ANNEX 6 Additional Information

6.1. Global Warming Potential Values

Global Warming Potential (GWP) is intended as a quantified measure of the globally averaged relative radiative forcing impacts of a particular greenhouse gas. It is defined as the cumulative radiative forcing—both direct and indirect effects—integrated over a specific period of time from the emission of a unit mass of gas relative to some reference gas (IPCC 2007). Carbon dioxide (CO_2) was chosen as this reference gas. Direct effects occur when the gas itself is a greenhouse gas. Indirect radiative forcing occurs when chemical transformations involving the original gas produce a gas or gases that are greenhouse gases, or when a gas influences other radiatively important processes such as the atmospheric lifetimes of other gases. The relationship between kilotons (kt) of a gas and million metric tons of CO_2 equivalents (MMT CO_2 Eq.) can be expressed as follows:

MMTCO₂ Eq. = (kt of gas) × (GWP) ×
$$\left(\frac{MMT}{1,000 \text{ kt}}\right)$$

where,

HFC-125

MMT CO ₂ Eq.	=	Million metric tons of Carbon Dioxide Equivalents
kt	=	Kilotons (equivalent to a thousand metric tons)
GWP	=	Global Warming Potential
MMT	=	Million metric tons

GWP values allow policy makers to compare the impacts of emissions and reductions of different gases. According to the IPCC, GWP values typically have an uncertainty of ± 35 percent, though some GWP values have larger uncertainty than others, especially those in which lifetimes have not yet been ascertained. In the following decision, the parties to the UNFCCC have agreed to use consistent GWP values from the IPCC Fourth Assessment Report (AR4), based upon a 100 year time horizon, although other time horizon values are available (see Table A-274). While noting the specific requirements of reporting this inventory to the UNFCCC using agreed upon GWP values, it is also noted that unweighted gas emissions and sinks in kilotons (kt) are provided in the Trends chapter of this report (Table 2-2).

...the global warming potential values used by Parties included in Annex I to the Convention (Annex I Parties) to calculate the carbon dioxide equivalence of anthropogenic emissions by sources and removals by sinks of greenhouse gases shall be those listed in the column entitled "Global warming potential for given time horizon" in table 2.14 of the errata to the contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, based on the effects of greenhouse gases over a 100-year time horizon...⁴

Greenhouse gases with relatively long atmospheric lifetimes (e.g., CO_2 , CH_4 , N_2O , HFCs, PFCs, SF₆, and NF₃) tend to be evenly distributed throughout the atmosphere, and consequently global average concentrations can be determined. However, the short-lived gases such as water vapor, carbon monoxide, tropospheric ozone, other indirect greenhouse gases (e.g., NO_x and NMVOCs), and tropospheric aerosols (e.g., SO_2 products and black carbon) vary spatially, and consequently it is difficult to quantify their global radiative forcing impacts. GWP values are generally not attributed to these gases that are short-lived and spatially inhomogeneous in the atmosphere.

Gas	Atmospheric Lifetime	100-year GWP ^a	20-year GWP	500-year GWP
Carbon dioxide (CO ₂)	See footnote ^c	1	1	- ,
Methane (CH ₄)b	12	25	72	7.6
Nitrous oxide (N ₂ O)	114	298	289	15
HFC-23	270	14,800	12,000	12,20
HFC-32	4.9	675	2,330	205

29

⁴ Framework Convention on Climate Change; < http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf >; 31 January 2014; Report of the Conference of the Parties at its nineteenth session; held in Warsaw from 11 to 23 November 2013; Addendum; Part two: Action taken by the Conference of the Parties at its nineteenth session; Decision 24/CP.19; Revision of the UNFCCC reporting guidelines on annual inventories for Parties included in Annex I to the Convention; p. 2. (UNFCCC 2014)

3,500

6,350

1,100

HFC-134a	14	1,430	3,830	435
HFC-143a	52	4,470	5,890	1,590
HFC-152a	1.4	124	437	38
HFC-227ea	34.2	3,220	5,310	1,040
HFC-236fa	240	9,810	8,100	7,660
HFC-43-10mee	15.9	1,640	4,140	500
CF ₄	50,000	7,390	5,210	11,200
C ₂ F ₆	10,000	12,200	8,630	18,200
C ₃ F ₈	2,600	8,830	6,310	12,500
C4F10	2,600	8,860	6,330	12,500
c-C ₄ F ₈	3,200	10,300	7,310	14,700
C ₅ F ₁₂	4,100	9,160	6,510	13,300
C ₆ F ₁₄	3,200	9,300	6,600	13,300
SF ₆	3,200	22,800	16,300	32,600
NF ₃	740	17,200	12,300	20,700

Source: IPCC (2007)

^a GWP values used in this report are calculated over 100 year time horizon.

^b The methane GWP includes the direct effects and those indirect effects due to the production of tropospheric ozone and stratospheric water vapor. The indirect effect due to the production of CO₂ is not included.

• For a given amount of carbon dioxide emitted, some fraction of the atmospheric increase in concentration is quickly absorbed by the oceans and terrestrial vegetation, some fraction of the atmospheric increase will only slowly decrease over a number of years, and a small portion of the increase will remain for many centuries or more.

Table A-275 presents direct GWP values for ozone-depleting substances (ODSs). Ozone-depleting substances directly absorb infrared radiation and contribute to positive radiative forcing; however, their effect as ozone-depleters also leads to a negative radiative forcing because ozone itself is a potent greenhouse gas. There is considerable uncertainty regarding this indirect effect; therefore, a range of net GWP values is provided for ozone depleting substances. The IPCC Guidelines and the UNFCCC do not include reporting instructions for estimating emissions of ODSs because their use is being phased-out under the Montreal Protocol (see note below Table A-275). The effects of these compounds on radiative forcing are not addressed in this report.

Table A-270. 100-yea	
Gas	Direct GWP
CFC-11	4,750
CFC-12	10,900
CFC-113	6,130
HCFC-22	1,810
HCFC-123	77
HCFC-124	609
HCFC-141b	725
HCFC-142b	2,310
CH ₃ CCI ₃	146
CCI ₄	1,400
CH₃Br	5
Halon-1211	1,890
Halon-1301	7,140

Source: IPCC (2007)

Note: Because these compounds have been shown to deplete stratospheric ozone, they are typically referred to as ozone depleting substances (ODSs). However, they are also potent greenhouse gases. Recognizing the harmful effects of these compounds on the ozone layer, in 1987 many governments signed the Montreal Protocol on Substances that Deplete the Ozone Layer to limit the production and importation of a number of CFCs and other halogenated compounds. The United States furthered its commitment to phase-out ODSs by signing and ratifying the Copenhagen Amendments to the Montreal Protocol in 1992. Under these amendments, the United States committed to ending the production and importation of halons by 1994, and CFCs by 1996.

The IPCC published its Fifth Assessment Report (AR5) in 2013, providing the most current and comprehensive scientific assessment of climate change (IPCC 2013). Within this report, the GWP values were revised relative to the IPCC's Second Assessment Report (SAR) (IPCC 1996), IPCC's Third Assessment Report (TAR) (IPCC 2001), and the IPCC's Fourth Assessment Report (AR4) (IPCC 2007). Although the AR4 GWP values are used throughout this report in line with UNFCCC inventory reporting guidelines, it is informative to review the changes to the GWP values and the impact has on the total GWP-weighted emissions of the United States. All GWP values use CO_2 as a reference gas; a change in the radiative efficiency of CO_2 thus impacts the GWP of all other greenhouse gases. Since the SAR and TAR, the IPCC has applied an improved calculation of CO_2 radiative forcing and an improved CO_2 response function. The GWP values are drawn from IPCC (2007), with updates for those cases where new laboratory or radiative transfer results have been published.

Additionally, the atmospheric lifetimes of some gases have been recalculated, and updated background concentrations were used. Table A-276 shows how the GWP values of the other gases relative to CO_2 tend to be larger in AR4 and AR5 because the revised radiative forcing of CO_2 is lower than in earlier assessments, taking into account revisions in lifetimes. Comparisons of GWP values are based on the 100-year time horizon required for UNFCCC inventory reporting. However, there were some instances in which other variables, such as the radiative efficiency or the chemical lifetime, were altered that resulted in further increases or decreases in particular GWP values. In addition, the values for radiative forcing and lifetimes have been calculated for a variety of halocarbons. Updates in some well-mixed HFC compounds (including HFC-23, HFC-134a, and HFC-227ea) for AR4 result from investigation into radiative efficiencies in these compounds, with some GWP values changing by up to 40 percent; with this change, the uncertainties associated with these well-mixed HFCs are thought to be approximately 12 percent.

It should be noted that this Inventory represents the first time that the official U.S. greenhouse gas emissions are reported using the AR4 GWP values. The use of IPCC AR4 GWP values for the current Inventory applies across the entire time series of the Inventory (i.e., from 1990 to 2013). As such, GWP comparisons throughout this chapter are presented relative to AR4 GWPs.

	Lifetime (years)				GWP (100 year)				Difference in GWP (Relative to AR4)					
Gas	SAR	TAR	AR4	AR5	SAR	TAR	AR4	AR5 ª	SAR	SAR (%)	TAR	TAR (%)	AR5 ^a	AR5 (%)
Carbon dioxide (CO ₂)	b	С	с	с	1	1	1	1	NC	NC	NC	NC	NC	NC
Methane (CH ₄) ^d	12±3	8.4/12 ^e	8.7/12 ^e	12.4	21	23	25	28	(4)	(16%)	(2)	(8%)	3	12%
Nitrous oxide (N ₂ O)	120	120/114 e	120/114 º	121	310	296	298	265	12	4%	(2)	(1%)	(33)	(11%)
Hydrofluorocarbons														. ,
HFC-23	264	260	270	222	11,700	12,000	14,800	12,400	(3,100)	(21%)	(2,800)	(19%)	(2,400)	(16%)
HFC-32	5.6	5.0	4.9	5.2	650	550	675	677	(25)	(4%)	(125)	(19%)	2	0%
HFC-125	32.6	29	29	28.2	2,800	3,400	3,500	3,170	(700)	(20%)	(100)	(3%)	(330)	(9%)
HFC-134a	14.6	13.8	14	13.4	1,300	1,300	1,430	1,300	(130)	(9%)	(130)	(9%)	(130)	(9%)
HFC-143a	48.3	52	52	47.1	3,800	4,300	4,470	4,800	(670)	(15%)	(170)	(4%)	330	7%
HFC-152a	1.5	1.4	1.4	1.5	140	120	124	138	16	13%	(4)	(3%)	14	11%
HFC-227ea	36.5	33.0	34.2	38.9	2,900	3,500	3,220	3,350	(320)	(10%)	280	9%	130	4%
HFC-236fa	209	220	240	242	6,300	9,400	9,810	8,060	(3,510)	(36%)	(410)	(4%)	(1,750)	(18%)
HFC-245fa	NA	7.2	7.6	7.7	NA	950	1,030	858	NA	NA	(80)	(8%)	(172)	(17%)
HFC-365mfc	NA	9.9	6.6	8.7	NA	890	794	804	NA	NA	96	12%	10	1%
HFC-43-10mee	17.1	15	15.9	16.1	1,300	1,500	1,640	1,650	(340)	(21%)	(140)	(9%)	10	1%
Fully Fluorinated														
Species														
SF ₆	3,200	3,200	3,200	3,200	23,900	22,200	22,800	23,500	1,100	5%	(600)	(3%)	700	3%
CF ₄	50,000	50,000	50,000	50,000	6,500	5,700	7,390	6,630	(890)	(12%)	(1,690)	(23%)	(760)	(10%)
C ₂ F ₆	10,000	10,000	10,000	10,000	9,200	11,900	12,200	11,100	(3,000)	(25%)	(300)	(2%)	(1,100)	(9%)
C ₃ F ₈	2,600	2,600	2,600	2,600	7,000	8,600	8,830	8,900	(1,830)	(21%)	(230)	(3%)	70	1%
C4F10	2,600	2,600	2,600	2,600	7,000	8,600	8,860	9,200	(1,860)	(21%)	(260)	(3%)	340	4%
c-C ₄ F ₈	3,200	3,200	3,200	3,200	8,700	10,000	10,300	9,540	(1,600)	(16%)	(300)	(3%)	(760)	(7%)
C ₅ F ₁₂	4,100	4,100	4,100	4,100	7,500	8,900	9,160	8,550	(1,660)	(18%)	(260)	(3%)	(610)	(7%)
C ₆ F ₁₄	3,200	3,200	3,200	3,100	7,400	9,000	9,300	7,910	(1,900)	(20%)	(300)	(3%)	(1,390)	(15%)
NF ₃	NA	740	740	500	NA	10,800	17,200	16,100	NÁ	NÁ	(6,400)	(37%)	(1,100)	(6%)

Table A-276: Comparison of GWP values and Lifetimes Used in the SAR, TAR, AR4, and AR5

NC (No Change) NA (Not Applicable)

^a The GWP values presented here are the ones most consistent with the methodology used in the AR4 report. The AR5 report has also calculated GWP values (not shown here) where climate-carbon feedbacks have been included for the non-CO₂ gases in order to be consistent with the approach used in calculating the CO₂ lifetime. Additionally, the AR5 reported separate values for fossil versus biogenic methane in order to account for the CO₂ oxidation product.

^b For a given amount of carbon dioxide emitted, some fraction of the atmospheric increase in concentration is quickly absorbed by the oceans and terrestrial vegetation, some fraction of the atmospheric increase will only slowly decrease over a number of years, and a small portion of the increase will remain for many centuries or more.

° No single lifetime can be determined for CO2. (See IPCC 2001)

^d The methane GWP includes the direct effects and those indirect effects due to the production of tropospheric ozone and stratospheric water vapor. The indirect effect due to the production of CO₂ is not included.

• Methane and nitrous oxide have chemical feedback systems that can alter the length of the atmospheric response, in these cases, global mean atmospheric lifetime (LT) is given first, followed by perturbation time (PT). Note: Parentheses indicate negative values.

Source: IPCC (2013), IPCC (2007), IPCC (2001), IPCC (1996).

The choice of GWP values between the SAR, TAR, AR4, and AR5 has an impact on both the overall emissions estimated by the inventory, as well as the trend in emissions over time. To summarize, Table A-277 shows the overall trend in U.S. greenhouse gas emissions, by gas, from 1990 through 2013 using the four GWP sets. The table also presents the impact of SAR, TAR, and AR5 GWP values on the total emissions for 1990 and for 2013.

Gas	Ti	rend from	1990 to 20 ⁴	13	Revision	s to Annua	al Emissio	n Estimate	s (Relative	to AR4)
					SAR	TAR	AR5 ^a	SAR	TAR	AR5 ^a
	SAR	TAR	AR4	AR5a		1990			2013	
CO ₂	381.5	381.5	381.5	381.5	NC	NC	NC	NC	NC	NC
CH ₄	(91.7)	(100.4)	(109.2)	(122.3)	(119.3)	(59.6)	89.5	(101.8)	(50.9)	76.4
N ₂ O	26.3	<u>25.1</u>	<u>25.3</u>	22.5	<u> </u>	(2.2)	(36.5)	<u></u> 14.3	(2.4)	(39.3)
HFCs, PFCs, SF ₆						. ,	. ,		. ,	
and NF ₃	58.3	70.5	74.3	67.4	(11.8)	(14.0)	(8.9)	(27.8)	(17.8)	(15.8)
Total	374.4	376.7	371.9	349.1	(117.8)	(75.9)	44.0	(115.3)	(71.1)	21.2
Percent Change	6.1%	6.1%	5.9%	5.5%	(1.9%)	(1.2%)	0.7%	(1.7%)	(1.1%)	0.3%

^a The GWP values presented here are the ones most consistent with the methodology used in the AR4 report. The AR5 report has also calculated GWP values (not shown here) where climate-carbon feedbacks have been included for the non-CO₂ gases in order to be consistent with the approach used in calculating the CO₂ lifetime. Additionally, the AR5 reported separate values for fossil versus biogenic methane in order to account for the CO₂ oxidation product. NC (No Change)

Note: Totals may not sum due to independent rounding. Excludes sinks. Parentheses indicate negative values.

When the GWP values from the SAR are applied to the emission estimates presented in this report, total emissions for the year 2013 are 6,557.6 MMT CO_2 Eq., as compared to the official emission estimate of 6,673.0 MMT CO_2 Eq. using AR4 GWP values (i.e., the use of SAR GWPs results in a 1.7 percent decrease relative to emissions estimated using AR4 GWPs). Table A-278 provides a detailed summary of U.S. greenhouse gas emissions and sinks for 1990 through 2013, using the GWP values from the SAR. The percent change in emissions is equal to the percent change in the GWP; however, in cases where multiple gases are emitted in varying amounts the percent change is variable over the years, such as with substitutes for ozone depleting substances. Table A-279 summarizes the resulting change in emissions from using SAR GWP values relative to emissions using AR4 values for 1990 through 2013, including the percent change for 2013.

Gas/Source	1990	2005	2009	2010	2011	2012	2013
CO ₂	5,123.7	6,134.0	5,500.6	5,704.5	5,568.9	5,358.3	5,505.2
Fossil Fuel Combustion	4,740.7	5,747.7	5,197.1	5,367.1	5,231.3	5,026.0	5,157.7
Electricity Generation	1,820.8	2,400.9	2,145.7	2,258.4	2,157.7	2,022.2	2,039.8
Transportation	1,493.8	1,887.8	1,720.3	1,732.0	1,711.5	1,700.8	1,718.4
Industrial	842.5	827.8	727.7	775.7	774.1	784.2	817.3
Residential	338.3	357.8	336.4	334.7	327.2	283.1	329.6
Commercial	217.4	223.5	223.5	220.2	221.0	197.1	220.7
U.S. Territories	27.9	49.9	43.5	46.2	39.8	38.6	32.0
Non-Energy Use of Fuels	117.7	138.9	106.0	114.6	108.4	104.9	119.8
Iron and Steel Production &							
Metallurgical Coke							
Production	99.8	66.7	43.0	55.7	60.0	54.3	52.3
Natural Gas Systems	37.6	30.0	32.2	32.3	35.6	34.8	37.8
Cement Production	33.3	45.9	29.4	31.3	32.0	35.1	36.1
Petrochemical Production	21.6	28.1	23.7	27.4	26.4	26.5	26.5
Lime Production	11.7	14.6	11.4	13.4	14.0	13.7	14.1
Ammonia Production	13.0	9.2	8.5	9.2	9.3	9.4	10.2
Incineration of Waste	8.0	12.5	11.3	11.0	10.5	10.4	10.1
Petroleum Systems	4.4	4.9	4.7	4.2	4.5	5.1	6.0
Liming of Agricultural Soils	4.7	4.3	3.7	4.8	3.9	5.8	5.9
Urea Consumption for Non-							
Agricultural Purposes	3.8	3.7	3.4	4.7	4.0	4.4	4.7
Other Process Uses of							
Carbonates	4.9	6.3	7.6	9.6	9.3	8.0	4.4
Urea Fertilization	2.4	3.5	3.6	3.8	4.1	4.2	4.0
Aluminum Production	6.8	4.1	3.0	2.7	3.3	3.4	3.3

A-406 Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2013

Soda Ash Production and							
Consumption	2.7	2.9	2.5	2.6	2.6	2.7	2.7
Ferroalloy Production	2.7	1.4	1.5	2.0	2.0	1.9	1.8
Titanium Dioxide Production	1.2	1.4	1.5	1.7	1.7	1.5	1.6
Zinc Production	0.6	1.0	0.9	1.0	1.7	1.5	1.0
	1.6	1.0	1.0	1.2	1.3	1.5	1.4
Phosphoric Acid Production	1.5	1.4	1.0	1.1	1.2	1.1	1.2
Glass Production	1.5		1.0	1.5	0.8	0.8	0.9
Carbon Dioxide Consumption	1.5	1.4	1.0	1.2	0.0	0.0	0.9
Peatlands Remaining Peatlands	1.1	1.1	1.0	1.0	0.9	0.8	0.0
Lead Production	0.5	0.6	0.5	0.5	0.9	0.8	0.8 0.5
	0.5	0.0	0.5	0.5	0.5	0.5	0.5
Silicon Carbide Production	0.4	0.0	0.4	0.0	0.0	0.0	0.0
and Consumption	0.4	0.2	0.1	0.2	0.2	0.2	0.2
Magnesium Production and							
Processing	+	+	+	+	+	+	+
Land Use, Land-Use							
Change, and Forestry	(775.0)	(011.0)	(070.0)	(074.0)	(004.0)	(000 1)	(004 7)
(Sink) ^a	(775.8)	(911.9)	(870.9)	(871.6)	(881.0)	(880.4)	(881.7)
Wood Biomass and Ethanol	0.00.4	000.0	050 5	005 4	000 (0077	
Consumption ^b	219.4	229.8	250.5	265.1	268.1	267.7	283.3
International Bunker Fuels ^c	103.5	113.1	106.4	117.0	111.7	105.8	99.8
CH4	626.2	594.6	596.0	560.4	555.2	544.0	534.5
Enteric Fermentation	137.9	141.8	145.1	143.7	141.7	139.7	138.2
Natural Gas Systems	150.5	148.1	141.2	134.0	133.8	129.7	132.2
Landfills	156.4	139.0	132.8	102.3	101.9	96.8	96.3
Coal Mining	81.1	53.9	67.1	69.2	59.8	55.8	54.3
Manure Management	31.2	47.3	50.1	51.2	51.6	53.5	51.6
Petroleum Systems	26.5	19.7	18.1	17.9	18.4	19.6	21.2
Wastewater Treatment	13.2	13.3	13.1	13.0	12.8	12.7	12.6
Rice Cultivation	7.7	7.5	7.9	9.3	7.1	7.8	7.0
Stationary Combustion	7.1	6.2	6.2	5.9	5.9	5.5	6.7
Abandoned Underground							
Coal Mines	6.0	5.5	5.3	5.5	5.4	5.2	5.2
Forest Fires	2.1	7.0	4.9	4.0	12.3	13.2	4.9
Mobile Combustion	4.7	2.5	2.0	1.9	1.9	1.8	1.8
Composting	0.3	1.6	1.6	1.5	1.6	1.6	1.6
Iron and Steel Production &							
Metallurgical Coke				· -			
Production	1.0	0.7	0.4	0.5	0.6	0.6	0.6
Field Burning of Agricultural							
Residues	0.3	0.2	0.2	0.2	0.3	0.3	0.3
Petrochemical Production	0.2	0.1	+	+	+	0.1	0.1
Ferroalloy Production	+	+	+	+	+	+	+
Silicon Carbide Production							
and Consumption	+	+	+	+	+	+	+
Peatlands Remaining							
Peatlands	+	+	+	+	+	+	+
Incineration of Waste	+	+	+	+	+	+	+
International Bunker Fuels ^b	0.1	0.1	0.1	0.1	0.1	0.1	0.1
N ₂ O	343.2	370.2	370.4	374.6	386.9	380.3	369.5
Agricultural Soil Management	233.0	253.4	274.7	274.9	276.5	276.7	274.3
Stationary Combustion	12.4	21.0	21.3	23.1	22.2	22.2	23.8
Mobile Combustion	42.9	39.7	25.6	24.7	23.4	21.0	19.2
Manure Management	14.4	17.1	17.7	17.7	18.0	18.0	18.0
Nitric Acid Production	12.6	11.8	10.0	12.0	11.3	10.9	11.1
Wastewater Treatment	3.5	4.5	4.8	4.9	5.0	5.0	5.1
N ₂ O from Product Uses	4.4	4.4	4.4	4.4	4.4	4.4	4.4
Adipic Acid Production	15.8	7.4	2.8	4.4	10.6	5.8	4.1
Forest Fires	1.7	5.7	4.0	3.3	10.0	10.7	4.0

Settlement Soils	1.4	2.4	2.3	2.5	2.6	2.6	2.5
Composting	0.4	1.7	1.8	1.7	1.7	1.8	1.8
Forest Soils	0.1	0.5	0.5	0.5	0.5	0.5	0.5
Incineration of Waste	0.5	0.4	0.4	0.3	0.3	0.3	0.3
Semiconductor Manufacture	+	0.1	0.1	0.2	0.2	0.2	0.2
Field Burning of Agricultural							
Residues	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Peatlands Remaining							
Peatlands	+	+	+	+	+	+	+
International Bunker Fuels ^b	0.9	1.0	0.9	1.0	1.0	1.0	0.9
HFCs	36.9	112.4	122.0	129.6	132.8	133.9	136.3
Substitution of Ozone							
Depleting Substances _a	0.3	96.4	116.5	123.1	125.7	129.4	132.9
HCFC-22 Production	36.4	15.8	5.4	6.4	6.9	4.3	3.2
Semiconductor Manufacture	0.2	0.2	0.1	0.2	0.2	0.2	0.1
Magnesium Production and							
Processing	0.0	0.0	+	+	+	+	0.1
PFCs	20.6	5.5	3.2	3.7	5.7	5.0	4.8
Aluminum Production	18.4	3.0	1.6	1.6	2.9	2.5	2.5
Semiconductor Manufacture	2.2	2.6	1.6	2.1	2.8	2.5	2.3
SF ₆	32.6	14.7	9.8	9.9	10.5	8.1	7.3
Electrical Transmission and							
Distribution	26.6	11.1	7.7	7.4	7.2	6.0	5.3
Magnesium Production and							
Processing	5.4	2.9	1.7	2.2	2.9	1.7	1.5
Semiconductor Manufacture	0.5	0.7	0.3	0.4	0.4	0.4	0.4
NF3	NA						
Semiconductor Manufacture	NA						
Total Emissions	6,183.2	7,231.4	6,601.9	6,782.7	6,660.0	6,429.5	6,557.6
Total Sinks ^a	(775.8)	(911.9)	(870.9)	(871.6)	(881.0)	(880.4)	(881.7)
Net Emissions (Sources and							_
Sinks)	5,407.4	6,319.4	5,731.1	5,911.1	5,779.0	5,549.2	5,675.9
NA (Not Applicable)							

NA (Not Applicable) + Does not exceed 0.05 MMT CO₂ Eq.

^a The net CO₂ flux total includes both emissions and sequestration, and constitutes a sink in the United States. Parentheses indicate negative values or sequestration.

^b Emissions from Wood Biomass and Ethanol Consumption are not included specifically in summing energy sector totals.

° Emissions from International Bunker Fuels are not included in totals.

^d Small amounts of PFC emissions also result from this source.

Note: Totals may not sum due to independent rounding.

Table A-279: Change in U.S. Greenhouse Gas Emissions and Sinks Using SAR GWP values relative to AR4 GWP values (MMT CO2 Eq.)

								Percent Change
Gas/Source	1990	2005	2009	2010	2011	2012	2013	in 2013
CO ₂	NC							
CH₄	(119.3)	(113.3)	(113.5)	(106.7)	(105.7)	(103.6)	(101.8)	(16%)
Enteric Fermentation	(26.3)	(27.0)	(27.6)	(27.4)	(27.0)	(26.6)	(26.3)	(16%)
Natural Gas Systems	(28.7)	(28.2)	(26.9)	(25.5)	(25.5)	(24.7)	(25.2)	(16%)
Landfills	(29.8)	(26.5)	(25.3)	(19.5)	(19.4)	(18.4)	(18.3)	(16%)
Coal Mining	(15.4)	(10.3)	(12.8)	(13.2)	(11.4)	(10.6)	(10.3)	(16%)
Manure Management	(5.9)	(9.0)	(9.6)	(9.7)	(9.8)	(10.2)	(9.8)	(16%)
Petroleum Systems	(5.0)	(3.8)	(3.4)	(3.4)	(3.5)	(3.7)	(4.0)	(16%)
Wastewater Treatment	(2.5)	(2.5)	(2.5)	(2.5)	(2.4)	(2.4)	(2.4)	(16%)
Rice Cultivation	(1.5)	(1.4)	(1.5)	(1.8)	(1.4)	(1.5)	(1.3)	(16%)
Stationary Combustion	(1.4)	(1.2)	(1.2)	(1.1)	(1.1)	(1.1)	(1.3)	(16%)
Abandoned Underground Coal	. ,	. ,	. ,	()	()	()	()	, ,
Mines	(1.2)	(1.1)	(1.0)	(1.1)	(1.0)	(1.0)	(1.0)	(16%)

A-408 Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2013

Forest Fires	(0.4)	(1.3)	(0.9)	(0.8)	(2.3)	(2.5)	(0.9)	(16%)
Mobile Combustion	(0.9)	(0.5)	(0.4)	(0.4)	(0.4)	(0.4)	(0.3)	(16%)
Composting	(0.1)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	(16%)
Iron and Steel Production &								
Metallurgical Coke	(0, 0)	(0.1)	(0.1)	(0.1)	(0.4)	(0 1)	(0 1)	(100/)
Production	(0.2)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(16%)
Field Burning of Agricultural	(0.4)			()	()	()	()	(400/)
Residues	(0.1)	(+)	(+)	(+)	(+)	(+)	(+)	(16%)
Petrochemical Production	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(16%)
Ferroalloy Production	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(16%)
Silicon Carbide Production and	()				<i>,</i> ,		()	(100())
Consumption	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(16%)
Peatlands Remaining								
Peatlands	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(16%)
Incineration of Waste	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(16%)
International Bunker Fuels ^a	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(16%)
N ₂ O	13.3	14.3	14.3	14.5	15.0	14.7	14.3	4%
Agricultural Soil Management	9.0	9.8	10.6	10.6	10.7	10.7	10.6	4%
Stationary Combustion	0.5	0.8	0.8	0.9	0.9	0.9	0.9	4%
Mobile Combustion	1.7	1.5	1.0	1.0	0.9	0.8	0.7	4%
Manure Management	0.6	0.7	0.7	0.7	0.7	0.7	0.7	4%
Nitric Acid Production	0.5	0.5	0.4	0.5	0.4	0.4	0.4	4%
Wastewater Treatment	0.1	0.2	0.2	0.2	0.2	0.2	0.2	4%
N ₂ O from Product Uses	0.2	0.2	0.2	0.2	0.2	0.2	0.2	4%
Adipic Acid Production	0.6	0.2	0.2	0.2	0.2	0.2	0.2	4%
Forest Fires	0.0	0.3	0.1	0.2	0.4	0.2	0.2	4%
Settlement Soils	0.1	0.2	0.2	0.1	0.4	0.4	0.2	4%
		0.1	0.1	0.1	0.1	0.1	0.1	4%
Composting	+							
Forest Soils	+	+	+	+	+	+	+	4%
Incineration of Waste	+	+	+	+	+	+	+	4%
Semiconductor Manufacture Field Burning of Agricultural	+	+	+	+	+	+	+	4%
Residues	+	+	+	+	+	+	+	4%
Peatlands Remaining								
Peatlands	+	+	+	+	+	+	+	4%
International Bunker Fuels ^a	+	+	+	+	+	+	+	4%
HFCs	(9.7)	(19.0)	(21.0)	(23.0)	(24.5)	(25.4)	(26.6)	(16%)
Substitution of Ozone	(*)	(/	x - 7	()	\ - <i>1</i>	(-)	(/	(,
Depleting Substances ^b	+	(14.8)	(19.5)	(21.3)	(22.7)	(24.2)	(25.7)	(16%)
HCFC-22 Production	(9.7)	(4.2)	(1.4)	(1.7)	(1.8)	(1.1)	(0.9)	(21%)
Semiconductor Manufacture	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(21%)
Magnesium Production and	(.)	(•)	(.)	(.)	(.)	(.)	(.)	(2170)
Processing	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(9%)
PFCs	(3.6)	(1.1)	(0.7)	(0.8)	(1.2)	(1.0)		(17%)
Aluminum Production	(3.0)	(0.5)	(0.7)	(0.3)	(0.5)	(0.4)	(1.0) (0.4)	(15%)
	• •			• •	. ,			
Semiconductor Manufacture	(0.6)	(0.6)	(0.4)	(0.5)	(0.7)	(0.6)	(0.5)	(19%)
SF ₆	1.5	0.7	0.4	0.5	0.5	0.4	0.3	5%
Electrical Transmission and				~ ~		~ ~	~ ~	=0/
Distribution	1.2	0.5	0.4	0.3	0.3	0.3	0.2	5%
Magnesium Production and				_	_			
Processing	0.3	0.1	0.1	0.1	0.1	0.1	0.1	5%
Semiconductor Manufacture	+	+	+	+	+	+	+	5%
NF ₃	NA	NA	NA	NA	NA	NA	NA	NA
Semiconductor Manufacture	NA	NA	NA	NA	NA	NA	NA	NA
Total Emissions	(117.8)	(118.8)		(116.1)				

NC (No change) NA (Not Applicable) + Does not exceed 0.05 MMT CO₂ Eq. ^a Emissions from International Bunker Fuels are not included in totals.

^b Small amounts of PFC emissions also result from this source. Note: Totals may not sum due to independent rounding. Parentheses indicate negative values.

Table A-280 below shows a comparison of total emissions estimates by sector using both the IPCC SAR and AR4 GWP values. For most sectors, the change in emissions that result from using SAR relative to AR4 GWP values was minimal. The effect on emissions from waste was by far the greatest (15.0 percent decrease in 2013 using SAR GWP values, relative to emissions using AR4 GWP values), due the predominance of CH_4 emissions in this sector. Emissions from all other sectors were comprised of mainly CO_2 or a mix of gases, which moderated the effect of the changes.

Table A-280: Comparison of En	<u>nissions by</u>		g IP	<u>CC AR4 ar</u>	<u>id SAR GV</u>		<u>lmmt cu</u>	2 EQ.J
Sector	1990	2005		2009	2010	2011	2012	2013
Energy								
AR4 GWP, Used In Current								
Inventory	5,290.5	6,273.6		5,682.1	5,854.6	5,702.6	5,482.2	5,636.6
SAR GWP, Used in Previous	·	· ·		,	,	,	,	,
Inventory	5,240.1	6,231.0		5,638.2	5,811.8	5,661.5	5,442.4	5,596.1
Difference Relative to AR4 (%)	(1.0%)	(0.7%)		(0.8%)	(0.7%)	(0.7%)	(0.7%)	(0.7%)
Industrial Processes	, ,	, ,		()	()	()	()	. ,
AR4 GWP, Used In Current								
Inventory	342.1	367.4		314.9	353.6	371.0	361.2	359.1
SAR GWP, Used in Previous								
Inventory	331.3	348.2		293.8	330.4	346.0	335.2	331.9
Difference Relative to AR4 (%)	(3.1%)	(5.2%)		(6.7%)	(6.5%)	(6.7%)	(7.2%)	(7.6%)
Agriculture	, ,	, ,		()	()	()	()	
AR4 GWP, Used In Current								
Inventory	448.7	494.5		523.3	524.8	522.1	523.0	515.7
SAR GWP, Used in Previous								
Inventory	424.6	467.5		495.9	497.2	495.3	496.1	489.5
Difference Relative to AR4 (%)	(5.4%)	(5.5%)		(5.2%)	(5.3%)	(5.1%)	(5.1%)	(5.1%)
LULUCF	, ,	, ,		()	()	()	()	,
AR4 GWP, Used In Current								
Inventory	(762.1)	(886.4)		(850.2)	(851.3)	(844.9)	(840.6)	(858.5
SAR GWP, Used in Previous	. ,			. ,				•
Inventory	(762.3)	(887.4)		(850.9)	(851.8)	(846.8)	(842.6)	(859.1)
Difference Relative to AR4 (%)	+	0.1%		0.1%	` 0.1%́	0.2%	0.2%	0.1%
Waste								
AR4 GWP, Used In Current								
Inventory	206.0	189.2		181.8	145.5	144.9	138.9	138.3
SAR GWP, Used in Previous								
Inventory	173.8	160.2		154.0	123.5	123.0	118.0	117.5
Difference Relative to AR4 (%)	(15.6%)	(15.4%)		(15.3%)	(15.1%)	(15.1%)	(15.1%)	(15.0%)
Net Emissions (Sources and								
Sinks)								
AR4 GWP (Used in Current								
Inventory)	5,525.2	6,438.3		5,851.9	6,027.2	5,895.6	5,664.7	5,791.2
SAR GWP (Used in Previous								
Inventory)	5,407.4	6,319.4		5,731.1	5,911.1	5,779.0	5,549.2	5,675.9
Difference Relative to AR4 (%)	(2.1%)	(1.8%)		(2.1%)	(1.9%)	(2.0%)	(2.0%)	(2.0%)

Table A-280: Comparison of Emissions by Sector using IPCC AR4 and SAR GWP Values (MMT CO2Eq.)

Note: Totals may not sum due to independent rounding. Parentheses indicate negative values.

+ Does not exceed 0.05 percent.

Further, Table A-281 and Table A-282 show the comparison of emission estimates using AR5 GWP values relative to AR4 GWP values, on an emissions and percent change basis. The use of AR5 GWP values¹ results in an increase in emissions of CH₄ and SF₆ relative to AR4 GWP values, but a decrease in emissions of other gases. Overall, these comparisons of AR4 and AR5 GWP values do not have a significant effect on U.S. emission trends, resulting in an increase

¹ The IPCC AR5 report provides additional information on emission metrics. See https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter08_FINAL.pdf>.

in emissions of less than 1 percent using AR5 GWP values. As with the comparison of SAR and AR4 GWP values presented above, the percent change in emissions is equal to the percent change in the GWP for each gas; however, in cases where multiple gases are emitted in varying amounts the percent change is variable over the years, such as with substitutes for ozone depleting substances.

Gas	1990	2005	2009	2010	2011	2012	2013
CO ₂	NC						
CH ₄	89.5	84.9	85.1	80.1	79.3	77.7	76.4
N ₂ O	(36.5)	(39.4)	(39.4)	(39.9)	(41.2)	(40.5)	(39.3)
HFCs	(7.5)	(14.3)	(14.6)	(15.3)	(15.7)	(15.4)	(15.4)
PFCs	(2.4)	(0.6)	(0.4)	(0.4)	(0.7)	(0.6)	(0.6)
SF ₆	1.0	0.4	0.3	0.3	0.3	0.2	0.2
NF ₃	(+)	(+)	(+)	(+)	(+)	(+)	(+)
Total	44.0	31.0	31.0	24.7	22.1	21.5	21.2

^a The GWP values presented here are the ones most consistent with the methodology used in the AR4 report. The AR5 report has also calculated GWP values (not shown here) where climate-carbon feedbacks have been included for the non-CO₂ gases in order to be consistent with the approach used in calculating the CO₂ lifetime. Additionally, the AR5 reported separate values for fossil versus biogenic methane in order to account for the CO₂ oxidation product. NC (No change)

+ Does not exceed 0.05 MMT CO₂ Eq.

Note: Totals may not sum due to independent rounding.

Table A-282: Change in U.S. Greenhouse Gas Emissions Using AR5* Relative to AR4 GWP Values (Percent)

Tuble in Lori enange in elei a			, oomg milo				
Gas/Source	1990	2005	2009	2010	2011	2012	2013
CO ₂	NC	NC	NC	NC	NC	NC	NC
CH ₄	12.0%	12.0%	12.0%	12.0%	12.0%	12.0%	12.0%
N ₂ O	(11.1%)	(11.1%)	(11.1%)	(11.1%)	(11.1%)	(11.1%)	(11.1%)
HFCs	(16.0%)	(10.9%)	(10.2%)	(10.1%)	(9.9%)	(9.7%)	(9.5%)
Substitution of Ozone	_						
Depleting Substances	11.3%	(9.9%)	(9.9%)	(9.7%)	(9.6%)	(9.4%)	(9.3%)
HCFC-22 Production ^a	(16.2%)	(16.2%)	(16.2%)	(16.2%)	(16.2%)	(16.2%)	(16.2%)
Semiconductor Manufacture ^b	(16.2%)	(16.2%)	(16.2%)	(16.2%)	(16.2%)	(16.2%)	(16.2%)
Magnesium Production and							
Processing ^c	0.0%	0.0%	(9.1%)	(9.1%)	(9.1%)	(9.1%)	(9.1%)
PFCs	(10.0%)	(9.6%)	(9.5%)	(9.4%)	(9.5%)	(9.5%)	(9.6%)
Semiconductor Manufacture ^b	(10.1%)	(10.1%)	(10.0%)	(10.0%)	(10.0%)	(10.0%)	(10.0%)
Aluminum Production ^d	(9.4%)	(9.1%)	(9.1%)	(9.1%)	(8.9%)	(9.1%)	(9.1%)
SF ₆	3.1%	3.1%	3.1%	3.1%	3.1%	3.1%	3.1%
NF ₃	(6.4%)	(6.4%)	(6.4%)	(6.4%)	(6.4%)	(6.4%)	(6.4%)
Total	0.7%	0.4%	0.5%	0.4%	0.3%	0.3%	0.3%

NC (No change)

* The GWP values presented here are the ones most consistent with the methodology used in the AR4 report. The AR5 report has also calculated GWP values (not shown here) where climate-carbon feedbacks have been included for the non-CO₂ gases in order to be consistent with the approach used in calculating the CO₂ lifetime. Additionally, the AR5 reported separate values for fossil versus biogenic methane in order to account for the CO₂ oxidation product.

^a HFC-23 emitted

^b Emissions from HFC-23, CF₄, C₂F₆, C₃F₈, SF₆, and NF₃.

° Zero change in beginning of time series since emissions were zero.

^d PFC emissions from CF₄ and C₂F₆

Note: Excludes Sinks.

6.2. Ozone Depleting Substance Emissions

Ozone is present in both the stratosphere,² where it shields the earth from harmful levels of ultraviolet radiation, and at lower concentrations in the troposphere,³ where it is the main component of anthropogenic photochemical "smog." Chlorofluorocarbons (CFCs), halons, carbon tetrachloride, methyl chloroform, and hydrochlorofluorocarbons (HCFCs), along with certain other chlorine and bromine containing compounds, have been found to deplete the ozone levels in the stratosphere. These compounds are commonly referred to as ozone depleting substances (ODSs). If left unchecked, stratospheric ozone depletion could result in a dangerous increase of ultraviolet radiation reaching the earth's surface. In 1987, nations around the world signed the *Montreal Protocol on Substances that Deplete the Ozone Layer*. This landmark agreement created an international framework for limiting, and ultimately eliminating, the production of most ozone depleting substances. ODSs have historically been used in a variety of industrial applications, including refrigeration and air conditioning, foam blowing, fire extinguishing, sterilization, solvent cleaning, and as an aerosol propellant.

In the United States, the Clean Air Act Amendments of 1990 provide the legal instrument for implementation of the *Montreal Protocol* controls. The Clean Air Act classifies ozone depleting substances as either Class I or Class II, depending upon the ozone depletion potential (ODP) of the compound.⁴ The production of CFCs, halons, carbon tetrachloride, and methyl chloroform—all Class I substances—has already ended in the United States. However, large amounts of these chemicals remain in existing equipment,⁵ and stockpiles of the ODSs, as well as material recovered from equipment being decommissioned, are used for maintaining the existing equipment. As a result, emissions of Class I compounds will continue, albeit in ever decreasing amounts, for many more years. Class II designated substances, all of which are HCFCs, have been, or are being, phased out at later dates than Class I compounds because they have lower ozone depletion potentials. These compounds served, and in some cases continue to serve, as interim replacements for Class I compounds in many industrial applications. The use and emissions of HCFCs in the United States is anticipated to continue for several decades as equipment that use Class I substances and Class II substances are retired from use. Under current controls, however, the production for domestic use of all HCFCs in the United States will end by the year 2030.

In addition to contributing to ozone depletion, CFCs, halons, carbon tetrachloride, methyl chloroform, and HCFCs are also potent greenhouse gases. However, the depletion of the ozone layer has a cooling effect on the climate that counteracts the direct warming from tropospheric emissions of ODSs. Stratospheric ozone influences the earth's radiative balance by absorption and emission of longwave radiation from the troposphere as well as absorption of shortwave radiation from the sun; overall, stratospheric ozone has a warming effect.

The IPCC has prepared both direct GWP values and net (combined direct warming and indirect cooling) GWP ranges for some of the most common ozone depleting substances (IPCC 1996). See Annex 6.1, Global Warming Potential Values, for a listing of the net GWP values for ODS.

Although the IPCC emission inventory guidelines do not require the reporting of emissions of ozone depleting substances, the United States believes that no inventory is complete without the inclusion of these compounds. Emission estimates for several ozone depleting substances are provided in Table A-283.

1901£ 4-209: CIIII221	ianie 4-209: Eulissiniis ni Aznie Dehielilik Sunstalices (Kr						
Compound	1990	2005	2009	2010	2011	2012	2013
Class I							
CFC-11	29	12	9	8	8	8	7
CFC-12	126	23	5	3	3	2	2

Table A-283: Emissions	of Ozone Depleting	J Substances (kt)
------------------------	--------------------	-------------------

 $^{^{2}}$ The stratosphere is the layer from the top of the troposphere up to about 50 kilometers. Approximately 90 percent of atmospheric ozone is within the stratosphere. The greatest concentration of ozone occurs in the middle of the stratosphere, in a region commonly called the ozone layer.

³ The troposphere is the layer from the ground up to about 11 kilometers near the poles and 16 kilometers in equatorial regions (i.e., the lowest layer of the atmosphere, where humans live). It contains roughly 80 percent of the mass of all gases in the atmosphere and is the site for weather processes including most of the water vapor and clouds.

⁴ Substances with an ozone depletion potential of 0.2 or greater are designated as Class I. All other designated substances that deplete stratospheric ozone but which have an ODP of less than 0.2 are Class II.

⁵ Older refrigeration and air-conditioning equipment, fire extinguishing systems, meter-dose inhalers, and foam products blown with CFCs/HCFCs may still contain ODS.

CFC-113	59	0	0	0	0	0	0
CFC-114	5	+	+	+	+	+	+
CFC-115	9	2	+	+	+	+	+
Carbon Tetrachloride	4	0	0	0	0	0	0
Methyl Chloroform	223	0	0	0	0	0	0
Halon-1211	2	1	1	1	1	1	1
Halon-1301	2	+	+	+	+	+	+
Class II	_						
HCFC-22	49	82	88	84	83	78	75
HCFC-123	0	1	1	1	1	1	1
HCFC-124	0	2	2	1	1	1	1
HCFC-141b	1	4	8	9	9	9	10
HCFC-142b	2	3	2	1	1	1	1
HCFC-225ca/cb	0	+	+	+	+	+	+

+ Does not exceed 0.5 kt.

Methodology and Data Sources

Emissions of ozone depleting substances were estimated using the EPA's Vintaging Model. The model, named for its method of tracking the emissions of annual "vintages" of new equipment that enter into service, is a "bottom-up" model. It models the consumption of chemicals based on estimates of the quantity of equipment or products sold, serviced, and retired each year, and the amount of the chemical required to manufacture and/or maintain the equipment. The Vintaging Model makes use of this market information to build an inventory of the in-use stocks of the equipment in each of the end-uses. Emissions are estimated by applying annual leak rates, service emission rates, and disposal emission rates to each population of equipment. By aggregating the emission and consumption output from the different end-uses, the model produces estimates of total annual use and emissions of each chemical. Please see Annex 3.8, Methodology for Estimating HFC and PFC Emissions from Substitution of Ozone Depleting Substances, of this Inventory for a more detailed discussion of the Vintaging Model.

Uncertainties

Uncertainties exist with regard to the levels of chemical production, equipment sales, equipment characteristics, and end-use emissions profiles that are used by these models. Please see the ODS Substitutes section of this report for a more detailed description of the uncertainties that exist in the Vintaging Model.

6.3. Sulfur Dioxide Emissions

Sulfur dioxide (SO₂), emitted into the atmosphere through natural and anthropogenic processes, affects the Earth's radiative budget through photochemical transformation into sulfate aerosols that can (1) scatter sunlight back to space, thereby reducing the radiation reaching the Earth's surface; (2) affect cloud formation; and (3) affect atmospheric chemical composition (e.g., stratospheric ozone, by providing surfaces for heterogeneous chemical reactions). The overall effect of SO₂-derived aerosols on radiative forcing is believed to be negative (IPCC 2007). However, because SO₂ is short-lived and unevenly distributed through the atmosphere, its radiative forcing impacts are highly uncertain. Sulfur dioxide emissions have been provided below in Table A-284.

The major source of SO_2 emissions in the United States is the burning of sulfur containing fuels, mainly coal. Metal smelting and other industrial processes also release significant quantities of SO_2 . The largest contributor to U.S. emissions of SO_2 is electricity generation, accounting for 64.4 percent of total SO_2 emissions in 2013 (see Table A-285); coal combustion accounted for approximately 92.0 percent of that total. The second largest source was industrial fuel combustion, which produced 13.1 percent of 2013 SO_2 emissions. Overall, SO_2 emissions in the United States decreased by 77.9 percent from 1990 to 2013. The majority of this decline came from reductions from electricity generation, primarily due to increased consumption of low sulfur coal from surface mines in western states.

Sulfur dioxide is important for reasons other than its effect on radiative forcing. It is a major contributor to the formation of urban smog and acid rain. As a contributor to urban smog, high concentrations of SO₂ can cause significant increases in acute and chronic respiratory diseases. In addition, once SO₂ is emitted, it is chemically transformed in the atmosphere and returns to earth as the primary contributor to acid deposition, or acid rain. Acid rain has been found to accelerate the decay of building materials and paints, and to cause the acidification of lakes and streams and damage trees. As a result of these harmful effects, the United States has regulated the emissions of SO₂ under the Clean Air Act. The EPA has also developed a strategy to control these emissions via four programs: (1) the National Ambient Air Quality Standards program,⁶ (2) New Source Performance Standards,⁷ (3) the New Source Review/Prevention of Significant Deterioration Program,⁸ and (4) the sulfur dioxide allowance program.⁹

Sector/Source	1990	2005	2009	2010	2011	2012	2013
Energy	19,628	12,364	7,591	6,396	5,273	4,106	4,020
Stationary Sources	18,407	11,541	7,228	6,120	5,008	3,859	3,790
Oil and Gas Activities	390	180	126	117	108	108	108
Mobile Sources	793	619	220	144	142	125	108
Waste Combustion	38	25	17	16	15	15	15
Industrial Processes	1,307	831	654	618	605	605	605
Other Industrial Processes	362	327	210	190	171	171	171
Metals Processing	659	158	151	141	131	131	131
Chemical Manufacturing	269	228	150	132	115	115	115
Storage and Transport	6	2	7	7	8	8	8
Miscellaneous*	11	114	136	146	179	179	179
Solvent Use	0	+	1	+	+	+	+
Other Industrial	0	+	1	+	+	+	+
Degreasing	0	0	0	0	0	0	0
Graphic Arts	0	0	0	0	0	0	0
Dry Cleaning	NA	0	0	0	0	0	0
Surface Coating	0	0	0	0	0	0	0
Non-industrial	NA	NA	NA	NA	NA	NA	NA
Agriculture	NA	NA	NA	NA	NA	NA	NA
Agricultural Burning	NA	NA	NA	NA	NA	NA	NA
Waste	+	1	1	+	+	+	+
Landfills	+	1	1	+	+	+	+

Table A-284: SO₂ Emissions (kt)

° [42 U.S.C § 7409, CAA § 109]

⁷ [42 U.S.C § 7411, CAA § 111]

⁸ [42 U.S.C § 7473, CAA § 163]

⁹ [42 U.S.C § 7651, CAA § 401]

Wastewater Treatment	+	0	0	0	0	0	0
Miscellaneous Waste	+	0	0	0	0	0	0
Total	20,935	13,196	8,245	7,014	5,877	4,711	4,625

Source: Data taken from EPA (2015) and disaggregated based on EPA (2003). * Miscellaneous includes other combustion and fugitive dust categories. + Does not exceed 0.5 kt

NA (Not Available)

Note: Totals may not sum due to independent rounding.

Table A-285: SO₂ Emissions from Electricity Generation (kt)

Fuel Type	1990	2005	2009	2010	2011	2012	2013
Coal	13,808	8,680	5,641	4,752	3,859	2,802	2,739
Petroleum	580	458	298	251	204	148	144
Natural Gas	1	174	113	95	77	56	55
Misc. Internal Combustion	45	57	37	31	25	18	18
Other	NA	71	46	39	31	23	22
Total	14,433	9,439	6,135	5,168	4,196	3,047	2,978

Source: Data taken from EPA (2015) and disaggregated based on EPA (2003). Note: Totals may not sum due to independent rounding.

Chapter/Source Gas(es) Energy **Fossil Fuel Combustion** CO_2 Non-Energy Use of Fossil Fuels CO_2 Stationary Combustion (excluding CO₂) CH4, N2O, CO, NOx, NMVOC Mobile Combustion (excluding CO₂) CH₄, N₂O, CO, NO_x, NMVOC Coal Mining CH₄ Abandoned Underground Coal Mines CH_4 Petroleum Systems CH₄ Natural Gas Systems CH₄ CO2, CH4, N2O Incineration of Waste Industrial Processes and Product Use **Titanium Dioxide Production** CO_2 CO₂, CF₄, C₂F₆ Aluminum Production Iron and Steel Production CO₂, CH₄ Ferroalloy Production CO₂, CH₄ Ammonia Production CO_2 Urea Consumption for Non-Agricultural Purposes CO_2 **Cement Production** CO_2 Lime Production CO_2 Other Process Uses of Carbonates CO_2 CO_2 Soda Ash Production and Consumption **Glass** Production CO_2 Carbon Dioxide Consumption CO_2 **Phosphoric Acid Production** CO₂ CH₄, CO₂ **Petrochemical Production** Silicon Carbide Production and Consumption CH₄, CO₂ Lead Production CO_2 Zinc Production CO_2 Adipic Acid Production N_2O Nitric Acid Production N_2O N₂O from Product Uses N_2O HFCs, PFCs^a Substitution of Ozone Depleting Substances **HCFC-22** Production HFC-23 Semiconductor Manufacture N₂O, HFCs, PFCs^b, SF₆, NF₃ Electrical Transmission and Distributing SF₆ Magnesium Production and Processing CO₂, HFCs, SF₆ Agriculture Enteric Fermentation CH₄ CH₄, N₂O Manure Management **Rice Cultivation** CH₄ Field Burning of Agricultural Residues CH4, N2O Agricultural Soil Management N₂O, CO, NO_x Land Use, Land-Use Change, and Forestry CO₂ Flux CO₂ (sink) **Cropland Remaining Cropland** CO_2 Land Converted to Cropland CO_2 Grassland Remaining Grassland CO_2 Land Converted to Grassland CO_2 Settlements Remaining Settlements CO₂. N₂O Forest Land Remaining Forest Land CO₂, CH₄, N₂O Wetlands Remaining Wetlands CO₂, CH₄, N₂O Other (Landfilled Yard Trimmings and Food Scraps) CO_2 Waste Landfills CH_4 Wastewater Treatment CH4, N2O Composting CH4, N2O

6.4. Complete List of Source Categories

A-416 Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2013

^a Includes HFC-23, HFC-32, HFC-125, HFC-134a, HFC-143a, HFC-236fa, CF₄, HFC-152a, HFC-227ea, HFC-245fa, HFC-4310mee, and PFC/PFPEs. ^b Includes such gases as HFC-23, CF₄, C₂F₆.

6.5. Constants, Units, and Conversions

Metric Prefixes

Although most activity data for the United States is gathered in customary U.S. units, these units are converted into metric units per international reporting guidelines. Table A-286 provides a guide for determining the magnitude of metric units.

Table A-286: Guide to Metric Unit Prefixes

Tuble A Looi a	
Prefix/Symbol	Factor
atto (a)	10 ⁻¹⁸
femto (f)	10 ⁻¹⁵
pico (p)	10 ⁻¹²
nano (n)	10 ⁻⁹
micro (µ)	10 ⁻⁶
milli (m)	10 ⁻³
centi (c)	10 ⁻²
deci (d)	10 ⁻¹
deca (da)	10
hecto (h)	10 ²
kilo (k)	10 ³
mega (M)	10 ⁶
giga (G)	10 ⁹
tera (T)	10 ¹²
peta (P)	10 ¹⁵
exa (E)	10 ¹⁸

Unit Conversions

1 kilogram 1 pound 1 short ton 1 metric ton	= = =	2.205 pounds 0.454 kilograms 2,000 pounds = 1,000 kilograms =	0.9072 metric tons 1.1023 short tons		
1 cubic meter 1 cubic foot 1 U.S. gallon 1 barrel (bbl) 1 barrel (bbl) 1 liter	=				
1 foot 1 meter 1 mile 1 kilometer	= = =	0.3048 meters 3.28 feet 1.609 kilometers 0.622 miles			
1 acre 1 square mile	= =	43,560 square feet 2.589988 square kilome	= 0.4047 hectares ters	=	4,047 square meters

To convert degrees Fahrenheit to degrees Celsius, subtract 32 and multiply by 5/9 To convert degrees Celsius to Kelvin, add 273.15 to the number of Celsius degrees

Density Conversions¹⁰

Methane Carbon dioxide	1 cubic meter 1 cubic meter	= =	0.67606 kilograms 1.85387 kilograms		
Natural gas liquids Unfinished oils	1 metric ton 1 metric ton	= =	11.6 barrels 7.46 barrels	= =	1,844.2 liters 1,186.04 liters
Alcohol	1 metric ton	=	7.94 barrels	=	1,262.36 liters
Liquefied petroleum gas	1 metric ton	=	11.6 barrels	=	1,844.2 liters
Aviation gasoline	1 metric ton	=	8.9 barrels	=	1,415.0 liters
Naphtha jet fuel	1 metric ton	=	8.27 barrels	=	1,314.82 liters
Kerosene jet fuel	1 metric ton	=	7.93 barrels	=	1,260.72 liters
Motor gasoline	1 metric ton	=	8.53 barrels	=	1,356.16 liters
Kerosene	1 metric ton	=	7.73 barrels	=	1,228.97 liters
Naphtha	1 metric ton	=	8.22 barrels	=	1,306.87 liters
Distillate	1 metric ton	=	7.46 barrels	=	1,186.04 liters
Residual oil	1 metric ton	=	6.66 barrels	=	1,058.85 liters
Lubricants	1 metric ton	=	7.06 barrels	=	1,122.45 liters
Bitumen	1 metric ton	=	6.06 barrels	=	963.46 liters
Waxes	1 metric ton	=	7.87 barrels	=	1,251.23 liters
Petroleum coke	1 metric ton	=	5.51 barrels	=	876.02 liters
Petrochemical feedstocks	1 metric ton	=	7.46 barrels	=	1,186.04 liters
Special naphtha	1 metric ton	=	8.53 barrels	=	1,356.16 liters
Miscellaneous products	1 metric ton	=	8.00 barrels	=	1,271.90 liters

Energy Conversions

Converting Various Energy Units to Joules

The common energy unit used in international reports of greenhouse gas emissions is the joule. A joule is the energy required to push with a force of one Newton for one meter. A terajoule (TJ) is one trillion (10^{12}) joules. A British thermal unit (Btu, the customary U.S. energy unit) is the quantity of heat required to raise the temperature of one pound of water one degree Fahrenheit at or near 39.2 Fahrenheit.

1 TJ = 2.388×10¹¹ calories 23.88 metric tons of crude oil equivalent 947.8 million Btus 277,800 kilowatt-hours

Converting Various Physical Units to Energy Units

Data on the production and consumption of fuels are first gathered in physical units. These units must be converted to their energy equivalents. The conversion factors in Table A-287 can be used as default factors, if local data are not available. See Appendix A of EIA's *Monthly Energy Review February 2015* (EIA 2015) for more detailed information on the energy content of various fuels.

¹⁰ Reference: EIA (2007)

Fuel Type (Units)	Factor
Solid Fuels (Million Btu/Short ton)	
Anthracite coal	22.573
Bituminous coal	23.89
Sub-bituminous coal	17.14
Lignite	12.866
Coke	23.367
Natural Gas (Btu/Cubic foot)	1,027
Liquid Fuels (Million Btu/Barrel)	
Motor gasoline	5.062
Aviation gasoline	5.048
Kerosene	5.670
Jet fuel, kerosene-type	5.670
Distillate fuel	5.825
Residual oil	6.287
Naphtha for petrochemicals	5.248
Petroleum coke	6.024
Other oil for petrochemicals	5.825
Special naphthas	5.248
Lubricants	6.065
Waxes	5.537
Asphalt	6.636
Still gas	6.000
Misc. products	5.796

Note: For petroleum and natural gas, *Monthly Energy Review February* 2015 (EIA 2015). For coal ranks, *State Energy Data Report* 1992 (EIA 1993). All values are given in higher heating values (gross calorific values).

6.6. Abbreviations

AAPFCO	American Association of Plant Food Control Officials
ABS	Acrylonitrile butadiene styrene
AC	Air conditioner
ACC	American Chemistry Council
AEDT	U.S. FAA Aviation Environmental Design Tool
AEO	Annual Energy Outlook
AFEAS	Alternative Fluorocarbon Environmental Acceptability Study
AFV	Alternative fuel vehicle
AGA	American Gas Association
AHEF	Atmospheric and Health Effect Framework
AISI	American Iron and Steel Institute
ANGA	American Natural Gas Alliance
ANL	Argonne National Laboratory
APC	American Plastics Council
API	American Petroleum Institute
APTA	American Public Transportation Association
AR4 AR5	IPCC Fourth Assessment Report
ARS	IPCC Fifth Assessment Report Advanced Resources International
ASAE	American Society of Agricultural Engineers
ASTM	American Society for Testing and Materials
BCEF	Biomass conversion and expansion factors
BEA	Bureau of Economic Analysis, U.S. Department of Commerce
BLM	Bureau of Land Management
BoC	Bureau of Census
BOD	Biological oxygen demand
BOD5	Biochemical oxygen demand over a 5-day period

BOEM BOEMRE BOF BRS BTS Btu C C&EN CAAA CAPP CARB CBI C-CAP CEFM CEMS CFC CFR CGA CH4 CHP CIGRE CKD CLE CMA CMOP CMR CNG CO CO2 COD COGCC CGFR CGA CH4 CHP CIGRE CKD CLE CMA CMOP CMR CMOP CMR CNG CO CO CO CO CO CO CO CO CO CO CO CO CO	Bureau of Ocean Energy Management Bureau of Ocean Energy Management, Regulation and Enforcement Basic oxygen furnace Biennial Reporting System Bureau of Transportation Statistics, U.S. Department of Transportation British thermal unit Carbon Chemical and Engineering News Clean Air Act Amendments of 1990 Canadian Association of Petroleum Producers California Air Resources Board Confidential business information Coastal Change Analysis Program Cattle Enteric Fermentation Model Continuous emission monitoring system Chlorofluorocarbon Code of Federal Regulations Compressed Gas Association Methane Combined heat and power International Council on Large Electric Systems Cement kiln dust Crown Light Exposure Chemical Manufacturer's Association Coaline methane Coalbed Methane Outreach Program Chemical Market Reporter Compressed natural gas Carbon monxide Carbon dioxide Chemical oxygen demand Colorado Oil and Gas Conservation Commission Common Reporting Format Component ratio method Conservation Reserve Program Conservation Technology Information Center Chemical Vapor deposition Clean Watershed Needs Survey Dismetice Found to intert
CRF	Common Reporting Format
CRP	Conservation Reserve Program
-	Clean Watershed Needs Survey
d.b.h DE	Diameter breast height Digestible energy
DESC	Defense Energy Support Center-DoD's defense logistics agency
DFAMS DHS	Defense Fuels Automated Management System Department of Homeland Security
DM	Dry matter
DOC DOC	Degradable organic carbon U.S. Department of Commerce
DoD	U.S. Department of Defense
DOE	U.S. Department of Energy
DOI DOT	U.S. Department of the Interior U.S. Department of Transportation
DRI	Direct Reduced Iron
EAF	Electric arc furnace
EDB EDF	Aircraft Engine Emissions Databank
EDF	Environmental Defense Fund Emission factor
EFMA	European Fertilizer Manufacturers Association
EJ	Exajoule
EGR	Exhaust gas recirculation
EGU	Electric generating unit

EPAU.S. Environmental Protection AgencyERSEconomic Research ServiceETMSEnhanced Traffic Management SystemEVIEnhanced Vegetation IndexFAAFederal Aviation AdministrationFAOFood and Agricultural OrganizationFAOSTATFood and Agricultural Organization databaseFCCCFramework Convention on Climate ChangeFEBFiber Economics BureauFERCFederal Energy Regulatory CommissionFGDFlue gas desulfurizationFHWAFederal Highway AdministrationFIAForest Inventory and Analysis	
FIADB Forest Inventory and Analysis Database	
FIPR Florida Institute of Phosphate Research FQSV First-quarter of silicon volume	
FSA Farm Service Agency	
FTP Federal Test Procedure	
g Gram	
GCV Gross calorific value GDP Gross domestic product	
GHG Greenhouse gas	
GHGRP Greenhouse Gas Reporting Program	
GJ Gigajoule	
GOADS Gulf Offshore Activity Data System	
GPG Good Practice Guidance	
GRI Gas Research Institute	
GSAM Gas Systems Analysis Model GTI Gas Technology Institute	
GWP Global warming potential	
ha Hectare	
HBFC Hydrobromofluorocarbon	
HC Hydrocarbon	
HCFC Hydrochlorofluorocarbon	
HDDV Heavy duty diesel vehicle	
HDGV Heavy duty gas vehicle	
HDPE High density polyethylene	
HFC Hydrofluorocarbon HFE Hydrofluoroethers	
HHV Higher Heating Value	
HMA Hot Mix Asphalt	
HMIWI Hospital/medical/infectious waste incinerator	
HTF Heat Transfer Fluid	
HTS Harmonized Tariff Schedule	
HWP Harvested wood product	
IBF International bunker fuels	
IC Integrated Circuit	
ICAO International Civil Aviation Organization IDB Integrated Database	
IEA International Energy Association	
IFO Intermediate Fuel Oil	
IISRP International Institute of Synthetic Rubber Products	
ILENR Illinois Department of Energy and Natural Resources	
IMO International Maritime Organization	
IPAA Independent Petroleum Association of America	
IPCC Intergovernmental Panel on Climate Change	
IPPU Industrial Processes and Product Use	

ITC	U.S. International Trade Commission
ITRS	International Technology Roadmap for Semiconductors
JWR	Jim Walters Resources
KCA	Key category analysis
kg	Kilogram
Kt	Kiloton
kWh	Kilowatt hour
LDDT	Light duty diesel truck
LDDV	Light duty diesel vehicle
LDGT	Light duty gas truck
LDGV	Light duty gas vehicle
LDOV	
	Low density polyethylene
LDT	Light-duty truck
LDV	Light-duty vehicle
LEV	Low emission vehicles
LFG	Landfill gas
LFGTE	Landfill gas-to-energy
LHV	Lower Heating Value
LKD	Lime kiln dust
LLDPE	Linear low density polyethylene
LMOP	EPA's Landfill Methane Outreach Program
LNG	Liquefied natural gas
LPG	Liquefied petroleum gas(es)
LTO	Landing and take-off
LULUCF	Land use, land-use change, and forestry
MARPOL	International Convention for the Prevention of Pollution from Ships
MC	Motorcycle
-	,
MCF	Methane conversion factor
MCL	Maximum Contaminant Levels
MCFD	Thousand cubic feet per day
MDI	Metered dose inhalers
MECS	EIA Manufacturer's Energy Consumption Survey
MEM	Micro-electromechanical systems
MGO	Marine gas oil
MJ	Megajoule
MLRA	Major Land Resource Area
mm	Millimeter
MMBtu	Million British thermal units
MMCF	Million cubic feet
MMCFD	Million cubic feet per day
MMS	Minerals Management Service
MMT	Million Metric Tons
MMTCE	Million metric tons carbon equivalent
-	Million metric tons carbon dioxide equivalent
MODIS	Moderate Resolution Imaging Spectroradiometer
MoU	Memorandum of Understanding
	U.S. EPA's Motor Vehicle Emission Simulator model
MOVES	
MPG	Miles per gallon
MRLC	Multi-Resolution Land Characteristics Consortium
MRV	Monitoring, reporting, and verification
MSHA	Mine Safety and Health Administration
MSW	Municipal solid waste
MT	Metric ton
MTBE	Methyl Tertiary Butyl Ether
MTBS	Monitoring Trends in Burn Severity
MVAC	Motor vehicle air conditioning
MY	Model year
N ₂ O	Nitrous oxide
NA	Not available

NACWA NAHMS NAICS NAPAP NARR NASA NASF NASS NC NCASI NCV NE NEI NEMA NEU NEV NF3 NGHGI NIR NLCD NMVOC NO NO2 NMVOC NO NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2	National Association of Clean Water Agencies National Animal Health Monitoring System North American Industry Classification System North American Regional Reanalysis Product National Aeronautics and Space Administration National Aesociation of State Foresters USDA's National Agriculture Statistics Service No change National Council of Air and Stream Improvement Net calorific value Not estimated National Emissions Inventory National Electrical Manufacturers Association National Energy Modeling System National Greenhouse Gas Inventory Natural gas liquids National Greenhouse Gas Inventory Natural gas liquids National Inventory Report Natural gas liquids National Inventory Report National Land Cover Dataset Non-methane organic compounds Non-methane volatile organic compound Nitric oxide National Oceanic and Atmospheric Administration National Petroleum and Refiners Association National Resources Conservation Service National Resources Conservation Service National Resources Inventory National Resources Inventory National Resources Inventory National Resources Inventory National Resources Inventory National Service Center for Environmental Publications Non-selective catalytic reduction New source performance standards National Weather Service EPA Office of Air Quality Planning and Standards Ozone depleting substances Organization of Economic Co-operation and Development Original equipment manufacturers Oil & Gas Journal Hydroxyl radical EPA Office of Transportation and Air Quality Polycyclic aromatic hydrocarbons Precipitate calcium carbonate Probability Density Function Plasma enhanced chemical vapor deposition Polyethylene terephthalate Potential evagortranesiration
PCC	Precipitate calcium carbonate
PECVD	Plasma enhanced chemical vapor deposition
PET	Potential evapotranspiration
PEVM PFC	PFC Emissions Vintage Model Perfluorocarbon
PFC	Perfluorocarbon Perfluoropolyether

Pi Productivity index POTW Publicly Owned Treatment Works Ppbv Parts per tillion (109) by volume Ppm Parts per tillion (101) by volume Pptv Parts per tillion (101) by volume Pptv Parts per tillion (101) by volume Pptv Parts per tillion (101) by volume PRP Pasture/Range/Paddock PS Polystyrene PSU Polystyrene PSU Polystyrene PVC Polyvinyl chloride PV Polyvinyl chloride PV Polyvinyl chloride QA/CC Qualitil Assurance and Quality Control QBtu Quadrillion Btu R&D Research and Development RECs Reduced Emissions Completions RCRA Resource Conservation and Recovery Act RMA Rubber Manufacturers' Association RPA Resource Conservation and Recovery Act RMA Rubber Manufacturers' Association Soloal Emissions SAGE System for assessing Aviation's Global Emissions SAR Byrce Second Assessment Report SCR Selective catalytic reduction	PHMSA	Pipeline and Hazardous Materials Safety Administration
POTWPublicly Owned Treatment WorksPpbvParts per million (109) by volumePpmParts per million (1012) by volumePptvParts per million (1012) by volumePRPPasture/Range/PaddockPSPolystyrenePSUPrimary Sample UnitPUPolyurihanePVCPolyurihanePVPhotovoltaicQAVCCQualify Assurance and Quality ControlQBtuQuadrillion BtuR&DResearch and DevelopmentRECsReduced Emissions CompletionsRCRAResource Conservation and Recovery ActRMARubber Manufacturers' AssociationRPAResources Planning ActRTORegression-through-the-originSAESociety of Automotive EngineersSAGESystem for assessing Aviation's Global EmissionsSARIPCC Second Assessment ReportSCRSelective catalytic reductionSCSESouth central and southeastem coastalSEMISemiconductor Equipment and Materials IndustrySFsSulfur InexafluorideSICASSemiconductor International Capacity StatisticsSNAPSignificant New Alternative Policy ProgramSNGSynthetic natural gasSOcSoil Organic CarbonSOGState of Garbage surveySULEVOSolid waste disposal sitesTACTreated aniaentoicaly (wastewater)TAMTypical animal massTAMETerlary amyl mithly etherTARTreated aniaentoicaly (wastewater)		
PpbvParts per villion (109) by volumePpmParts per villion (1012) by volumePptvParts per villion (1012) by volumePRPPasture/Range/PaddockPSPolystyrenePSUPrimary Sample UnitPUPolystyrenePVCPolyurethanePVCPolyurighanePVCPolyurighaneQA/CCQuality Assurance and Quality ControlQBtuQuadrillion BtuRADResearch and DevelopmentRECsReduced Emissions CompletionsRCRAResource Planning ActRTORegression-through-the-originSAESociety of Automotive EngineersSAESystem for assessing Avaitaon's Global EmissionsSARIPCC Second Assessing Avaitaon's Global EmissionsSARIPCC Second Assessing Avaitaon's Global EmissionsSARIPCC Second Assessing Avaitaon's Global EmissionsSARSociety of Automotive EngineersSARSubtro ectalytic reductionSCSESouth central and southeastern coastalSECSecurities and Exchange CommissionSEMISemiconductor International Capacity StatisticsSNAPSignificant New Alternative Policy ProgramSNGSynthetic natural gasSO2Sulfur dioxideSULEVSurey Cesaga Tire Management CouncilSULEVSurey Cesaga Tire Management CouncilSULEVSurey Cesaga Tire Management CouncilSULEVSurey Cesaga Tire Management CouncilSULEVSurey Councin Assessiment Report<	POTW	
Ppmv Pats per million (106) by volume PPP Patsure/Range/Paddock PS Polystyrene PSU Primary Sample Unit PU Polystyrene PVC Polyninyl chloride PV Photovoltaic QA/CC Qualityl Assurance and Quality Control QBtu Quadrillion Btu RAD Research and Development RECs Reduced Emissions Completions RCRA Resource Conservation and Recovery Act RMA Rubber Manufacturers' Association RPA Resources Planning Act RTO Regression-through-the-origin SAE Society of Automotive Engineers SAGE System for assessing Aviation's Global Emissions SAN Styrene Acrylonitrile SAR IPCC Second Assessment Report SCR Selective catalytic reduction SCSE Southre tartal and southeastern coastal SEMI Semiconductor Equipment and Materials Industry SF6 Suffur lexafuoride SIMAP Significant New Alternative Policy Program	Ppbv	
PytyPats per trillion (1012) by volumePRPPasture/Range/PaddockPSPolystyrenePSUPrimary Sample UnitPUPolyurethanePVCPhotovoltaicQA/QCQuality Assurance and Quality ControlQBtuQuadrillion BtuR&DResearch and DevelopmentRECsReduced Emissions CompletionsRCRAResource Conservation and Recovery ActRMARubber Manufacturers' AssociationRPAResources Planning ActRTORegression-through-the-originSAESociety of Automotive EngineersSAGESystem for assessing Aviation's Global EmissionsSANStyrene AcrylonitileSARIPCC Second Assessment ReportSCRSelective catalytic reductionSCSESouth cathgal and southeastern coastalSECSecurities and Exchange CommissionSEMISemiconductor Equipment and Materials IndustrySFsSulfur HavafluorideSICASSemiconductor International Capacity StatisticsSNAPSignificant New Alternative Policy ProgramSNGSynthetic natural gasSO2Sulfur dioxideSUCSolid Vaste Association of Noth AmericaSWDSSolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amy Interjy etherTARIPocologically Integrated Geographic Encoding and Referencing surveySolid waste disposal sitesTATreation		
PRPPasture/Range/PaddockPSPolystyrenePSUPrimary Sample UnitPUPolyurethanePVCPolyvinyl chloridePVPhotovoltaicQA/QCQuality Assurance and Quality ControlQBuQuadrillion BtuR&DResearch and DevelopmentRECsReduced Emissions CompletionsRCRAResource Conservation and Recovery ActRMARubber Manufacturers' AssociationRPAResources Planning ActRTORegression-through-the-originSAESociety of Automotive EngineersSAGESystem for assessing Avlation's Global EmissionsSANStyrene AcrylonitrileSARIPCC Second Assessment ReportSCRSecurities and Exchange CommissionSEMISemiconductor Equipment and Materials IndustrySF6Sulfur hexafluorideSIASSynthetic natural gasSO2Sulfur dioxideSOCSol Organic CarbonSOGState of Garbage surveySOHIOStandard Oil Company of OhioSURGOSoli Guase disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMTypical animal massTAMTroplogically Integrated Geographic Encoding and Referencing surveyTJThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTATreated anaerobically (wastewater)TAMTypical animal massTATr		
PS Polystyrene PSU Primary Sample Unit PU Polyurethane PVC Polyurithane PVC Polyurithane PVC Quality Assurance and Quality Control QBtu Quadity Assurance and Quality Control RBtu Quadity Assurance and Quality Control RBtu Quadity Assurance and Quality Control QBtu Quadity Assurance and Quality Control RBtu Resource Conservation and Recovery Act RMA Rubber Manufacturers' Association RBtu Society of Automotive Engineers SAGE System for assessing Aviation's Global Emissions SAR IPCC Second Assessment Report SCR Selective catalytic reduction <t< td=""><td></td><td></td></t<>		
PSU Primary Sample Unit PU Polyurethane PVC Polyvinyl chloride PV Photovoltaic QA/QC Quality Assurance and Quality Control QBtu Quadrillion Btu Rab Research and Development RECs Reduced Emissions Completions RCRA Resource Conservation and Recovery Act RMA Rubber Manufacturers' Association RPA Resources Planning Act RTO Regression-through-the-origin SAE Society of Automotive Engineers SAGE System for assessing Aviation's Global Emissions SAN Styrene Acrylonithile SAR IPCC Second Assessment Report SCR Selective catalytic reduction SCSE South central and southeastern coastal SEC Securities and Exchange Commission SEMI Semiconductor Equipment and Materials Industry SFs Sulfur hexafluoride SICAS Semiconductor Equipment and Materials Industry SFs Sulfur hexafluoride SOC Soil Gurvey Geographic Database SVDS Solid Waste disposal sites TA Treated anaerobically (wastewater) TAM Typical animal mass TAM Typi		
PU Polyurethane PVC Polyvinyl chloride PV Photovolkaic QA/QC Quality Assurance and Quality Control QBu Quadrillion Bu R&D Research and Development RECs Reduced Emissions Completions RCRA Resource Conservation and Recovery Act RMA Rubber Manufacturers' Association RPA Resource Splanning Act RTO Regression-through-the-origin SAE Society of Automotive Engineers SAGE System for assessing Aviation's Global Emissions SAR IPCC Second Assessment Report SCR Selective catalytic reduction SCSE South central and southeastern coastal SEC Securities and Exchange Commission SEMI Semiconductor International Capacity Statistics SNAP Significant New Alternative Policy Program SNG Synthetic natural gas SO2 Sulfur Havaflooride SUGS Solid Organic Carbon SOG State of Garbage survey SOHI Semiconductor International Capacity Statistics SURGO		
PVC Polyvinyl chloride PV Photovoltaic QA/QC Quality Assurance and Quality Control QBtu Quadrillion Btu R&D Research and Development RECs Reduced Emissions Completions RCRA Resource Conservation and Recovery Act RMA Rubber Manufacturers' Association RPA Resources Planning Act RTO Regression-through-the-origin SAE Society of Automotive Engineers SAGE System for assessing Aviation's Global Emissions SAN Styrene Acrylonitrile SA Society of Automotive Engineers SAGE System for assessing Aviation's Global Emissions SAN Styrene Acrylonitrile SCR Selective catalytic reduction SCSE South central and southeastern coastal SEC Securities and Exchange Commission SEMI Semiconductor International Capacity Statistics SNAP Significant New Alternative Policy Program SNG Synthetic natural gas Soz Sulfur dioxide SOC Soil Organic Carbon SOG		
PV Photovoltaic QA/QC Quality Assurance and Quality Control QBtu Quadrillion Btu R&D Research and Development RECs Reduced Emissions Completions RCRA Resource Conservation and Recovery Act RMA Rubber Manufacturers' Association RPA Resources Planning Act RTO Regression-through-the-origin SAE Society of Automotive Engineers SAAR PICC Second Assessment Report SCR Selective catalytic reduction SCSE South central and southeastern coastal SEC Securities and Exchange Commission SEMI Semiconductor Equipment and Materials Industry SFr Sulfur hexafluoride SICAS Semiconductor International Capacity Statistics SNAP Significant New Alternative Policy Program SNG Synthetic natural gas SO2 Sulfur dioxide SOC Soil Organic Carbon SOG Sate of Garbage survey SOHGO State of Garbage survey SOHGO State desposal sites TA Treated anaero		-
QA/QCQuality Assurance and Quality ControlQBuQuadrillion BtuR&DResearch and DevelopmentRECsReduced Emissions CompletionsRCRAResource Conservation and Recovery ActRMARubber Manufacturers' AssociationRPAResources Planning ActRTORegression-through-the-originSAESociety of Automotive EngineersSAGESystem for assessing Aviation's Global EmissionsSANStyrene AcrylonitrieSARIPCC Second Assessment ReportSCRSelective catalytic reductionSCSESouth central and southeastern coastalSECSecurities and Exchange CommissionSEMISemiconductor Equipment and Materials IndustrySFsSuffur hexafluorideSICASSemiconductor International Capacity StatisticsSNASynthetic natural gasSO2Sulfur dioxideSOCSoil Organic CarbonSOGState of Garbage surveySOHOIStandard Oil Company of OhioSURGOSoil Survey Geographic DatabaseSTMCSoid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiazr any muthyl etherTARIPCC Socially Integrated Geographic Encoding and Referencing surveyTJTertiazr layer AreaTRIThe Fertilizer InstituteTITThe Fertilizer InstituteTITThe Fertilizer InstituteTITTradional low emissions vehicleT	-	
QBtuQuadrillion BtuR&DResearch and DevelopmentRECsReduced Emissions CompletionsRCRAResource Conservation and Recovery ActRMARubber Manufacturers' AssociationRPAResources Planning ActRTORegression-through-the-originSAESociety of Automotive EngineersSAGESystem for assessing Aviation's Global EmissionsSANStyrene AcrylonitrileSARIPCC Second Assessment ReportSCRSelective catalytic reductionSCSESouth central and southeastern coastalSECSecurities and Exchange CommissionSEMISemiconductor Equipment and Materials IndustrySFsSuffur hexafluorideSICASSemiconductor International Capacity StatisticsSNAPSignificant New Alternative Policy ProgramSNGSynthetic natural gasSOCSoil Organic CarbonSOGState of Garbage surveySOHIOStandard Oil Company of OhioSSURGOSoli Wave Geographic DatabaseSTMCScrap Tire Management CouncilSULEVSuper Ultra Low Emissions VehicleSWDANSolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amyl methyl etherTARIPC Third Assessment ReportTBtuTrillion BtuTONTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referen		
RECsReduced Emissions CompletionsRCRAResource Conservation and Recovery ActRMARubber Manufacturers' AssociationRPAResources Planning ActRTORegression-through-the-originSAESociety of Automotive EngineersSAGESystem for assessing Aviation's Global EmissionsSANStyrene AcrylonitrileSARIPCC Second Assessment ReportSCRSelective catalytic reductionSCSESouth central and southeastern coastalSECSecurities and Exchange CommissionSEMISemiconductor Equipment and Materials IndustrySFaSulfur hexafluorideSIAPSignificant New Alternative Policy ProgramSNGSynthetic natural gasSO2Sulfur dioxideSOCSoil Organic CarbonSURGOSoil Survey Geographic DatabaseSTMCScrap Tire Management CouncilSULEVSuper Ultra Low Emissions VehicleSWANSolid Waste Association of North AmericaSWDSSolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMTypical animal massTAMTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVAT	QBtu	
RCRA Resource Conservation and Recovery Act RMA Rubber Manufacturers' Association RPA Resources Planning Act RTO Regression-through-the-origin SAE Society of Automotive Engineers SAGE System for assessing Aviation's Global Emissions SAN Styrene Acrylonitrile SAR IPCC Second Assessment Report SCR Selective catalytic reduction SCSE South central and southeastern coastal SEC Securities and Exchange Commission SEMI Semiconductor Equipment and Materials Industry SF6 Sulfur hexafluoride SICAS Semiconductor International Capacity Statistics SNAP Significant New Alternative Policy Program SNG Synthetic natural gas SO2 Sulfur dioxide SOC Soil Organic Carbon SOG State of Garbage survey SURGO Soil Survey Geographic Database STMC Scrap Tire Management Council SULEV Super Ultra Low Emissions Vehicle SWMAN Solid Waste Association of North America SWDS Solid waste disposal si	R&D	Research and Development
RMARubber Manufacturers' AssociationRPAResources Planning ActRTORegression-through-the-originSAESociety of Automotive EngineersSAGESystem for assessing Aviation's Global EmissionsSANStyrene AcrylonitrileSARIPCC Second Assessment ReportSCRSelective catalytic reductionSCSESouth central and southeastern coastalSECSecurities and Exchange CommissionSEMISemiconductor Equipment and Materials IndustrySF6Sulfur hexafluorideSICASSemiconductor International Capacity StatisticsSNAPSignificant New Alternative Policy ProgramSNGSynthetic natural gasSO2Sulfur dioxideSOCSoil Organic CarbonSOGState of Garbage surveySOHIOStandard Oil Company of OhioSULEVSuper Ultra Low Emissions VehicleSWANASolid Waste Association of North AmericaSWDSSolid Waste Association of North AmericaSWDSSolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLToxic Release Inventor	RECs	Reduced Emissions Completions
RPAResources Planning ActRTORegression-through-the-originSAESociety of Automotive EngineersSAGESystem for assessing Aviation's Global EmissionsSANStyrene AcrylonitrileSARIPCC Second Assessment ReportSCRSelective catalytic reductionSCSESouth central and southeastern coastalSECSecurities and Exchange CommissionSEMISemiconductor Equipment and Materials IndustrySF6Sulfur hexafluorideSICASSemiconductor International Capacity StatisticsSNAPSignificant New Alternative Policy ProgramSNGSynthetic natural gasSO2Sulfur dioxideSOCSoil Organic CarbonSOGState of Garbage surveySOHIOStandard Oil Company of OhioSULEVSuper Ultra Low Emissions VehicleSWDSSolid Waste Association of North AmericaSWDSSolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBiuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLTotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and dis		
RTORegression-through-the-originSAESociety of Automotive EngineersSAGESystem for assessing Aviation's Global EmissionsSANStyrene AcrylonitrileSARIPCC Second Assessment ReportSCRSelective catalytic reductionSCSESouth central and southeastern coastalSECSecurities and Exchange CommissionSEMISemiconductor Equipment and Materials IndustrySF6Sulfur hexafluorideSICASSemiconductor International Capacity StatisticsSNAPSignificant New Alternative Policy ProgramSNGSynthetic natural gasSO2Sulfur dioxideSOCSoil Organic CarbonSOGState of Garbage surveySOHIOStandard Oil Company of OhioSURGOSoil Survey Geographic DatabaseSTMCScrap Tire Management CouncilSULEVSuper Ultra Low Emissions VehicleSWANASolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBuTrial digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLTotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVA <t< td=""><td></td><td></td></t<>		
SAESociety of Automotive EngineersSAGESystem for assessing Aviation's Global EmissionsSANStyrene AcrylonitrileSARIPCC Second Assessment ReportSCRSelective catalytic reductionSCSESouth central and southeastern coastalSECSecurities and Exchange CommissionSEMISemiconductor Equipment and Materials IndustrySF6Sulfur hexafluorideSICASSemiconductor International Capacity StatisticsSNAPSignificant New Alternative Policy ProgramSNGSynthetic natural gasSO2Sulfur dioxideSOCSoil Organic CarbonSOGState of Garbage surveySOHIOStandard Oil Company of OhioSSURGOSoil Survey Geographic DatabaseSTMCScrap Tire Management CouncilSULEVSuper Ultra Low Emissions VehicleSWANASolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBUTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUAN <td< td=""><td></td><td></td></td<>		
SAGESystem for assessing Aviation's Global EmissionsSANStyrene AcrylonitrileSARIPCC Second Assessment ReportSCRSelective catalytic reductionSCSESouth central and southeastern coastalSECSecurities and Exchange CommissionSEMISemiconductor Equipment and Materials IndustrySF6Sulfur hexafluorideSICASSemiconductor International Capacity StatisticsSNAPSignificant New Alternative Policy ProgramSNGSynthetic natural gasSO2Sulfur dioxideSOCSoil Organic CarbonSOGState of Garbage surveySOHIOStandard Oil Company of OhioSURGOSoil Survey Geographic DatabaseSTMCScrap Tire Management CouncilSULEVSuper Ultra Low Emissions VehicleSWANASolid Waste Association of North AmericaSWDSSolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATen		
SANStyrene AcrylonitrileSARIPCC Second Assessment ReportSCRSelective catalytic reductionSCSESouth central and southeastern coastalSECSecurities and Exchange CommissionSEMISemiconductor Equipment and Materials IndustrySF6Sulfur hexafluorideSICASSemiconductor International Capacity StatisticsSNAPSignificant New Alternative Policy ProgramSNGSynthetic natural gasSO2Sulfur dioxideSOCSoil Organic CarbonSOGState of Garbage surveySOHIOStandard Oil Company of OhioSURGOSoil Survey Geographic DatabaseSTMCScrap Tire Management CouncilSULEVSuper Ultra Low Emissions VehicleSWANASolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATenessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute <td></td> <td></td>		
SARIPCC Second Assessment ReportSCRSelective catalytic reductionSCSESouth central and southeastern coastalSECSecurities and Exchange CommissionSEMISemiconductor Equipment and Materials IndustrySF6Sulfur hexafluorideSICASSemiconductor International Capacity StatisticsSNAPSignificant New Alternative Policy ProgramSNGSynthetic natural gasSO2Sulfur dioxideSOCSoil Organic CarbonSOGState of Garbage surveySOHIOStandard Oil Company of OhioSSURGOSoil Survey Geographic DatabaseSTMCScrap Tire Management CouncilSULEVSuper Ultra Low Emissions VehicleSWDSSolid Waste Association of North AmericaSWDSSolid Waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
SCRSelective catalytic reductionSCSESouth central and southeastern coastalSECSecurities and Exchange CommissionSEMISemiconductor Equipment and Materials IndustrySF6Sulfur hexafluorideSICASSemiconductor International Capacity StatisticsSNAPSignificant New Alternative Policy ProgramSNGSynthetic natural gasSO2Sulfur dioxideSOCSoil Organic CarbonSOGState of Garbage surveySOHIOStandard Oil Company of OhioSSURGOSoil Survey Geographic DatabaseSTMCScrap Tire Management CouncilSULEVSuper Ultra Low Emissions VehicleSWDSSolid Waste Association of North AmericaSWDSSolid Waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
SCSESouth central and southeastern coastalSECSecurities and Exchange CommissionSEMISemiconductor Equipment and Materials IndustrySF6Sulfur hexafluorideSICASSemiconductor International Capacity StatisticsSNAPSignificant New Alternative Policy ProgramSNGSynthetic natural gasSO2Sulfur dioxideSOCSoil Organic CarbonSOGState of Garbage surveySOHIOStandard Oil Company of OhioSURGOSoil Survey Geographic DatabaseSTMCScrap Tire Management CouncilSULEVSuper Ultra Low Emissions VehicleSWDSSolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
SECSecurities and Exchange CommissionSEMISemiconductor Equipment and Materials IndustrySF6Sulfur hexafluorideSICASSemiconductor International Capacity StatisticsSNAPSignificant New Alternative Policy ProgramSNGSynthetic natural gasSO2Sulfur dioxideSOCSoil Organic CarbonSOGState of Garbage surveySOHIOStandard Oil Company of OhioSURGOSoli Survey Geographic DatabaseSTMCScrap Tire Management CouncilSULEVSuper Ultra Low Emissions VehicleSWANASolid Waste Association of North AmericaSWDSSolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
SF6Sulfur hexafluorideSICASSemiconductor International Capacity StatisticsSNAPSignificant New Alternative Policy ProgramSNGSynthetic natural gasSO2Sulfur dioxideSOCSoil Organic CarbonSOGState of Garbage surveySOHIOStandard Oil Company of OhioSSURGOSoil Survey Geographic DatabaseSTMCScrap Tire Management CouncilSULEVSuper Ultra Low Emissions VehicleSWANASolid Waste Association of North AmericaSWDSSolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		Securities and Exchange Commission
SICASSemiconductor International Capacity StatisticsSNAPSignificant New Alternative Policy ProgramSNGSynthetic natural gasSO2Sulfur dioxideSOCSoil Organic CarbonSOGState of Garbage surveySOHIOStandard Oil Company of OhioSSURGOSoil Survey Geographic DatabaseSTMCScrap Tire Management CouncilSULEVSuper Ultra Low Emissions VehicleSWANASolid waste Association of North AmericaSWDSSolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute	SEMI	Semiconductor Equipment and Materials Industry
SNAPSignificant New Alternative Policy ProgramSNGSynthetic natural gasSO2Sulfur dioxideSOCSoil Organic CarbonSOGState of Garbage surveySOHIOStandard Oil Company of OhioSSURGOSoil Survey Geographic DatabaseSTMCScrap Tire Management CouncilSULEVSuper Ultra Low Emissions VehicleSWANASolid Waste Association of North AmericaSWDSSolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
SNGSynthetic natural gasSO2Sulfur dioxideSOCSoil Organic CarbonSOGState of Garbage surveySOHIOStandard Oil Company of OhioSSURGOSoil Survey Geographic DatabaseSTMCScrap Tire Management CouncilSULEVSuper Ultra Low Emissions VehicleSWANASolid Waste Association of North AmericaSWDSSolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
SO2Sulfur dioxideSOCSoil Organic CarbonSOGState of Garbage surveySOHIOStandard Oil Company of OhioSSURGOSoil Survey Geographic DatabaseSTMCScrap Tire Management CouncilSULEVSuper Ultra Low Emissions VehicleSWANASolid Waste Association of North AmericaSWDSSolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
SOCSoil Organic CarbonSOGState of Garbage surveySOHIOStandard Oil Company of OhioSSURGOSoil Survey Geographic DatabaseSTMCScrap Tire Management CouncilSULEVSuper Ultra Low Emissions VehicleSWANASolid Waste Association of North AmericaSWDSSolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
SOGState of Garbage surveySOHIOStandard Oil Company of OhioSSURGOSoil Survey Geographic DatabaseSTMCScrap Tire Management CouncilSULEVSuper Ultra Low Emissions VehicleSWANASolid Waste Association of North AmericaSWDSSolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
SOHIOStandard Oil Company of OhioSSURGOSoil Survey Geographic DatabaseSTMCScrap Tire Management CouncilSULEVSuper Ultra Low Emissions VehicleSWANASolid Waste Association of North AmericaSWDSSolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
SSURGOSoil Survey Geographic DatabaseSTMCScrap Tire Management CouncilSULEVSuper Ultra Low Emissions VehicleSWANASolid Waste Association of North AmericaSWDSSolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
STMCScrap Tire Management CouncilSULEVSuper Ultra Low Emissions VehicleSWANASolid Waste Association of North AmericaSWDSSolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
SULEVSuper Ultra Low Emissions VehicleSWANASolid Waste Association of North AmericaSWDSSolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
SWDSSolid waste disposal sitesTATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
TATreated anaerobically (wastewater)TAMTypical animal massTAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute	SWANA	Solid Waste Association of North America
TAMTypical animal massTAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute	SWDS	•
TAMETertiary amyl methyl etherTARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
TARIPCC Third Assessment ReportTBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
TBtuTrillion BtuTDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
TDNTotal digestible nutrientsTFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
TFIThe Fertilizer InstituteTIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
TIGERTopologically Integrated Geographic Encoding and Referencing surveyTJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
TJTerajouleTLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
TLEVTraditional low emissions vehicleTMLATotal Manufactured Layer AreaTRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
TRIToxic Release InventoryTSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute	TLEV	
TSDFHazardous waste treatment, storage, and disposal facilityTVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
TVATennessee Valley AuthorityUANUrea ammonium nitrateUDIUtility Data Institute		
UAN Urea ammonium nitrate UDI Utility Data Institute		
UDI Utility Data Institute		
,		

UG U.S. ITC UEP ULEV UNEP UNFCCC USAA USAF USDA USFS USGS VAIP VAM VKT VMT VOCs	Underground (coal mining) United States United States International Trade Commission United Egg Producers Ultra low emission vehicle United Nations Environmental Programme United Nations Framework Convention on Climate Change U.S. Aluminum Association United States Air Force United States Department of Agriculture United States Department of Agriculture United States Geological Survey EPA's Voluntary Aluminum Industrial Partnership Ventilation air methane Vehicle kilometers traveled Vehicle miles traveled Volatile organic compounds
VS	Volatile solids
WERF WFF	Water Environment Research Federation World Fab Forecast (previously WFW, World Fab Watch)
WGC	World Gas Conference
WIP WMO	Waste in place World Meteorological Organization
WMS	Waste management systems
WTE	Waste-to-energy
WW	Wastewater
WWTP ZEVs	Wastewater treatment plant Zero emissions vehicles
2003	

6.7. Chemical Formulas

Table A-288: Guide to Chemical Formulas

Table A-288: Guide to Chemical Formulas		
Symbol	Name	
Al	Aluminum	
Al ₂ O ₃	Aluminum Oxide	
Br	Bromine	
С	Carbon	
CH ₄	Methane	
C ₂ H ₆	Ethane	
C ₃ H ₈	Propane	
CF ₄	Perfluoromethane	
C ₂ F ₆	Perfluoroethane, hexafluoroethane	
c-C ₃ F ₆	Perfluorocyclopropane	
C ₃ F ₈	Perfluoropropane	
c-C ₄ F ₈	Perfluorocyclobutane	
C4F10	Perfluorobutane	
C ₅ F ₁₂	Perfluoropentane	
C ₆ F ₁₄	Perfluorohexane	
CF ₃ I	Trifluoroiodomethane	
CFCI ₃	Trichlorofluoromethane (CFC-11)	
CF ₂ Cl ₂	Dichlorodifluoromethane (CFC-12)	
CF ₃ Cl	Chlorotrifluoromethane (CFC-13)	
C ₂ F ₃ Cl ₃	Trichlorotrifluoroethane (CFC-113)*	
CCI ₃ CF ₃	CFC-113a*	
C ₂ F ₄ Cl ₂	Dichlorotetrafluoroethane (CFC-114)	
C ₂ F ₅ Cl	Chloropentafluoroethane (CFC-115)	
	, ,	

CHCl₂F	HCFC-21
CHF ₂ CI	Chlorodifluoromethane (HCFC-22)
C ₂ F ₃ HCl ₂	HCFC-123
C ₂ F ₄ HCI	HCFC-124
C ₂ FH ₃ Cl ₂	HCFC-141b
C ₂ H ₃ F ₂ Cl	HCFC-142b
CF ₃ CF ₂ CHCl ₂	HCFC-225ca
CCIF ₂ CF ₂ CHCIF	HCFC-225cb
CCl4	Carbon tetrachloride
	Trichloroethylene
CCl ₂ CCl ₂	Perchloroethylene, tetrachloroethene
CH ₃ Cl	Methylchloride
-	
	Methylchloroform
CH ₂ Cl ₂	Methylenechloride
CHCl ₃	Chloroform, trichloromethane
CHF ₃	HFC-23
CH ₂ F ₂	HFC-32
CH₃F	HFC-41
C₂HF₅	HFC-125
C ₂ H ₂ F ₄	HFC-134
CH ₂ FCF ₃	HFC-134a
C ₂ H ₃ F ₃	HFC-143*
C ₂ H ₃ F ₃	HFC-143a*
CH ₂ FCH ₂ F	HFC-152*
C ₂ H ₄ F ₂	HFC-152a*
CH ₃ CH ₂ F	HFC-161
C ₃ HF ₇	HFC-227ea
CF ₃ CF ₂ CH ₂ F	HFC-236cb
CF ₃ CHFCHF ₂	HFC-236ea
C ₃ H ₂ F ₆	HFC-236fa
C3H3F5	HFC-245ca
CHF ₂ CH ₂ CF ₃	HFC-245fa
CF ₃ CH ₂ CF ₂ CH ₃	HFC-365mfc
C5H2F10	HFC-43-10mee
CF ₃ OCHF ₂	HFE-125
CF ₂ HOCF ₂ H	HFE-134
CH ₃ OCF ₃	HFE-143a
CF ₃ CHFOCF ₃	HFE-227ea
CF ₃ CHClOCHF ₂	HCFE-235da2
CF ₃ CHFOCHF ₂	HFE-236ea2
CF ₃ CH ₂ OCF ₃	HFE-236fa
CF ₃ CF ₂ OCH ₃	HFE-245cb2
CHF ₂ CH ₂ OCF ₃	HFE-245fa1
CF ₃ CH ₂ OCHF ₂	HFE-245fa2
CHF ₂ CF ₂ OCH ₃	HFE-254cb2
CF ₃ CH ₂ OCH ₃	HFE-263fb2
CF ₃ CF ₂ OCF ₂ CHF ₂	HFE-329mcc2
CF ₃ CF ₂ OCH ₂ CF ₃	HFE-338mcf2
CF ₃ CF ₂ CF ₂ OCH ₃	HFE-347mcc3
CF ₃ CF ₂ OCH ₂ CHF ₂	HFE-347mcf2
CF ₃ CHFCF ₂ OCH ₃	HFE-356mec3
CHF2CF2CF2OCH3	HFE-356pcc3
CHF2CF2OCH2CHF2	HFE-356pcf2
CHF2CF2CH2OCHF2 CHF2CF2CH2OCHF2	HFE-356pcf3
	HFE-365mcf3
CHF ₂ CF ₂ OCH ₂ CH ₃	HFE-374pcf2
	HFE-7100
	HFE-7200
CHF2OCF2OC2F4OCHF2	H-Galden 1040x

CHF2OCF2OCHF2	HG-10
CHF2OCF2CF2OCHF2	HG-01
CH ₃ OCH ₃	Dimethyl ether
CH ₂ Br ₂	Dibromomethane
CH ₂ BrCl	Dibromochloromethane
CHBr ₃	Tribromomethane
CHBrF ₂	Bromodifluoromethane
CH ₃ Br	Methylbromide
CF ₂ BrCl	Bromodichloromethane (Halon 1211)
CF ₃ Br(CBrF ₃)	Bromotrifluoromethane (Halon 1301)
CF₃I	FIC-13I1
CO	Carbon monoxide
CO ₂	Carbon dioxide
CaCO ₃	Calcium carbonate, Limestone
CaMg(CO ₃) ₂	Dolomite
CaO	Calcium oxide, Lime
CI	atomic Chlorine
F	Fluorine
Fe	Iron
Fe ₂ O ₃	Ferric oxide
FeSi	Ferrosilicon
H, H ₂	atomic Hydrogen, molecular Hydrogen
H ₂ O	Water
H ₂ O ₂	Hydrogen peroxide
OH	Hydroxyl
N, N2	atomic Nitrogen, molecular Nitrogen
NH ₃	Ammonia
NH4 ⁺	Ammonium ion
	Nitric acid
NF3 N2O	Nitrogen trifluoride Nitrous oxide
NO	Nitric oxide
NO2	Nitrogen dioxide
NO ₂ NO ₃	Nitrate radical
Na	Sodium
Na Na ₂ CO ₃	Sodium carbonate, soda ash
Na ₂ OO ₃ Na ₃ AlF ₆	Synthetic cryolite
O, O_2	atomic Oxygen, molecular Oxygen
O ₃	Ozone
S	atomic Sulfur
Ŭ H₂SO₄	Sulfuric acid
SF6	Sulfur hexafluoride
SF5CF3	Trifluoromethylsulphur pentafluoride
SO ₂	Sulfur dioxide
Si	Silicon
SiC	Silicon carbide
SiO ₂	Quartz
* Distinct isomers	

* Distinct isomers.

References

- EIA (2015) Monthly Energy Review February 2015. Energy Information Administration, U.S. Department of Energy, Washington, DC. DOE/EIA-0384(2015/02). February 2015.
- EIA (2007) *Emissions of Greenhouse Gases in the United States 2006, Draft Report.* Office of Integrated Analysis and Forecasting, Energy Information Administration, U.S. Department of Energy, Washington, DC. DOE-EIA-0573(2006).
- EIA (1998) *Emissions of Greenhouse Gases in the United States*, DOE/EIA-0573(97), Energy Information Administration, U.S. Department of Energy. Washington, DC. October.

- EIA (1993) *State Energy Data Report 1992*, DOE/EIA-0214(93), Energy Information Administration, U.S. Department of Energy. Washington, DC. December.
- EPA (2015). "1970 2014 Average annual emissions, all criteria pollutants in MS Excel." National Emissions Inventory (NEI) Air Pollutant Emissions Trends Data. Office of Air Quality Planning and Standards, March 2015. Available online at http://www.epa.gov/ttn/chief/trends/index.html.
- EPA (2003) E-mail correspondence. Air pollutant data. Office of Air Pollution to the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency (EPA). December 22, 2003.
- IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
- IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.). Cambridge University Press. Cambridge, United Kingdom 996 pp.
- IPCC (2001) Climate Change 2001: The Scientific Basis. Intergovernmental Panel on Climate Change, J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, C.A. Johnson, and K. Maskell (eds.). Cambridge University Press. Cambridge, United Kingdom.
- IPCC (1996) Climate Change 1995: The Science of Climate Change. Intergovernmental Panel on Climate Change, J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell. (eds.). Cambridge University Press. Cambridge, United Kingdom.