## WEIGHT-OF-EVIDENCE APPROACHES INVITED EXPERT MEETING ON REVISING USEPA'S GUIDELINES FOR DERIVING AQUATIC LIFE CRITERIA



Copyright © 2015 Ramboll Environ, Inc. All rights reserved. Copies of this PowerPoint are being distributed for your personal, non-commercial use. If you wish to cite to the paper, please include full attribution. For any other use, please contact Ramboll Environ, Inc. by telephone at 207-517-8223 or e-mail mbock@environcorp.com for permission.

## **PRESENTATION OVERVIEW**





## **WOE CONCEPT**

## Wise to consider multiple lines of evidence

- But often outcomes conflict
- And professional opinions differ

#### Weighing each line of evidence systematically allows

- Transparent characterization of uncertainty
- Explicit documentation of professional judgment
- Balanced conclusion





### **WOE PRECEDENTS**

- USEPA Integrated Risk
   Information System
- CADDIS
- MADEP WOE Work Group

\_II. Carcinogenicity Assessment for Lifetime Exposure

Substance Name — alpha-Hexachlorocyclohexane (alpha-HCH) CASRN — 319-84-6 Last Revised — 07/01/1993

Section II provides information on three aspects of the carcinogenic assessment for the substance in question; the weight-of-evid inhalation exposure. The quantitative risk estimates are presented in three ways. The slope factor is the result of application of a l risk per ug/L drinking water or risk per ug/Lum air breathed. The third form in which risk is presented is a drinking water or air co carcinogenicity information in IRIS are described in The Risk Assessment Guidelines of 1986 (EPA/600/8-87/045) and in the IRIS Assessment also utilize those Guidelines where indicated (Federal Register 61(79):12960-18011, April 23, 1996). Users are refen

\_II.A. Evidence for Human Carcinogenicity

\_\_\_II.A.1. Weight-of-Evidence Characterization

Classification — B2; probable human carcinogen

Basis — Dietary alpha-HCH has been shown to cause increased incidence of liver tumors in five mouse strains and in Wistar rats.

#### DRAFT REPORT A WEIGHT-OF-EVIDENCE APPROACH FOR EVALUATING ECOLOGICAL RISKS

Prepared by

Massachusetts Weight-of-Evidence Workgroup

November 2, 1995

RAMBOLL ENVIRON

## **MCDA BACKGROUND**

- Sub-discipline of operations research since 1970s, drawing on mathematics, behavioral decision theory, economics, software engineering, and information systems
- 2011 publication of Linkov & Moberg mainstreamed MCDA's application to environmental decision making
- Many MCDA methods exist:
  - Aggregated Indices Randomization Method
  - Analytic hierarchy process
  - Analytic network process
  - Best worst method
  - Characteristic Objects Method
  - Choosing By Advantages
- RAMBOLL ENVIRON

- Data envelopment analysis
- Disaggregation Aggregation Approaches
- Dominance-based rough set approach
- Outranking
- Evidential reasoning approach
- Goal programming
- Inner product of vectors
- Multi-Attribute Global Inference of Quality
- Multi-attribute utility theory
- New Approach to Appraisal
- Potentially all pairwise rankings of all possible alternatives
- Superiority and inferiority ranking method
- Technique for the Order of Prioritisation by Similarity to Ideal Solution
- Value analysis
- Value engineering
- VIKOR method
- Fuzzy VIKOR method

Weighted product model Weighted sum model

Rembrandt method





 $\begin{array}{c} \mbox{Copyright} @ 2015 \mbox{ Ramboll Environ, Inc.} \\ \mbox{ All rights reserved.} \end{array}$ 

## PROPOSED APPLICATION IN ALC DERIVATION

From Suter's WOE presentation

Illustrated here with a constructed dataset for a hypothetical substance lacking an ALC or with an outdated ALC





## **EXAMPLE ATTRIBUTES FOR WEIGHING STUDY QUALITY, DEFINED A PRIORI**



#### **Test organisms**

sensitivity, similarity to target species with respect to taxonomy and feeding guild



#### **Endpoints**

effects measured are most sensitive, diagnostic, and relevant to population sustainability



#### Study design

sample size, acclimation, dosing methods, exposure duration

## 4

Data quality

QA/QC, statistical analysis, confounding factors

## 5 Stu

**Study execution** 

methodological contributions to uncertainty



| Score  Attribute   | 1                                                                                                         | 2                                                                                            | 3                                                                                                                                                 | 4                                                                                                                   | 5                                                                                                               |
|--------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Test<br>organisms  | Insensitive<br>species, not<br>native or closely<br>related                                               | Insensitive,<br>native species                                                               | Sensitive<br>species, not<br>native or closely<br>related                                                                                         | Sensitive species closely related to native species                                                                 | Sensitive, native species                                                                                       |
| Endpoints          | Insensitive,<br>nondiagnostic<br>endpoint                                                                 | Somewhat<br>diagnostic and<br>sensitive<br>endpoint                                          | Moderately<br>diagnostic and<br>sensitive<br>endpoint, not<br>closely tied to<br>population<br>sustainability                                     | Diagnostic and<br>sensitive<br>endpoint, linked<br>to population<br>sustainability                                  | Highly diagnostic<br>and sensitive<br>endpoint that<br>drives population<br>sustainability                      |
| Study<br>design    | Meets <a>1</a> of 5<br>key aspects of<br>study design (as<br>described under<br>Score 5)                  | Meets 2 of 5 key<br>aspects of study<br>design (as<br>described under<br>Score 5)            | Meets 3 of 5 key<br>aspects of study<br>design (as<br>described under<br>Score 5)                                                                 | Meets 4 of 5 key<br>aspects of study<br>design (as<br>described under<br>Score 5)                                   | Strong sample<br>size, acclimation,<br>dosing methods,<br>number of dose<br>groups, and<br>exposure<br>duration |
| Data<br>quality    | Inappropriate<br>statistical<br>analyses and/or<br>errors and/or<br>unaddressed<br>confounding<br>factors | Analyses and/or<br>QA/QC are<br>questionable but<br>errors not<br>definitively<br>identified | Statistical<br>analyses<br>appropriate<br>though potential<br>confounding<br>factors not fully<br>addressed and<br>discussion of<br>QA/QC limited | Robust statistical<br>analyses and<br>confounding<br>factors<br>addressed, but<br>limited<br>discussion of<br>QA/QC | Robust statistical<br>analyses and<br>QA/QC; any<br>potential<br>confounding<br>factors<br>addressed            |
| Study<br>execution | Flaws in study<br>execution<br>preclude reliance<br>on all<br>conclusions                                 | Flaws in study<br>execution<br>preclude reliance<br>on some<br>conclusions                   | Minor flaws in<br>study execution,<br>but not<br>adequately<br>explained                                                                          | Minor flaws in<br>study execution<br>are adequately<br>explained                                                    | No flaws in study<br>execution<br>identified                                                                    |

## **EXAMPLE WEIGHING OF STUDIES**

| Attribute                     | Study1 | Study2 | Study3 | Study4 | Study5 |
|-------------------------------|--------|--------|--------|--------|--------|
| Test<br>organisms             | 1      | 3      | 4      | 2      | 4      |
| Endpoints                     | 2      | 4      | 5      | 4      | 5      |
| Study<br>design               | 1      | 2      | 3      | 3      | 5      |
| Data<br>quality               | 2      | 5      | 2      | 3      | 3      |
| Study<br>execution            | 1      | 2      | 3      | 4      | 5      |
| Average<br>score<br>(weights) | 1.4    | 3.2    | 3.4    | 3.2    | 4.4    |



 $\begin{array}{l} \mbox{Copyright} @ \mbox{2015} \mbox{ Ramboll Environ, Inc.} \\ \mbox{ All rights reserved.} \end{array}$ 

# **RESULTANT WEIGHTS THEN APPLIED TO SMAV CALCULATION**

Scores derived above serve as w<sub>t</sub>

| Study | Weight | LC50 |
|-------|--------|------|
| 1     | 1.4    | 5    |
| 2     | 3.2    | 15   |
| 3     | 3.4    | 2    |
| 4     | 3.2    | 25   |
| 5     | 4.4    | 10   |



- Unweighted SMAV = 8.2
- Weighted SMAV = 8.7





# OTHER POTENTIAL WOE APPLICATIONS IN ALC DERIVATION

Cases where QSAR indicates toxicity of Chem1<Chem2, but tier II paradigm prevents consideration of that information Overcoming technical challenges in deriving aquatic life criteria for contaminants of emerging concern (CECs)



## CONCLUSIONS

| Tool for reconciling conflicting<br>lines of evidence and<br>appropriately considering each<br>line of evidence | Acknowledges that quality in<br>studies varies and professional<br>judgment is used when deriving<br>ALC                                                |  |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                 | <ul> <li>We currently use professional<br/>judgment when we assume all<br/>studies are of equal quality (i.e., in<br/>not weighing evidence)</li> </ul> |  |
|                                                                                                                 |                                                                                                                                                         |  |
| MCDA/WOE widely applied and accepted                                                                            | Not difficult to understand or implement                                                                                                                |  |
|                                                                                                                 |                                                                                                                                                         |  |



 $\begin{array}{c} \mbox{Copyright} @ \mbox{2015} \mbox{ Ramboll Environ, Inc.} \\ \mbox{All rights reserved.} \end{array}$ 



For more information, contact: Miranda Henning 207-517-8222 mhenning@environcorp.com

