

Getting More Green for your Stormwater Infrastructure

Tuesday, May 5th, 2015 1:00 – 2:30pm EDT

Speakers:

Chris Kloss, U.S. EPA Dan Christian, Tetra Tech Andrew Potts, CH2M HILL

Sponsored by U.S. EPA Office of Wastewater Management

Logistics

- <u>To Ask a Question</u>: Type your question in the "Questions" box on the right side of your screen and click "Send."
- <u>To report technical issues/audio problems:</u>
 - Type your question/issue in the "Questions" box on the right side of your screen and click "Send." We will respond by posting an answer in the questions box.
 - Call GoToWebinar support number [800 263-6317], and give conference ID# 116-209-651

Webcast Agenda

- Speaker introduction
- Chris Kloss, U.S. EPA
 - EPA cost analysis of post construction stormwater BMPs
- Dan Christian, Tetra Tech
 - Quantifying benefits of green infrastructure – tools and resources
- Andrew Potts, CH2M HILL
 - Case studies on cost savings from green infrastructure
- Q&A session

*slides will be made available at www.epa.gov/greeninfrastructure

Interpreting the Costs of Green Infrastructure & Stormwater Control

May 2015 2015 Green Infrastructure Webcast Series

> Chris Kloss US EPA Office of Water

EPA GI Cost-Effectiveness Study

Table 2. Summary of Cost Comparisons Between Conventional and LID Approaches^a

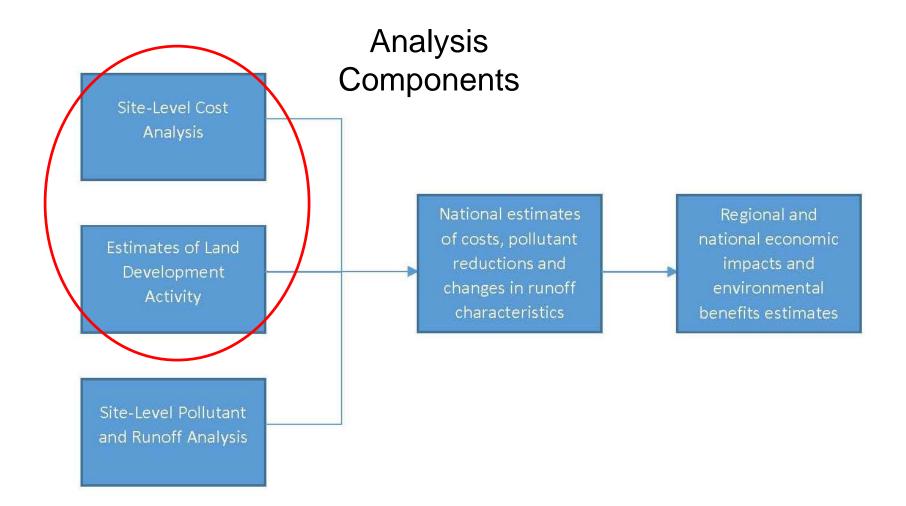
Project	Conventional Development Cost	LID Cost	Cost Difference ^b	Percent Difference ^b
2 nd Avenue SEA Street	\$868,803	\$651,548	\$217,255	25%
Auburn Hills	\$2,360,385	\$1,598,989	\$761,396	32%
Bellingham City Hall	\$27,600	\$5,600	\$22,000	80%
Bellingham Bloedel Donovan Park	\$52,800	\$12,800	\$40,000	76%
Gap Creek	\$4,620,600	\$3,942,100	\$678,500	15%
Garden Valley	\$324,400	\$260,700	\$63,700	20%
Kensington Estates	\$765,700	\$1,502,900	-\$737,200	-96%
Laurel Springs	\$1,654,021	\$1,149,552	\$504,469	30%
Mill Creek ^c	\$12,510	\$9,099	\$3,411	27%
Prairie Glen	\$1,004,848	\$599,536	\$405,312	40%
Somerset	\$2,456,843	\$1,671,461	\$785,382	32%
Tellabs Corporate Campus	\$3,162,160	\$2,700,650	\$461,510	15%

^a The Central Park Commercial Redesigns, Crown Street, Poplar Street Apartments, Prairie Crossing, Portland Downspout Disconnection, and Toronto Green Roofs study results do not lend themselves to display in the format of this table.

^b Negative values denote increased cost for the LID design over conventional development costs.

^c Mill Creek costs are reported on a per-lot basis.

U.S. EPA, Reducing Stormwater Costs through LID Strategies and Practices, 2007.

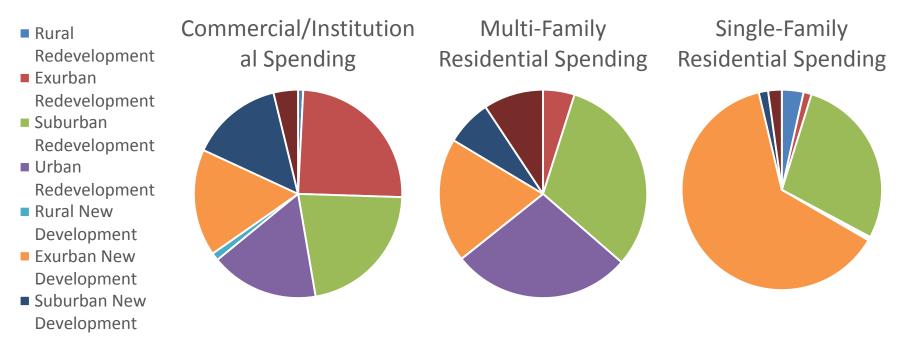

Other Sources of Information for the Costs of Green Infrastructure

- ASLA case studies (<u>www.asla.org/stormwater</u>)
- 479 case studies identified.
- Half of the case studies were retrofits of existing properties, 31% were new developments and 19% were redevelopment projects.
- 44% of case studies found a decrease in costs by using green infrastructure; 31% found green infrastructure did not influence costs while 25% found increased costs.

Green Roof at ASLA Building, Washington, DC.

Analysis of Costs and Performance of Different Stormwater Practices

Site-Level Analysis Goals


- Determine costs and performance of stormwater management strategies at new and redevelopment projects reflecting existing state/local requirements
- Determine costs and performance of various different stormwater management strategies (e.g., retention)
- Evaluate changes (increases, decreases) in costs, pollutant discharges and hydrologic performance at various scales (MS4s, states, national) due to nationwide application of different strategies

BMP Types: Retention/Treatment

- Retention Only:
 - Greenroof
 - Pervious Area Dispersion
 - Dry Well
 - Cisterns
 - Infiltration Trench
 - Infiltration Vault/Gallery
 - Infiltration Basin
- Retention and/or Treatment:
 - Bioretention
 - Permeable Pavement

- Treatment Only:
 - Flow-through Planters
 - Treatment Vault
 - Sand Filter
 - Wet Detention Basin/Wet Pond

Summaries of Predicted Construction Spending & Predicted Projects for years 2020 - 2040

	Project	ts	Developmen	t Acres	Impervious	us Acres	
	#	%	#	%	#	%	
1S4s	536,030	36%	9,443,322	35%	2,747,609	29%	
s	497,003	33%	8,992,294	33%	3,825,437	40%	
MS4s	282,595	19%	4,864,890	18%	1,454,198	15%	
S4s	176,729	12%	3,600,671	13%	1,453,597	15%	
oment	1,492,357		26,901,177		9,480,842		

New Development Inside Reg MS4s Redevelopment Inside Reg MS4s New Development Outside Reg MS4s Redevelopment Outside Reg MS4s

Total Development 1,4

Some Example Results

- All costs are in 2012 dollars, and presented as costs/acre
- All data are specific to Illinois

Retention Estimates

- Assumed a retention standard of 90th percentile rainfall event for new development, and 85th percentile for redevelopment
- Retention standard is applied statewide (inside and outside of MS4s)
- EPA also assessed impact of reducing impervious surfaces which includes:
 - Modest reductions to street widths and parking stall sizes
 - EPA did not change parking ratios, address shared parking or other changes that can more significantly reduce impervious surfaces

Commercial project type

- EPA projected 24,000 commercial projects in IL from 2020-2040 (most are redevelopment in MS4 areas).
- Median project size 3 acres.
- Average 45% impervious surface.
- Most common BMPs are soil amendments and soil/vegetation conservation (99%), downspout disconnection (69%), bioretention (65%), and infiltration basins (44%).

Single Family Residential project type

- EPA projected 12,400 SFR projects in IL from 2020-2040 (most are new developments outside MS4 areas).
- Median project size 6 acres (15 acres average).
- Average 20% impervious surface.
- Most common BMPs are soil amendments and soil/vegetation conservation (100%), downspout disconnection (93%), permeable pavement (48%), and infiltration basins (25%).

Stormwater retention's estimated impacts on commercial developments

	Current Regs	New Retent	ion Standard
	Current Cost	With imp. surface reduction	Without imp. surface reduction
New Development in MS4	\$12,700/ac	- \$1,500/ac	+ \$300/ac
Redevelopment in MS4	\$16,400/ac	+ \$3,500/ac	+ \$5,000/ac

 Most cost savings are from impervious surface reduction. Additional savings from O&M and reduced size of detention pond needed for flood control.

Retaining stormwater saves money for single family home developments

	Current Regs	New Retention Standard				
	Current Cost	With imp. surface reduction	Without imp. surface reduction			
New Development in MS4	\$9,000/ac	- \$3,100/ac	- \$2,400/ac			
Redevelopment in MS4	\$14,300/ac	- \$3,000/ac	- \$1,000/ac			

 Most cost savings are from impervious surface reduction and reduced O&M costs.

Changes to Site Design and Performance Can Save Money

- Environmental Site Design
 - Reducing impervious surfaces (parking lot areas and narrowing street widths) lessens the runoff volume that needs to be controlled
 - EPA is actively encouraging states and metro areas to conduct reviews of codes and ordinances that may limit the use of environmental site design and green infrastructure
- Reduced need for Flood Storage
 - Retaining stormwater can reduce or eliminate the need for other water infrastructure that is currently required
 - Most projects need to meet local flood storage requirements typically through detention ponds (wet/dry) or detention vaults
 - Retention practices offset the volume that needs to be captured for flood storage

How Green Infrastructure Can Save Money – Boulder Hills, NH (UNH Stormwater Center)

- 24-unit active adult condominium community built in 2009
- Makes use of porous asphalt for road, driveways, and sidewalks
- The use of green infrastructure practices resulted in project costs 6% lower than conventional approaches

Boulder Hills, NH (UNH Stormwater Center)

ITEM	CONVENTIONAL	LOW IMPACT	DIFFERENCE
Site Preparation	\$23,200.00	\$18,000.00	-\$5,200.00
Temp. Erosion Control	\$5,800.00	\$3,800.00	-\$2,000.00
Drainage	\$92,400.00	\$20,100.00	-\$72,300.00
Roadway	\$82,000.00	\$128,000.00	\$46,000.00
Driveways	\$19,700.00	\$30,100.00	\$10,400.00
Curbing	\$6,500.00	\$0.00	-\$6,500.00
Perm. Erosion Control	\$70,000.00	\$50,600.00	-\$19,400.00
Additional Items	\$489,700.00	\$489,700.00	\$0.00
Buildings	\$3,600,000.00	\$3,600,000.00	\$0.00
PROJECT TOTAL	\$4,389,300.00	\$4,340,300.00	-\$49,000.00

How Green Infrastructure Can Save Money – Greenland Meadows, NH(UNH Stormwater Center)

- Three, 1-story retail units on 56 acres (25 acres of impervious surface) built in 2008
- 4.5 acres of porous asphalt and gravel wetland used for stormwater management
- The use of green infrastructure practices were estimated to save 9% in overall project development costs

Greenland Meadows, NH (UNH Stormwater Center)

TABLE 1: Comparison of Un	t Costs for Materials for Greenland	Meadows Commercial Development
---------------------------	-------------------------------------	--------------------------------

ITEM	CONVENTIONAL OPTION	LID OPTION	COST DIFFERENCE
Mobilization / Demolition	\$555,500	\$555,500	\$0
Site Preparation	\$167,000	\$167,000	\$0
Sediment / Erosion Control	\$378,000	\$378,000	\$0
Earthwork	\$2,174,500	\$2,103,500	-\$71,000
Paving	\$1,843,500	\$2,727,500	\$884,000
Stormwater Management	\$2,751,800	\$1,008,800	-\$1,743,000
Addtl Work-Related Activity (Utilities, Lighting, Water & Sanitary Sewer Service, Fencing, Landscaping, etc.)	\$2,720,000	\$2,720,000	\$0
Project Total	\$10,590,300	\$9,660,300	-\$930,000

*Costs are engineering estimates and do not represent actual contractor bids.

TABLE 2: Conventional Option Piping

	ТҮРЕ	QUANTITY	COST
Distribution	6 to 30-inch piping	9,680 linear feet	\$298,340
Detention	36 and 48-inch piping	20,800 linear feet	\$1,357,800

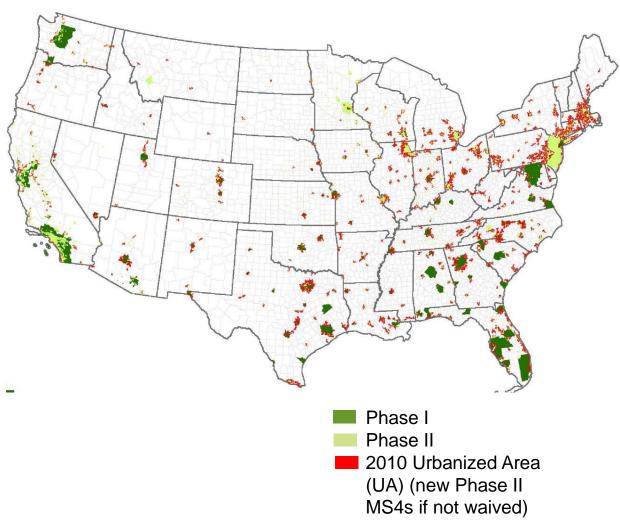
TABLE 3: LID Option Piping

	TYPE	QUANTITY	COST
Distribution	4 to 36-inch piping	19,970 linear feet	\$457,780
Detention*	-	0	\$0

*Costs associated with detention in the LID option were accounted for under "earthwork" in Table 1.

Inver Grove Heights, MN

In 2014, nearly 10" of rain fell over a 4-day period causing flooding in other parts of the Twin Cities-metro area. Minimal runoff reached the regional infiltration basins and no stormwater left the City.


The 134 acre retail & residential development used atrain-treatment approach, that included:

- · 35 raingardens,
- 274 permeable asphalt parking stalls,
- 2 permeable paver intersections,
- 2 infiltration basins
- and a biofiltration swale

Regulated MS4 Program Universe

- Individual Permits
 - 250 Individual MS4 permits cover 855 Phase I MS4s
 - 100 Individual MS4 permits cover ~106 Phase II MS4s
- General Permits
 - 54 General MS4 permits cover 6,589 Phase II MS4s
- 3 watershed MS4 permits cover ~3 Phase I and 40 Phase II MS4s

Opportunities

W PLACE

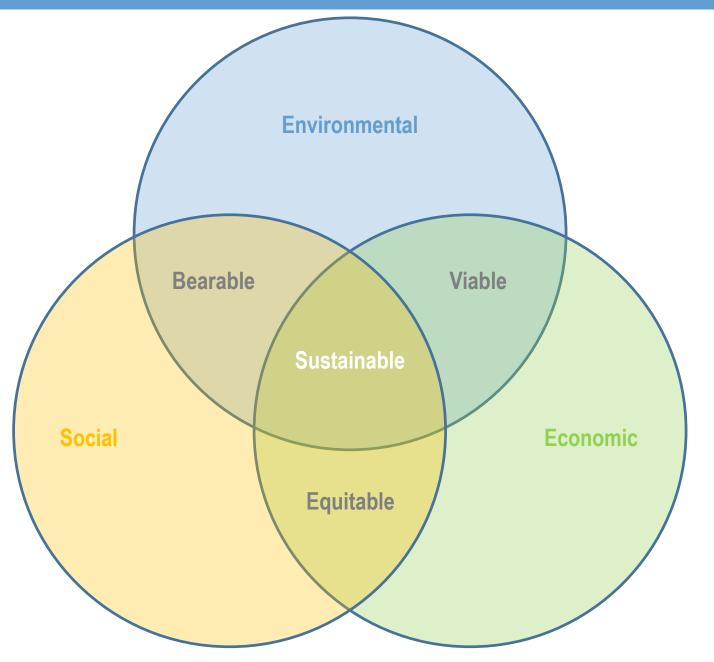
Bioretention Cell in El Monte, CA. *Photo courtesy of Bill DePoto.* Lancaster, PA Alley 148 Greened for 10% Added Cost + 200,000 gallons captured per year After (February 2012) ~\$22.40/SF

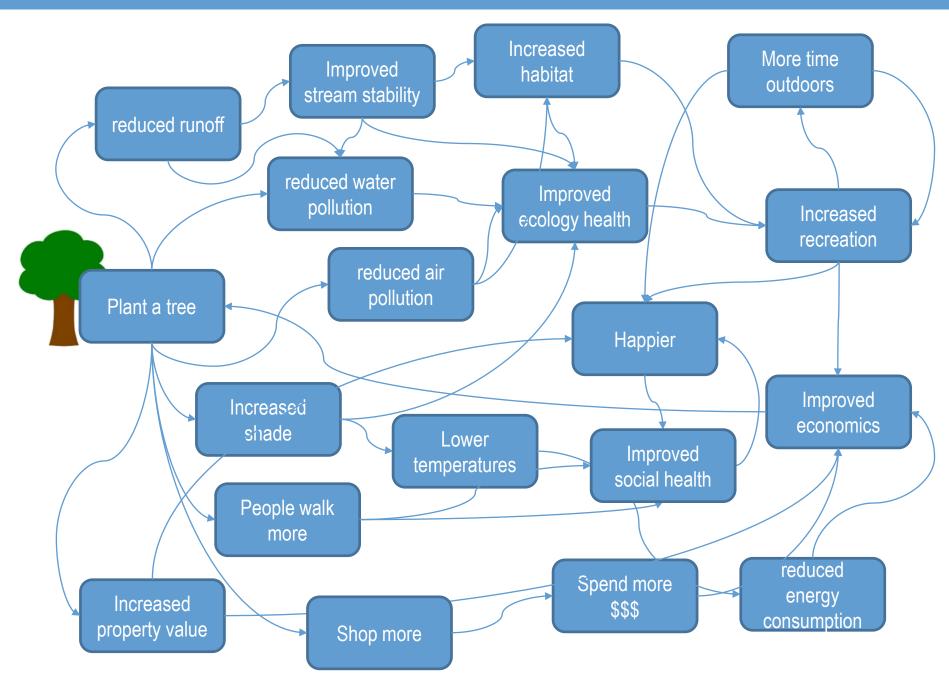
Before (July 2011) ~\$20.30/SF

Conventional reconstruction (8-inch reinforced concrete)

US EPA Green Infrastructure Program

Thank you


BENEFITS OF GREEN INFRASTRUCTURE


Getting More Green For Your Stormwater Infrastructure

Tuesday, May 5, 2015 EPA Webcast

complex world CLEAR SOLUTIONS"

Green Infrastructure Benefits and Practices

This section, while not providing a comprehensive list of green infrastructure practices, describes the five GI practices that are the focus of this guide and examines the breadth of benefits this type of infrastructure can offer. The following matrix is an illustrative summary of how these practices can produce different combinations of benefits. Please note that these benefits accrue at varying scales according to local factors such as climate and population.

	Reduce	es Storn	nwater	Runoff									lmprov L	res Com ivability	munity 1			
Benefit	Reduces Water Treatment Needs	Improves Water Quality	Reduces Grey Infrastructure Needs	Reduces Flooding	Increases Available Water Supply	Increases Groundwater Recharge	Reduces Salt Use	Reduces Energy Use	Improves Air Quality	Reduces Atmospheric CO ₂	Reduces Urban Heat Island	Improves Aesthetics	Increases Recreational Opportunity	Reduces Noise Pollution	Improves Community Cohesion	Urban Agriculture	Improves Habitat	Cultivates Public Education Opportunities
Practice	ŝ				A			۲		CO2		×	Ž)	*?	ttt	*	No.	Ì
Green Roofs					0	0	0						\bigcirc			\bigcirc		
Tree Planting					0		0									•		
Bioretention & Infiltration					\bigcirc	•	0	0								0		
Permeable Pavement					0			\bigcirc				0	0		0	0	0	
Water Harvesting							0	Θ	Θ	Θ	0	0	0	0	0	0	0	

Maybe

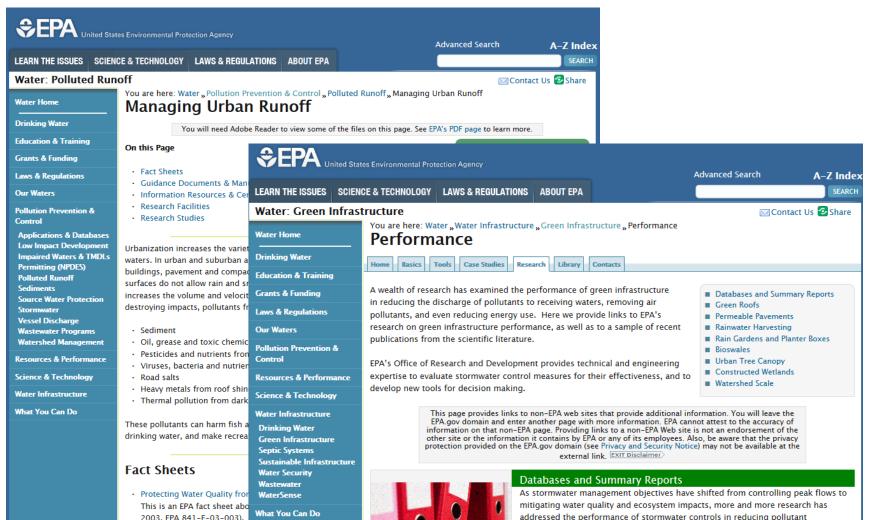
No

Hydrology

- Increased interception
- Increased onsite storage
- Increased infiltration
- Increased plant-water uptake
- Increased time of concentration
- Decreased runoff volume
- Decreased runoff rate

Leads to

- Reduced infrastructure needs
- Reduced flooding
- Increased water supply



EPA Nonpoint Source Pollution

epa.gov/greeninfrastructure

water.epa.gov/polwaste/nps/urban.cfm

water.epa.gov/infrastructure/greeninfrastructure/gi_performance.cfm

International Stormwater BMP Database (bmpdatabase.org)

International Stormwater BMP Database

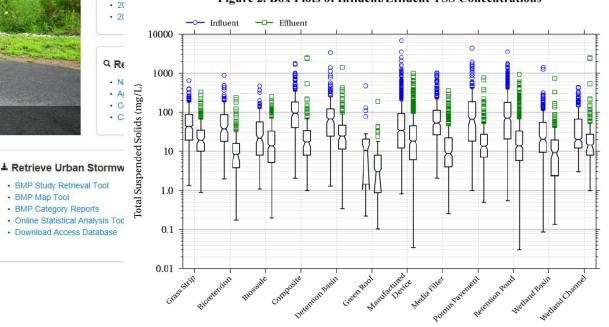
Home Get Data -Guidance -Submit Data -Documents -About -

Urban Stormwater Research Reports

- 2012 BMP Performance Summaries
- 2012 Statistical Appendices
- 2012 Manufactured Device Performance Analysis Summary
- 2012 Volume Reduction in Bioretention
- 2012 Database Overview
- 2012 Chesapeake Bay BMP Performance Summary

Welcome! The International Stormwater Best Management Practices (BMP) Database project website features a database of over 530 BMP studies, performance analysis results, tools for use in BMP performance studies, monitoring guidance and other study-related publications. New to the site? Start Here

News


A

BMP Map Tool

BMP Category Reports

· 2013 Advanced Analysis

National Stormwater Quality Database Has

Figure 2. Box Plots of Influent/Effluent TSS Concentrations

Air Pollution Reduction

- Urban trees and shrubs offer the ability to remove significant amounts of air pollutants.
- Urban tree canopy cover could be a viable strategy to improve air quality and help meet clean air standards.
- Green roofs can be used to supplement the use of urban trees in air pollution control

Air Pollutant Removal by Green Roof

Pollutant	Low (Ibs/ac)	High (lbs/ac)
Ozone (O ₃)	26	40
Particulate (PM ₁₀)	5	6
Nitrogen Dioxide (NO ₂)	13	21
Sulfur Dioxide (SO ₂)	10	18

Urban Heat Island Effect

- Temperatures in urban areas are higher than in surrounding rural areas
- Results from the generation and retention of heat by urban buildings and paved surfaces
- Results in higher energy demand during the summer
- Ambient temperatures may be reduced by increasing
 - Albedo (solar reflectivity)
 - Vegetation density
- Example practices
 - Green roofs
 - Trees

Greenhouse Gas Emissions

- Greenhouse Gas Emissions contribute to climate change
- Target
 - Reduced emissions from reduced energy consumption
 - Increased sequestration of carbon dioxide by vegetation
- Energy consumption linked to urban heat island effect
- Carbon Sequestration, impacted by:
 - Age of vegetation
 - Type of vegetation
 - Density of vegetation

Vegetation Type	Mean Plant Biomass (grams of Carbon/sf)
Temperate Forest	743.5
Temperate Steppe	278.8
Wetland	250.9
Cultivated Land	130.1

May 5, 2015

Greenness and General Physical Health Benefits

 People perceive streets with trees and gardens as more attractive for walking

- <u>Access to a garden or short distances to green areas from the dwelling</u> are associated with <u>less stress</u> and a <u>lower likelihood of obesity</u>
- The <u>amount of green</u> areas in the vicinity of the participant's residence and the short distance to green areas suitable for recreational use <u>increased</u> the number of close-to-home <u>outings</u> among residents.
- <u>Higher greenness</u> was significantly associated with <u>lower BMI</u> regardless of residential density characteristics.
- Greener environments can <u>reduce mortality rates</u> for populations that would normally have higher mortality rates due to socioeconomic factors such as income and available health services.

Bell J. (2008); Borst, H. (2008); Mitchell, R (2008); Neuvonen, M (2007); Nielsen T. (2007); Wendel-Vos, G. (2004)

Mental and Emotional Health Effects

- Significant <u>relationships</u> have been found between the use of urban <u>open spaces</u> and experiences of <u>stress</u>
- Other research has shown that <u>time in natural settings</u> can <u>help mental</u> <u>fatigue recovery</u> and improve one's capacity to concentrate
- Results indicate that children <u>function better</u> than usual after activities in green settings
- <u>The "greener</u>" a child's play area, <u>the less severe</u> his or her attention deficit <u>symptoms</u>
- <u>Desk workers</u> surveyed about their rate of illness and level of job satisfaction claimed <u>23% fewer incidents</u> of illness in the prior six months if they had a <u>view of nature</u> from their desks

Crime Reduction

- Within the same housing development, building with high levels of vegetation had 48% fewer property crimes and 56% fewer violent crimes than building with low levels of vegetation
- Medium levels of vegetation were associated with 40% fewer property crimes and 44% fewer violent crimes than low levels of vegetation.

Kuo, F. (2001)

Community Cohesion

- In a series of studies involving over 1,300 person–space observations, 400 interviews, housing authority records, and 2 years of police crime reports, tree and grass cover were systematically linked to a wide range of social ecosystem indicators.
- These indicators included <u>stronger ties among neighbors</u>, <u>greater sense of safety and adjustment</u>, more supervision of children in outdoor spaces, <u>healthier patterns of children's</u> <u>play</u>, more use of neighborhood common spaces, <u>fewer</u> incivilities, fewer property crimes, and <u>fewer violent crimes</u>.
- In residential areas, barren, treeless spaces often become "no man's lands," which discourage resident interaction and invite crime.
- The presence of trees and well-maintained grass can transform these no man's lands into pleasant, welcoming, well-used spaces.
- Vital, well-used neighborhood common spaces serve to both strengthen ties among residents and deter crime, thereby creating healthier, safer neighborhoods.

Property Value

- Trees add \$7,020 to the price of a house, a 2.4% of the mean sale price
- Open spaces have a statistically significant effect on a home's sale price
- Introduction of LID increased property values by 3.5 5 percent.
- These results suggest people are willing to pay for the combination of neighborhood amenities and environmental services provided by LID stormwater controls.

Distance Variables Evaluated at the Mean Open Space for each Open Space Type (1990 Dollars)

Variable	Urban Park	Natural Area Park	Speciality Park/Facility	
			Golf Course	•
Distance ≤ 200	\$1,926***	\$11,210*	\$13,916*	\$7,396***
Distance 201-400	2,061*	10,216*	7,851*	5,744**
Distance 401-600	1,193***	12,621*	2,814	10,283*
Distance 601-800	817	11,269*	8,842*	5,661*
Distance 801-1,000	943	8,981*	8,898*	4,972*
Distance 1,001-1,200	1,691*	8,126*	4,391***	4,561*
Distance 1,201-1,500	342	9,980*	4,366**	t3,839*

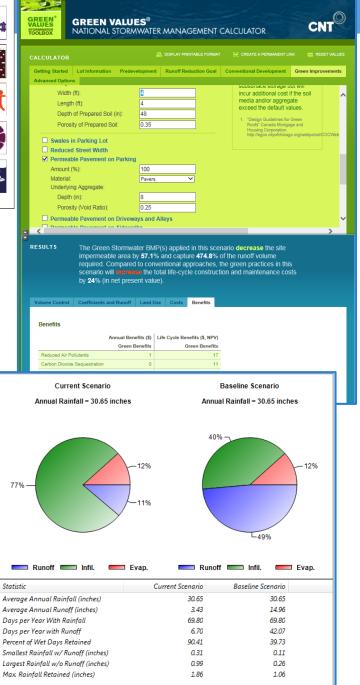
Number of observations 16,747; $\lambda = 0.0995^*$; adjusted $R^2 = 0.656$

*, **, *** denote significance at the 0.01, 0.05, and 0.10 levels, respectively.

Porous Pavements

- Melting water seeps through the pavement instead of refreezing
- Lack of refreezing melt water eliminates the need for additional deicing applications
- Observational data supported by laboratory biomechanical investigations
- Pavement noise is generated through tire pavement interaction and block compression of tire tread against the pavement surface
- 5 to 6 dB reduction in noise level
- Decreased hydroplaning
- Decreased glare

Quantifying Benefits


Reduced Runoff

- Computational Methods Curve Number, Rational, Small Storm Hydrology, SWMM Runoff
- Models: By hand, TR-20, TR-55, SWMM, National Stormwater Calculator, etc.
- Trees iTree (<u>https://www.itreetools.org/</u>)
- Green Values National Stormwater Management Calculator (<u>http://greenvalues.cnt.org/</u>)
- CNT and American Rivers (2010)
 - Benefit quantification
 - Valuation

Center for Neighborhood Technology and American Rivers. The Value of Green Infrastructure: A Guide to Recognizing Its Economic, Environmental and Social Benefits. 2010.

Example Project Integration

Sustainability Plan Targets

Managing the Economic, Social, and Environmental Resources of the City through a Framework of Sustainability Outcomes and Targets

	Target	Approach		
	Soc 4.2-2: Increase the wellness of City employees and their families	 Identify projects with vegetation as assisting 		
	Soc 5.1: Reduce the occurrence of crime	with this targetCorrelate project areas with crime locations		
	Soc 5.4-2: Increase by at least 5% the neighborhood conditions (safety and/or appearance)			
	Env 1-3: Reduce total direct/indirect CO2 emissions by 10,000 metric tons	Quantify carbon sequestered from vegetation and avoided CO2 emissions from energy savings		
	Env 2.1-4: Increase reuse of captured water and/or gray water	Quantify water harvesting use		
	Env 2.2-4: Reduce wastewater flow by at least 5% by 2014	Quantify runoff reduction in combined sewer areas		
	Env 2.2-6: Increase the number and square footage of green roofs	Quantify green roof area		
	Env 2.2-7: Reduce stormwater discharge by at least 50,000 gallons per rain event	Quantify runoff reduction in separate storm sewer areas		
	Env 2.2-9: At least 5% of reconstructed streets, alleys and City parking lots to be constructed of pervious pavement	Quantify pervious pavement installed		
	Env 2.3-1: Increase the percentage of tree canopy in the city to at least 37.5%	Count trees installed and estimate canopy area		
	Env 2.3-2: Increase the percentage of low-maintenance grasses and native plants used in landscaping by at least 25%	Quantify the vegetation area installed		
	Env 3.2-7: Increase the number of acres of City owned park property using LID	Quantify green infrastructure practices installed in parks		

Sustainability Plan Targets

• LID in city parks

- Water harvesting
 - Green roof
- Porous pavement
 - Tree canopy

• Low maintenance grasses and native plants

Vegetation for social wellness

• CO2

Runoff volume reduction

DRAFT

Conceptual Green Infrastructure Planning

Example Walsh St

North side of Walsh St. between Martin Ave and Eastern Ave

LAND COVER		HYI	DROL	DGY R	UNOF	FF (CF)
Description	Area (sf)	90%	2-yr	10-yr	100-yr	Avg Annua
Streets & Roads Paved; curbs and storm sewers (excl. ROW)	6,241	418	1,223	1,850	3,148	13,250
Urban Paved Parking, Roofs, Driveways (excl. ROW) 100% impervious	1,881	126	369	558	949	3,994
Urban Open Space (lawns, parks, golf, cemeteries) Good (grass cover >75%) 1,583	10	86	176	407	323
Urban Open Space (lawns, parks, golf, cemeteries) Good (grass cover >75%) 18,939	125	1,034	2,103	4,865	3,869
Total	28,644	679	2,712	4,686	9,368	21,430
	noff (in) >	0.28	1.14	1.96	3.92	8.98
PROPOSED IMPROVEMENTS						
Green Infrastructure SCM Practice Selection	Oranfaaa	Valuese	Valuese	Valuess	11-14	Ossite
SCW Machice Selection	Surface Area		Volume Detain	Total	Unit Cost	
	(sf)	• •	(cf)	(cf)	(\$łsf)	
Bioretention - Curb Extension, at intersection	650	663	150	\$13	\$31	\$20,150
Bioretention - Curb Extension, mid-block	550	561	127	688	\$31	\$17,050
Pervious Pavement - Parking	2,000	1,200	0	1,200	\$23	\$46,000
Subtotal	3,200	2,424	276	2,700		\$83,200
	noff (in) >	1.02	0.12	1.13		
Linear Conveyance						
Conveyance Practice Selection				Length (ft)	Unit Cost	Capita Cos
6" PVC, Shallow				400	\$34	\$13,600
Subtotal						\$13,600
OPINION OF PROBABLE COST						
Capital Cost			\$96,800		Average	\$4,600
Contingencies (as a percentage of construction cost)	25%		\$24,200		M-&0 let	* 1,551
Engineering, Inspection, Testing, Legal, Administration, and Financing	20%		\$19,360		0-yr Net	\$404.000
TOTAL Capital			5141,000	Prese	nt Value	
Unitized Capital Cost BENEFITS	t 1	\$214,000	per acre		\$7	per gallon
Targeted Practices and Locations						
Drainage area (DA) Area green infrastructure (GI) Ratio DA:GI Ratio Imp:GI	0.66	acres	0.07	acres	9:1	2.5:1
	NA		2,000		2.1	2.0.1
• • • • • • • • •	2 each		600		3960	sf
Green roof [Env. 2.2 #6] Pervious pave [Env. 2.2 #9]			***		0000	
Green roof [Env. 2.2 #6] Pervious pave [Env. 2.2 #9] New trees planted [Env. 2.3 #1] Quantity 10-yr Canopy 50-yr Canopy	2					
• • • • • • • • •						
Green roof [Env. 2.2 #6] Pervious pave [Env. 2.2 #9] New trees planted [Env. 2.3 #1] Quantity 10-yr Canopy 50-yr Canopy Area of low maintenance grasses and native plants used [Env 2.3 #2] Social Benefits Increased wellness [Soc. 4.2] and reduced crime [Soc. 5.1] with vegetation	2	sf	amp(s) [S	3oc. 1.3, 1	Farget 6]	Yes
Green roof [Env. 2.2 #6] Pervious pave [Env. 2.2 #9] New trees planted [Env. 2.3 #1] Quantity 10-yr Canopy 50-yr Canopy Area of low maintenance grasses and native plants used [Env 2.3 #2] Social Benefits Increased wellness [Soc. 4.2] and reduced crime [Soc. 5.1] with vegetation Environmental Benefits	2 1200	sf ADA R		3oc. 1.3, 1	[arget 6]	Yes
Green roof [Env. 2.2 #6] Pervious pave [Env. 2.2 #9] New trees planted [Env. 2.3 #1] Quantity 10-yr Canopy 50-yr Canopy Area of low maintenance grasses and native plants used [Env 2.3 #2] Social Benefits Increased wellness [Soc. 4.2] and reduced crime [Soc. 5.1] with vegetation Environmental Benefits Total direct and indirect CO ₂ emissions reduction [Env 1 #8]	2 1200 Yes	sf ADA R metric to	ns		• •	
Green roof [Env. 2.2 #8] Pervious pave [Env. 2.2 #9] New trees planted [Env. 2.3 #1] Quantity 10-yr Canopy 50-yr Canopy Area of low maintenance grasses and native plants used [Env 2.3 #2] Social Benefits Increased wellness [Soc. 4.2] and reduced crime [Soc. 5.1] with vegetation Environmental Benefits	2 1200 Yes Volume M	sf ADA R metric to	ns Yes	Volume R	etained:	

THANK YOU

Daniel P. Christian, PE, D.WRE

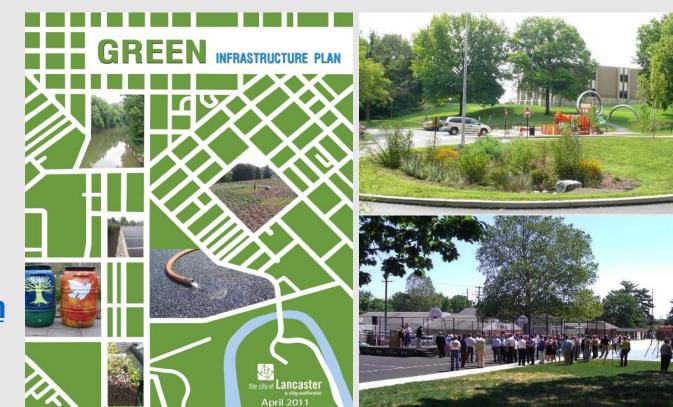
Senior Project Manager, Water Resources Dan.Christian@TetraTech.com 517.316.3939

May 5, 2015

References

- Akbari, H., M. Pomerantz, and H. Taha. 2001. Cool surfaces and shade trees to reduce the energy use and improve air quality in urban areas. Solar Energy, 70(3), pp. 295-310
- Bell, J.F., J.S. Wilson, and G.C. Liu, 2008. Neighborhood Greenness And 2-Year Changes in Body Mass Index of Children and Youth, American Journal of Preventive Medicine, 35(6): pp. 547-553
- Borst, Hieronymus C., Henk M.E. Miedema, Sanne I. de Vries, Jamie M.A. Graham, and Jef E.F. van Dongen, 2008, Relationships Between Street Characteristics and Perceived Attractiveness For Walking Reported by Elderly People, Journal of Environmental Psychology, 28(4): pp. 353-361.
- Center for Neighborhood Technology and American Rivers. The Value of Green Infrastructure: A Guide to Recognizing Its Economic, Environmental and Social Benefits. 2010.
- Currie, B. and B. Bass. 2008. Estimates of Air Pollution Mitigation with Green Plants and Green Roofs Using the UFORE Model.
 Urban Ecosystems. 11:409-422
- Donovan, G.H., and D.T. Butry. 2008 (August). Market-based approaches to tree valuation. Arborist News 17:52-55
- Faber, Taylor A., F.E. Kuo, and W. C. Sullivan, 2001, Coping with ADD: The Surprising Connection to Green Play Settings, Environment & Behavior, 33(1), pp. 54-77.
- Kaplan, Stephen, 1995, Restorative Benefits of Nature: Toward an Integrative Framework, Journal of Environmental Psychology, 15(3); pp. 169-182
- Kaplan, R. and S. Kaplan, 1989, The Experience of Nature: A Psychological Perspective, Cambridge University Press, Cambridge
- Kevern, J.T., Schaefer, V.R., and Wang, K. 2000. Temperature Behavior of a Pervious Concrete System. Transportation Research Record: Journal of the Transportation Research Board (TRB), Concrete Materials, no. 2098, Transportation Research Board of the national Academies, Washington D.C., pp. 94-101.
- Kuo, E.E., 2001, Coping with Poverty: Impacts of Environment and Attention in the Inner City, Environment & Behavior, 33(3): pp.5-34.
- Kuo, F.E. and W.C. Sullivan, Environment and Crime in the Inner City: Does Vegetation Reduce Crime? Environment and Behavior, 2001.33(3)pp 343-367.

References


- Kuo, F.E. The Role of Arboriculture in a Healthy Social Ecology. Journal of Arboriculture, 2003. 29(3): pp 148-155.
- Kuo, F.E., W.C. Sullivan, R. Coley, and L. Brunson. Fertile Ground for Community: Inner-City Neighborhood Common Spaces. American Journal of Community Psychology, 1998. 26(6)pp.823-851.
- Lutzenhiser, M. and N.R. Netusil, 2001, The Effect of Open Spaces on A Home's Sale Price, Contemporary Economic Policy 19(3):291-298.
- Mitchell, R. and F. Popham, 2008, Effect of Exposure to Natural Environment on Health Inequalities: An Observational Population Study, Lancet, 372(9650): pp. 1655-60.
- Neuvonen, M., T. Sievanen, S. Tonnes, and T. Koskela, 2007, Access To Green Areas And the Frequency of Visits – A Case Study in Helsinki, Urban Forestry & Urban Greening. 6(4): pp. 235-247.
- Nielsen, Thomas Sick, and Karsten Bruun Hansen, 2007, Do Green Areas Affect Health? Results From A Danish Survey On The Use Of Green Areas And Health Indicators, Health & Place, 13(4): pp. 839-850.
- Nowak, David J., Daniel E. Crane, and Jack C. Stevens. 2006. Air pollution removal by urban trees and shrubs in the United States. Urban Forestry and Urban Greening 4:115-123
- Schlesinger, William H., 1997, Biogeochemistry: An Analysis of Global Change. Academic Press, San Diego, California
- Ward, B., E. MacMullan, S. Reich, 2008. The Effect of Low-Impact-Development On Property Values. Proceedings of the Water Environment Federation, Sustainability 2008, pp.318-323(6).
- Wendel-Vos, G.C., A. Jantine Schuit, Raymond De Niet, Hendriek C. Boshuizen, Wim H. Saris, and Daan Kromhout, 2004, Factors in the Physical Environment Associated with Walking and Bicycling. *Medicine & Science in Sports & Exercise*, 36(4): pp. 725-730
- Yang, Jun; Qian Yu, and Peng Gong. Quantifying Air Pollution Removal by Green Roofs in Chicago. Atmospheric Environment. Vol 42, Issue 31, October 2008. Pages 7266-7273.

Cost Saving Approaches for Implementing Green Stormwater Infrastructure Ch2me

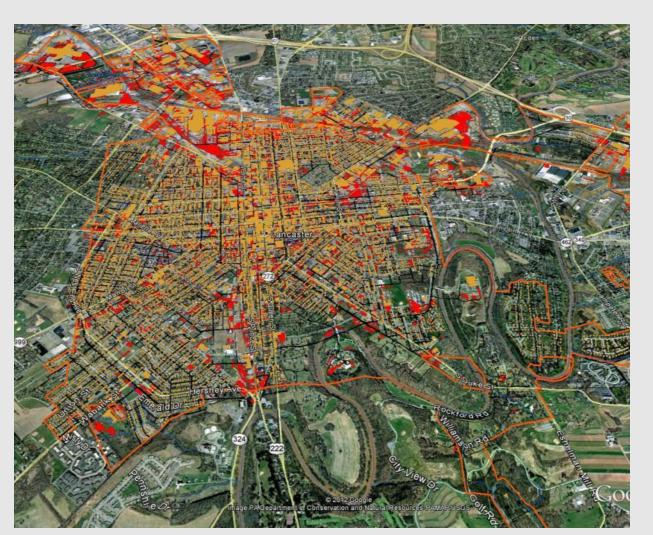
Andrew Potts, P.E., LEED AP, CPESC

EPA Webinar May 5, 2015

andrew.potts@ch2m.com 215.640.9033

Outline

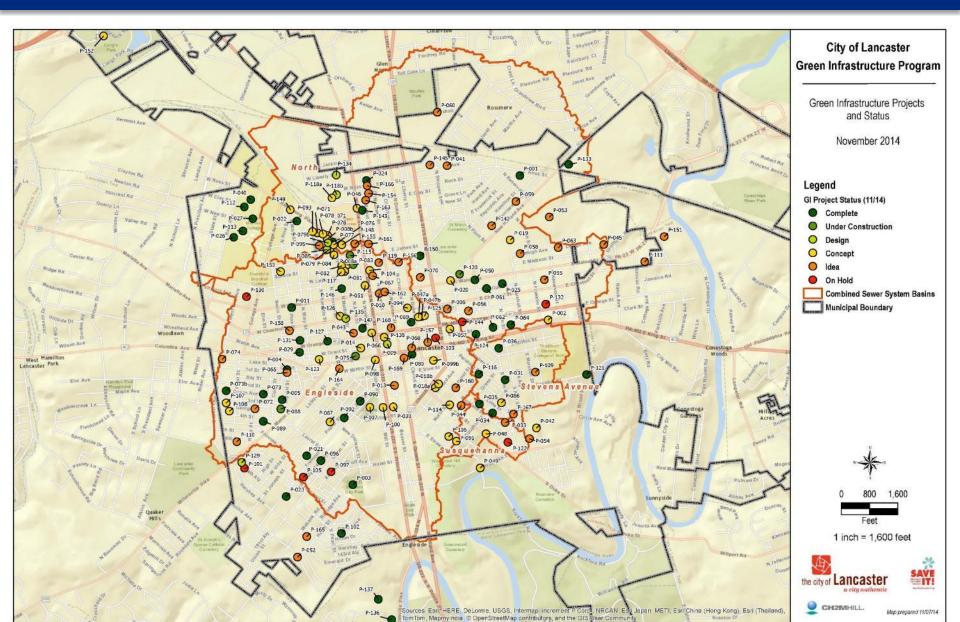
- City of Lancaster (PA) Green Infrastructure Program Overview
- Integrated Infrastructure Programs achieving multiple benefits to stretch our public investments
 - Parks
 - Roads/Sidewalks
 - Other utilities
- Public-Private Partnership Program
- Additional Information
- Questions


City of Lancaster – Overview

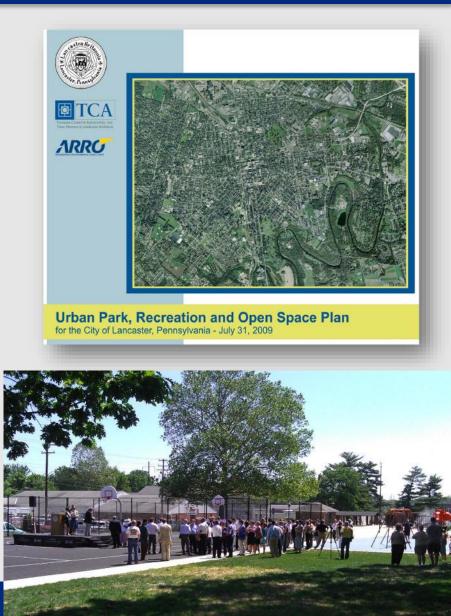
- 55% separate sewers / 45% combined
- Conestoga River → Chesapeake Bay (TMDL)
- 7.34 square miles with 60,000 residents in the 2010 census, significant poverty levels
- Incorporated in 1742 as a borough and in 1818 as a City
- Historic building stock (median home age of 100 years)

2011 Green Infrastructure Plan Envisions Widespread GI

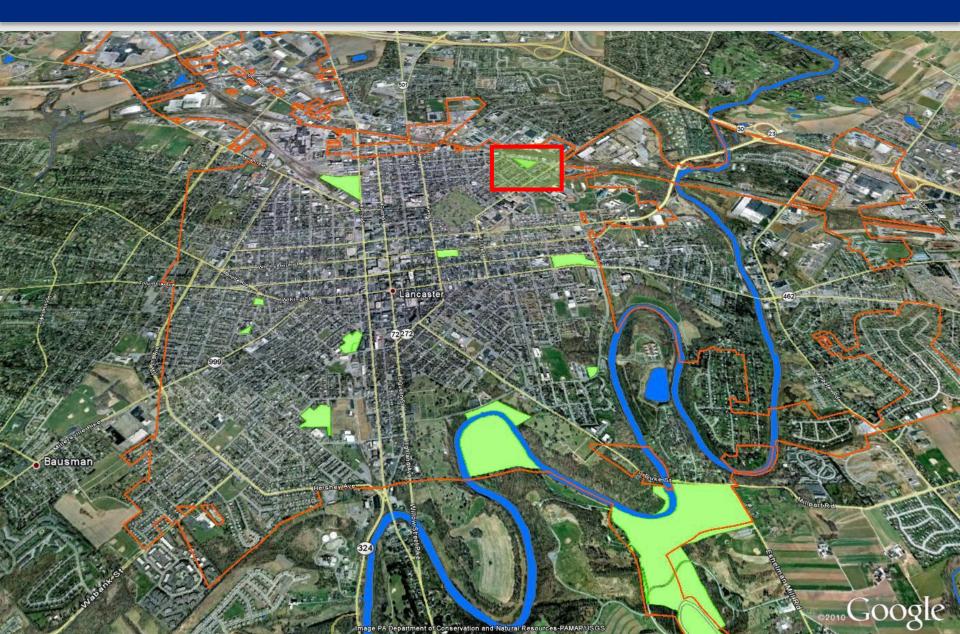
Roads & Alleys



Green Infrastructure Program Status



Green Infrastructure Program Status


Status	Number of Projects	Impervious Area Managed (sq. ft.)	Impervious Area Managed (acres)	Annual Runoff Capture (Gal/yr)
Constructed / Under Construction	52	1,009,587	23	20,172,000
In Design for Construction	14	943,000	22	17,984,000
Conceptual Designs (non-PV/GGP)	24	640,000	15	12,262,000
PENNVEST Concepts	19	367,000	8	7,033,000
Growing Greener Plus Concepts	1	46,000	1.1	881,000
In Project Planning	52	-	-	-
Total	162	3,005,587	69	58,332,000

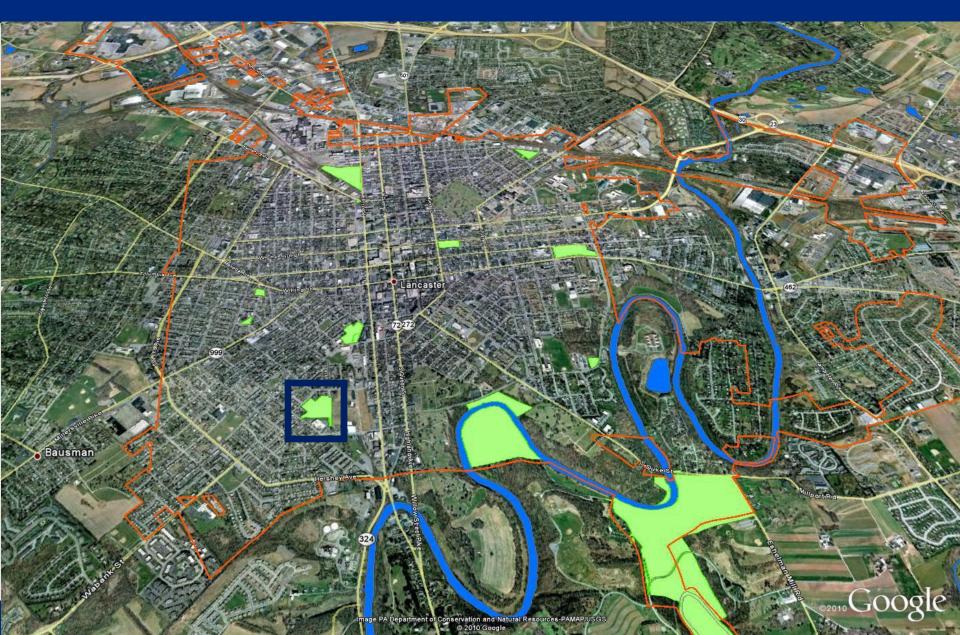
Building off existing plans: Parks

- Lancaster's Urban Park, Recreation and Open Space Plan (2009) called for renovations of a number of City parks
- Green Infrastructure Plan recommended GI be integrated with park improvements
- Significant GI successfully included in the 4 renovation projects completed to date

Integrated Infrastructure: Green Parks

Expanding the Benefit of the Park – 6th Ward Park (2010)

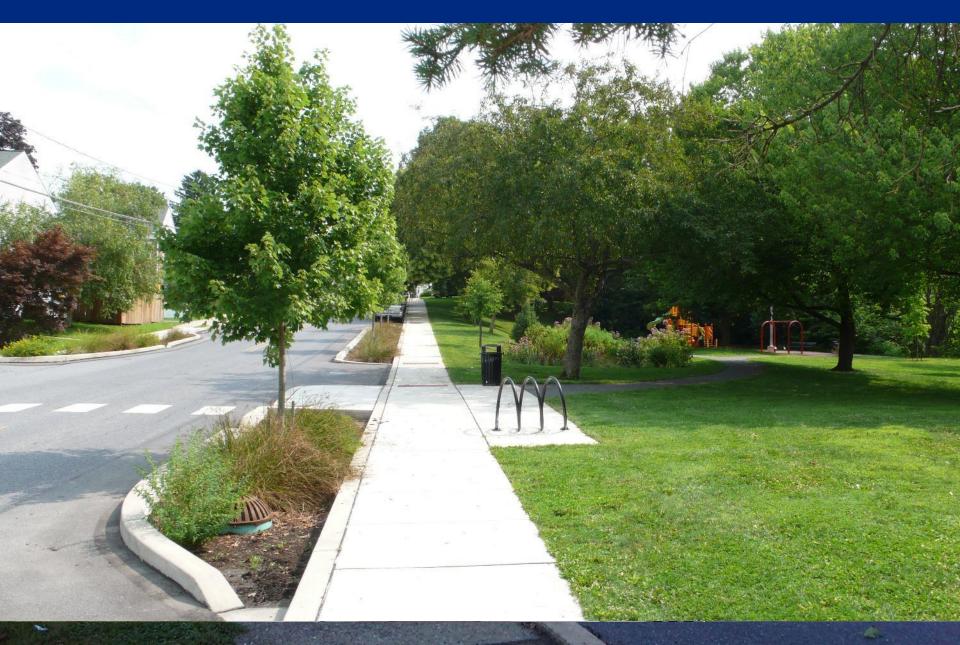
Sixth Ward Park


- Porous basketball court with storage infiltration bed
- Funding from DCNR, DEP and Chesapeake Bay Stewardship Fund (NFWF)

Runoff Reduction		713,000	gallons / year
Bid Cost (Total Project Cost)	\$	116,300	
Cost of Basketball Court Only	\$	49,650	
Incremental Cost of GI	\$	66,650	
Total Cost	\$	0.16	/gallon / year
Incremental Cost of GI	\$	0.09	/gal/yr (<u>\$87k per acre</u>)
	[over 40% savings from full project		
	cost]		

6th Ward Park Re-dedication Ceremony

GREEN PARKS

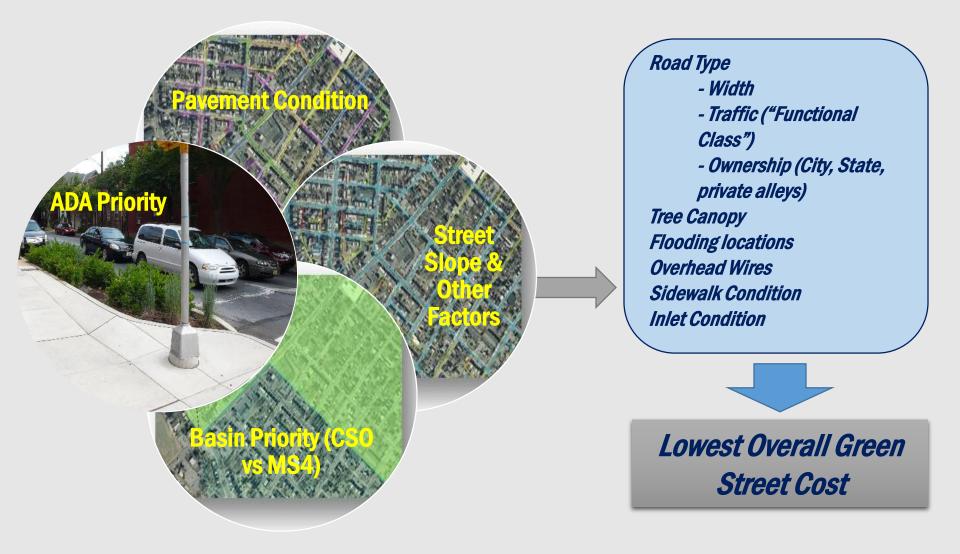


BRANDON PARK

BRANDON PARK – WABANK ST. CURB EXTENSIONS

BRANDON PARK

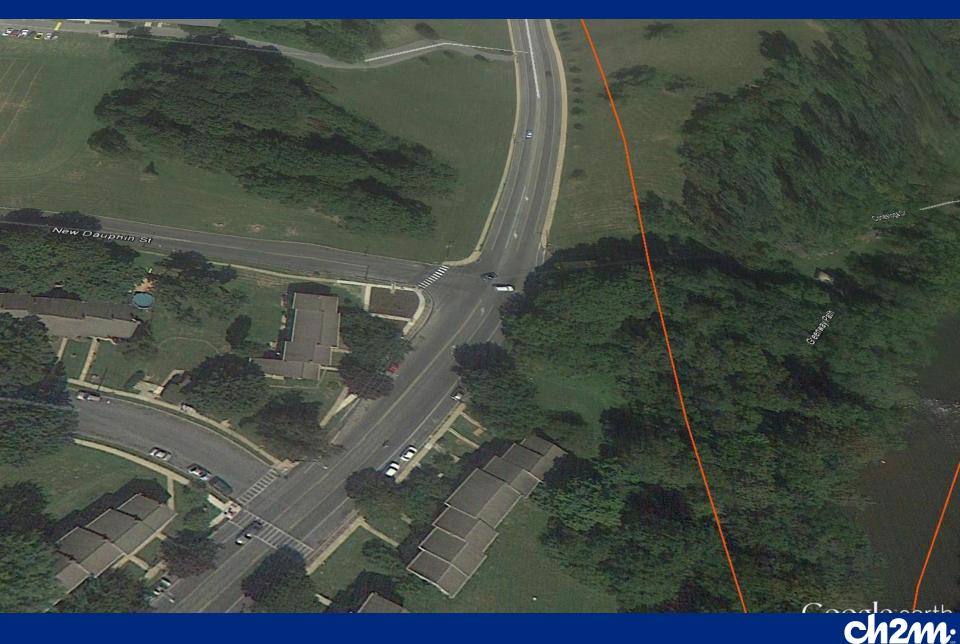
BRANDON PARK



Integrated Infrastructure: Green Streets &

Composite Prioritization Criteria Yielded Most Cost-effective Green Streets Opportunities

Alley 148 Greened for 10% Additional Cost, Captures 200,000 Gallons per Year


Before (July 2011)

After (February 2012)

Conventional reconstruction (8-inch reinforced Green alley retrofit (permeable pavers with infiltration concrete) ~\$20.30/SF trench) ~\$22.40/SF

Broad St. & New Dauphin St. Green Street

Ρ	roject Reference ID	P-121
Ρ	roject Name	Pavement Removal at New Dauphin and N. Broad St.
G	il Prototype Project Type	Alley/Street
C	onstruction Year (Actual)	2012
Ir	npervious Area Contributing (ft2)	31,000
G	il Area (ft2)	3,000
С	alculated Estimated Capture Volume (gal/yr)	554,000
E	stimated Constructed Cost (Class 3)	\$86,000
B	id GI Construction Cost	\$80,000
С	ost / Stormwater Volume (\$/gal)	\$0.14

550,000 Gallons / year reduction in runoff volume

Using Traffic Safety & Transportation Funding To Reduce Accidents and Runoff while Enhancing Local Business

IIII BATT

-

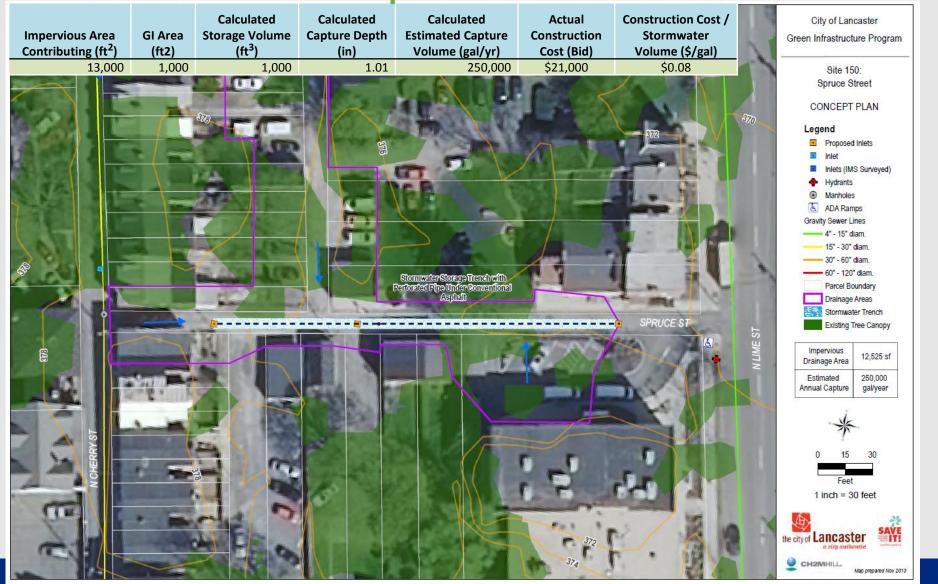
FAT

EEBEE

5 MPH reduction in average traffic speed

Integrating Traffic Improvements Improves Safety, Local Business, and Brings New Funding Sources

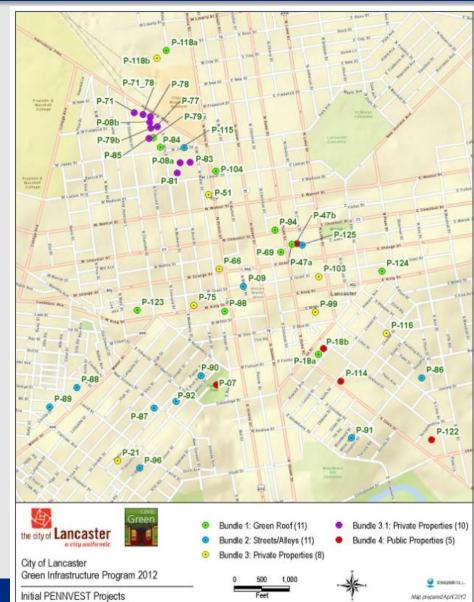
- Built with Transportation and GI Grant funds
- Helps local business
- 2014 Best Urban BMP in the Bay Award
- Pennsylvania
 Governor's Award
 for Environmental
 Excellence
- *\$0.24/gal/year*

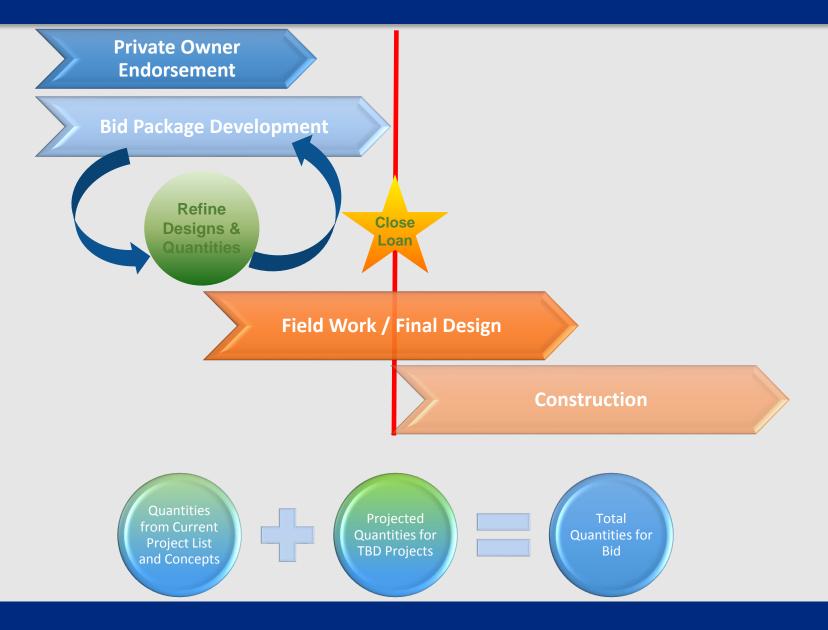

Thomas R. Schuele Executive Director.

New Outdoor Seating with Permeable Pavers

Integrating with water and sewer upgrades – Greening

Spruce Street


Spruce Street Greening Project (2013)


Innovative Public-Private Partnership Using State Revolving Funds (PENNVEST in PA)

- \$7M SRF PENNVEST Loan to fund implementation of GI on public & private property
- 45 initial GI sites with an additional ~25% to be determined (TBD)
 - Divided into 5 bundles for bidding
- City pays up to 90% of GI Costs
- Property owner pays

remainder and signs on to

Overall PENNVEST Processes

Cost Estimating Tool Based on Unit Prices in

RIUS															
P-XXX BID COST FORM			Bid Bundle No:					2			Enter Project Runoff Captur Volume (CF):	re 1,6	Capture Volum (Inches):	e 1.22	:
Unless covered by a separate Pay Item, Unit Prices shall include all materials, labor, equipment, etc. compaction, parts, fittings, incidental work required, etc.) in accordance with the contract documents, or),	Enter Project Capture Area (SF):	16,4	23 Estimated Annu Runoff Capture		'
***NOTE: U	SER INPUTS VALUES IN GREEN BOXES AND ITEM QUANTITIES ONLY												Estimated Annu Runoff Capture	386 //1	
													Cost Efficiency		
								Non-GI	Improveme	nts ¹					
Pay Item	Name	Unit	Estimate Quantity		t Price or %)	Total Gi (\$) (Quant Unit P	ity x		d Non-GI Co GI) (NGI Cost Price	x Unit					
	ation and Restoration		1	-1		1									
	Site Clearing and Disposal (removal of grass, shrubs, small trees, debris, etc.)	SY	10	\$	43.80		438.00	0	\$	-					
	Structure and Pavement Demolition (includes sawcutting, demo and disposal)	CY	10	\$	25.90		259.00	0	\$	-					
-	Asphalt Milling - up to 2" Depth (includes disposal)	SY	5	\$	6.00		30.00	0	\$	-					
	Common Excavation, Grading, and Backfill (includes disposal)	CY	20	\$	23.90		478.00	0	\$	-					
	Rock Excavation and Disposal	CY	0	\$	75.00		-	0	\$	-					
	Reset Brick Pavers (Roadway or Sidewalk)	SY	0	\$	71.50		-	5		357.50					
	Establish Turf	SY	5	\$	13.90	\$	69.50	5	\$	69.50)				
Granular M	aterials														
															-
	2 - ALLOWANCES (ENTER UNIT COST FROM BID BUNDLE)														
	Performance Bond/Insurance		%	-	\$	0.01	\$	13.51	0.0106	\$	4.53				
98	Mobilization and Demobilization (per notice to proceed on one or more projects)		EA	1		3,500.00	•	3,500.00	-		-	Total LNC	Partner GI Cost	Total Partner Cost (\$) (Cost Share	
100	Temporary Maintenance and Control of Traffic		%	-	\$	0.01	\$	9.81	0.0077	\$	3.29	Cost (\$) (Total		(\$) (Cost Share + Alternate Cost)	
101	Coordination with Other Contractors (assume 1 coordination meeting and follow-up notifications)		EA	1	\$	300.00	\$	300.00	-		-	GI Cost x (Total GI Cost x 90%) 10%)			
TOTAL OF ALL ITEMS							\$ 5.	097.82		\$	434.81	\$ 5,735.09	\$ 637.23	\$ 6,169.91	

Two Dudes Painting Company

317 N. Mulberry

- PENNVEST project coordinated with redevelopment
- Challenging coordination/sequencing
- Developer expanded decorative pavers to full driveway
- Captures large neighboring building
- Hosted EPA Press Conference on Green Infrastructure in April 2014

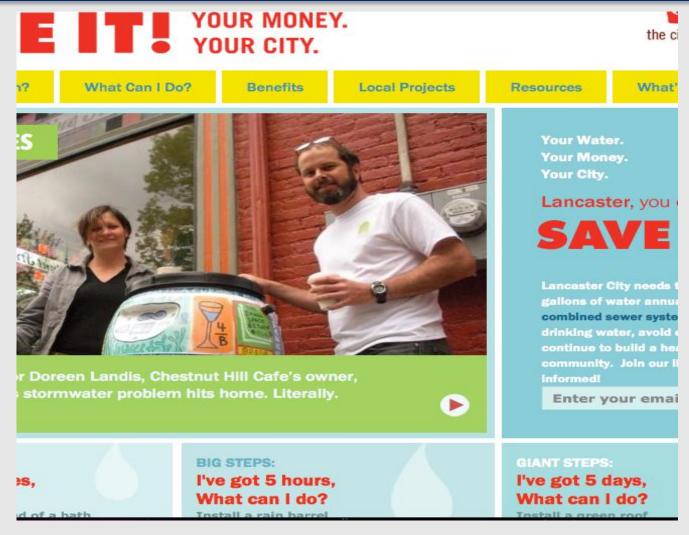
Impervious Area Contributing (ft2)	20,000		
GI Area (ft2)	2,000		
Calculated Estimated Capture Volume (gal/yr)	399,000		
Estimated Constructed Cost (Class 3)	\$75,000		
Estimated Construction Cost (Class 4)	\$75,000		
Bid GI Construction Cost	\$75,000		
Cost / Stormwater Volume (\$/gal)	\$0.19		
Primary Funding	PENNVEST		

Triple Bottom Line Benefits

2014 EPA report estimates the following benefits of implementing the GI Plan:

- \$4.2 million/year in energy, air quality, and climate-related benefits
- \$660,000 annually in reduced wastewater pumping and treatment costs (at current costs)
- \$120 million in avoided gray infrastructure (e.g., tanks, tunnels)

For an GI investment of \$80 -\$140 million over 25 years (depending on level of integration)


The Economic Benefits of Green Infrastructure

A Case Study of Lancaster, PA

Map of Lancaster, PA provided by CH2M Hill, Inc.

February 2014 EPA 800-R-14-007

Additional Information

www.SaveltLancaster.com

QUESTIONS?

Cost Saving Approaches for Implementing Green Stormwater Infrastructure Ch2me

Andrew Potts, P.E., LEED AP, CPESC

EPA Webinar May 5, 2015

andrew.potts@ch2m.com 215.640.9033

Speaker Contacts

Chris Kloss, U.S. EPA Office of Water 202-564-1438 Email: <u>Kloss.Christopher@epa.gov</u>

Dan Christian, Tetra Tech 517-316-3939 Email: <u>Dan.Christian@tetratech.com</u>

Andrew Potts, CH2M HILL 215-640-9033 Email: <u>Andrew.Potts@CH2M.com</u>

For questions about EPA's Green Infrastructure Webcast Series:

Eva Birk, ORISE Fellow, U.S. EPA Office of Wastewater Management <u>Birk.eva@epa.gov</u>, (202) 564-3164

Emily Halter, ORISE Fellow, U.S. EPA Office of Wastewater Management <u>Halter.emily@epa.gov</u>, (202) 564-3324

Next Webcast – July 7, 2015

Paying for Stormwater – The Benefits of a Utility

- Robert D. Chandler, Assistant Public Works Director, City of Salem, OR Shelia Dormody, Director of Policy, City of Providence, RI
- Andrew Reese, Vice President, AMEC Foster Wheeler

Registration in late June

Information and registration will be posted at <u>http://water.epa.gov/infrastructure/greeninfrastructure/gi_training.cfm</u>