
Maintenance	\$ 1,803		\$ 350	\$ 355	\$ 361	\$ 366	\$ 371					
Total Costs	\$ 8,337	\$ 1,667	\$ 5,200	\$ 758	\$ 775	\$ 793	\$ 811					
PV Total Costs	\$ 8,259	\$ 1,652	\$ 5,200	\$ 750	\$ 760	\$ 770	\$ 780					
Refurbish			 1	 2	 3	 4	 5	 6	 7	 8	 9	 10
Capital	\$ 35,500		\$ 1,775									
Operations	\$ 7,515		\$ 325	\$ 330	\$ 335	\$ 340	\$ 345	\$ 350	\$ 355	\$ 361	\$ 366	\$ 372
Maintenance	\$ 6,888		\$ 275	\$ 279	\$ 283	\$ 288	\$ 292	\$ 296	\$ 301	\$ 305	\$ 310	\$ 319
Total Costs	\$ 49,903	\$ 2,495	\$ 2,375	\$ 2,384	\$ 2,393	\$ 2,402	\$ 2,412	\$ 2,421	\$ 2,431	\$ 2,441	\$ 2,451	\$ 2,466
PV Total Costs	\$ 45,382	\$ 2,269	\$ 2,375	\$ 2,360	\$ 2,346	\$ 2,332	\$ 2,318	\$ 2,304	\$ 2,290	\$ 2,277	\$ 2,263	\$ 2,254
Replace			 1	 2	 3	 4	 5	 6	 7	 8	 9	 10
Capital	\$ 61,000		\$ 1,525									
Operations	\$ 10,854		\$ 200	\$ 203	\$ 206	\$ 209	\$ 212	\$ 215	\$ 219	\$ 222	\$ 225	\$ 229
Maintenance	\$ 12,244		\$ 200	\$ 200	\$ 200	\$ 200	\$ 200	\$ 225	\$ 228	\$ 232	\$ 235	\$ 239
Total Costs	\$ 84,097	\$ 2,102	\$ 1,925	\$ 1,928	\$ 1,931	\$ 1,934	\$ 1,937	\$ 1,965	\$ 1,972	\$ 1,979	\$ 1,986	\$ 1,992
PV Total Costs	\$ 69,241	\$ 1,731	\$ 1,925	\$ 1,909	\$ 1,893	\$ 1,877	\$ 1,862	\$ 1,870	\$ 1,858	\$ 1,846	\$ 1,834	\$ 1,822

Numbers are illustrative only

Adding non-financial decision elements: weighted decision tables

		Rej	pair	Refurbish			
Criteria	Weight	A*	Weight A	B *	Weight B		
Life cycle cost**	3	10	30	8	24		
Safety	1	8	8 8		8		
Environmental impact							
Noise	1	7	7	8	8		
Odor	1	7	7	9	9		
Performance							
Level of service	1	7	7	9	9		
Reliability	2	7	14	10	20		
Availability	1	8	8	7	7		
Total	10		81		85		

* Scored 1 (poorest) to 10 (best)

** Based on estimated \$

ORDM modeling: TEAM-Plan main screen

Advancing Asset Management

Management strategy groups

- Grouping of assets with similar renewal and behavioral patterns
- Purpose
 - Allocate defaults to assets (missing data)
 - Assign asset lives and decay curves
 - Calculate current replacement costs
 - Calculate business risk
 - Consequence of failure
 - Probability of failure
 - Determine appropriate investment intervention
- Example

Gravity pipes, RCP, built <1950, high H_2S

Determining the end of asset life - the heart of the investment optimization process

(the focus of the Advanced Workshop materials)

Advancing Asset Management

From the strategic AM funding perspective

- From a strategic AM funding perspective, two separate fundamental management questions:
 - <u>How many/when</u> how many assets of a particular class are likely to fail within a specific timeframe? (used to build the "nessie curve – a projection of future expected costs)
 - <u>Which/when</u> which specific assets are likely to fail in a given timeframe? (used to build the detailed CIP budget)

Strategic level - *how many/when* assets in timeframe period and at what cost each (this sets the funding framework)

Which/when tactical level – *which/when* assets within a CIP cycle (list of capital projects)

ID	District	Facility Process Area		Involved Assets	BRE of Asset	Description of Project	Source						
DISTRICTS 1, 4 AND 5													
1	1	Collection System	Various	Collection System		I/I Rehabiliation	Existing CIP						
2	1	Pump Station	Industrial Parkway	Ind Pkwy PS - Below Ground Structure	63	Perform vibration analysis, pumping evaluation, design new pumps, replace pumps, evaluate control system	At-Risk Assets						
		Pump Station	Cayuga	Cayuga PS - HVAC	45	Replace Wet well Roof AHU							
3	1	Pump Station	Industrial Parkway	Ind Pkwy PS - HVAC	45	Replace Wet and Dry Well Roof AHU	At-Risk Assets						
	1	Pump Station	Cayuga	Wet Well Chain Pull	50	Redesign wet well chain pull to remove comminutors							
4		Pump Station	Depew	Cranes	21	Redesign crane system	At-Risk Assets						
	4	Pump Station	Vanderbilt	Cranes	30	Redesign crane system							
		Pump Station	Broadway East	Cranes		Redesign crane system							
				ORF Chlorine Chamber/Gates	30	Add additional gates to drain CCT							
				ORF Washwater Fill Pump Station	30	Redo submersible pump station and creek intake							
				ORF Washwater Pumps	21	Replace ORF washwater pump							
5	4	Pump Station	Depew	Flow meters/Force Main Ball Valve	30	Remove and replace valve stem, repair flow meter, modify valve chamber so valve can be easily lifted	At-Risk Assets						
				Flow Meters/ORF Ball Valve	30	out Repair flow meter, modify valve chamber so valve can be easily lifted out							
6	4	Pump Station	Bowmansville	Wastewater Pumps	20	Evaluate pumps and piping and replace as necessary	At-Risk Assets						
7	4	Pump Station	Vanderbilt	Pumping System/Force Main Evaluation	40	Evaluate capacity of pumping system, resize pumps if necessary.	At-Risk Assets						
8	4	Pump Stations	Aurora N/Aurora S	Pump Stations		Various Improvements	Existing CIP						
9	5	Pump Station	Eastern Hills	EHPS - Below Ground Structures	81	Replace below-ground steel structures with FRP	At-Risk Assets						
10	5	Collection System	Transit Road	Collection System		Replacement of ACP	Existing CIP						
11	5	Collection System	Goodrich Road	Collection System		Various Improvements	Existing CIP						
12	5	Collection System	Spaulding Lakes	Collection System		Various Improvements	Existing CIP						

Key points from this session

How do I optimize O&M and capital investment?

Key Points:

- Follow a logical best practice process –
 Optimized Decision Making or Life Cycle Costing Analysis.
- Get the best information and data you have, consider all feasible alternatives, and generate your best strategy.
- Consider non-asset solutions!

Associated Techniques:

- Optimized renewal decision-making
- Life-cycle costing (including projections)
- Decision-tree analysis
- Weighted decision tables