A Unified Aquatic Life Framework for Addressing the Affected Percentages of Individuals, Species, and Time

Charles Delos
Great Lakes Environmental Center
cdelos@glec.com

Two Approaches for Addressing Time Variability

- Simple approach uses distribution of exposure concentrations.
- Complex approach uses a long time series of concentrations.

An Actual Application Applying the Simple Distribution of Concentrations

- State of Utah adopted a selenium criterion for the Great Salt Lake, Gilbert Bay.
- Applies to the Se concentration in bird eggs.
- Set at $12.5 \mathrm{mg} / \mathrm{kg}$, the State's estimate of the EC10 for mallard duck, the most sensitive known species.
- Applies as the geometric mean concentration.
- Question: What is the aggregate level of effect if the water body geometric mean rises to the EC10 and the variability of concentrations (expressed as a CV or log standard deviation) remains as present?

Combining Ambient Concentration Distribution with a Species Concentration-Response Curve:

Aggregate Effect $=\sum$ probability $_{i} \times$ Effect $_{i}$

Hypothetical Illustration: Selecting a Return Interval for Exceeding a Criterion

- Possible application: let's say a state wants to allow the annual reproductive season mean Se fish tissue concentration to exceed the criterion only once in " X " number of years.
- We ask: for various values of the return frequency, X, what is the level of aggregate effect on the hypothetical $5^{\text {th }}$ percentile species having EC10=Criterion?

Trial 1: Once in 2 Years

Trial 2: Once in 3 Years

Trial 3: Once in 5 Years

Trial 4: Once in 10 Years

Results for
 Various Exceedance Frequencies

Influence of Annual Concentration Variability

Complex Approach

- The next set of slides addresses the complex approach, which uses a time series of exposures rather than the statistical distribution of exposures.

Higher Tier Assessment: Combined Application of Kinetic Toxicity Model and Population Model

- For Each Species, Apply Two Models -
- Kinetic toxicity model to translate from lab test exposures to continuously variable concentrations.
- Life-stage structured population model.

Higher Tier Assessments: Combined Application of Kinetic Toxicity Model and Population Model

- For Each Species, Apply Two Models -
- Kinetic toxicity model to translate from lab test exposures to continuously variable concentrations.
- Life-stage structured population model.
- The combination allows discerning:
- How sensitivity differs among individuals and between life stages.
- How reductions in survival and reproduction differ in their effect on populations.
- How population effects differ between species that recover rapidly and species that recover slowly.
- Toxicant concentration, short example
- Accumulation of stress in individuals of one species

- Population response in one species

Days

Generating an Assemblage Toxicity Index for Tested Representative Species

Kinetic Toxicity Model

- Needed to predict toxicity of continuously variable concentrations
- Provides input (such as death rates) to population model.

Minimum Data Needed to Calibrate Toxicity Model for Each Animal Species
 - Required

- Acute LC50
- Chronic survival EC50 or EC20
- Chronic EC50/EC20 ratio (conc-response slope)
- Desirable
- Chronic ECx differences between early life stages and juvenile-adult stages
- Optional
- Chronic ECx differences between lethal and sublethal effects (growth-reproduction)

Simple Use of the Kinetic Model to Help Understand Acute-Chronic Ratios

Stage-Structured Population Model

Population Model Input Parameters

- Decide how many life stages you want to divide the species lifespan into.
- For each life stage, specify its:
- Duration
- Background survival rate
- Reproductive rate - for adult stage(s) only.

Modeling Effects on Populations

Mortality v. Repro Effects

 Daphnia response to 30-day Pulse Exposure at EC50

Mortality v. Repro Effects
 Bluegill response to 30-day Pulse Exposure at EC50

Comparing the Simple and Complex Approaches:

Coupled Concentration Distribution \& Response Curve VS.
Coupled Toxicity Model \& Population Model

Comparing the Simple and Complex Approaches:

Coupled Concentration Distribution \& Response Curve

 vs.
Coupled Toxicity Model \& Population Model

- Simple approach:
- Bypasses kinetics of toxicity.
- Bypasses sequencing of events.
- Cannot discern life-stage sensitivity differences.
- Cannot discern chronic lethal from sublethal effects.
- Omits persistence of loss concepts (recovery time): cannot discern short-lived from long-lived species.

