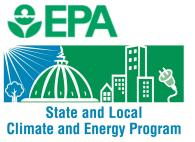
# Quantification Methods using eGRID State and Local Examples

Robyn DeYoung
March 31, 2011
U.S. EPA
State Climate and Energy Program






## **Presentation Overview**

## Today's Examples -

- New Mexico:
  - Estimating the energy and emission impacts of Energy Efficiency Resources Standard
- Delaware Valley Regional Planning Commission
  - Quantifying electricity consumptions for Regional GHG emissions inventory and Electricity reductions from LED Change-Out Program



# New Mexico's Interest in estimating EE/RE policy impacts

- EPA is focusing resources to help state and local governments incorporate EE/RE policies and programs in State Implementation Plans (SIPs)
- New Mexico expressed interest in exploring how to incorporate EE/RE Policies in their SIP (E.g., upcoming ozone standard)
- EPA staff from the Regional Office and Headquarters have come together to:
  - provide technical assistance to New Mexico and
  - estimate the potential magnitude of emission reductions NM may include in their upcoming SIP submittal



## New Mexico's Energy Efficiency Resources Standard (EERS)

In 2008, New Mexico adopted an amended version of the Efficient Use of Energy Act where:

 House Bill 305 requires <u>Investor Owned Utilities</u> to achieve a <u>10% reduction from 2005</u> total retail electricity sales by 2020.<sup>1</sup>

To estimate the energy impacts – directly refer to the EERS law, or state regulation to guide your analysis.

Connect with Public Regulatory Commission to ensure correct assumptions

#### How to Estimate the Energy Impacts of NM's EERS



(e.g., Investor owned utilities,

| municipal utilities or |  |  |
|------------------------|--|--|
| cooperatives)          |  |  |

| 1.b Identify Investor Owned | El Paso         | Public Service | Southern Public |
|-----------------------------|-----------------|----------------|-----------------|
| Utilities in NM             | <b>Electric</b> | Company of NM  | Service Company |

| Cultics III I IIII           | Electric | Company of Nivi | Service Company |
|------------------------------|----------|-----------------|-----------------|
| 2. Identify year of baseline |          | 2005            |                 |

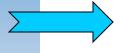
| 2. Identify year of baseline sales |             | 2005                                    |              |   |
|------------------------------------|-------------|-----------------------------------------|--------------|---|
| O Determine total base visus       | 4 584 84844 | 7 7 A A A A A A A A A A A A A A A A A A | 0.784.8484/1 | T |

TOTAL IOU 3.7M MWh 1.5M MWh **7.7M MWh** sales in 2005:

12.9M MWh

3. Determine total base year sales (2005) for each affected **Utility** (Source: EIA's Electricity Sales, Revenue and Price Tables, 2005 Issue, Table 10. found at: http://www.eia.doe.gov/cneaf/electricity/es

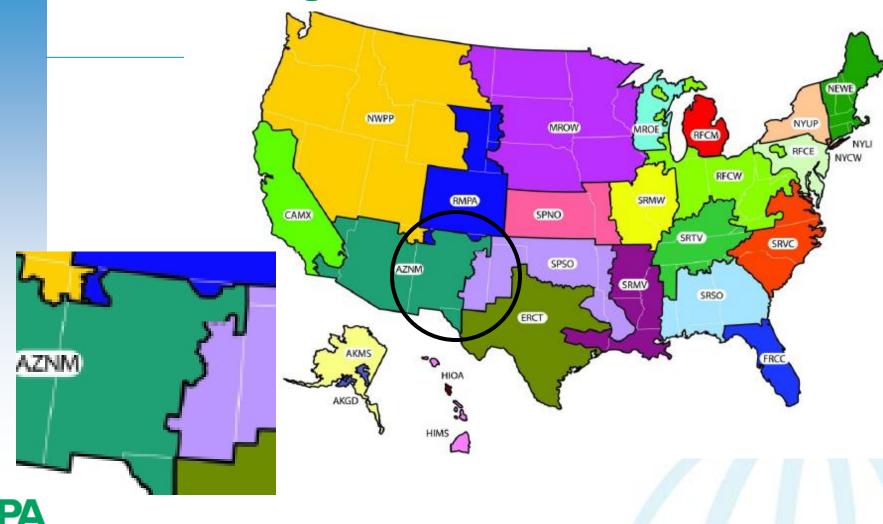
r/backissues.html) 4. Determine savings from


TOTAL IOU EERS by 2020 (10% sales reduction reduction of total 2005 in 2020: sales) 1.29M MWh

# Obtain emissions and plant information from eGRID

- Information in eGRID connects IOUs with each associated plant
- All plants are located in eGRID subregion AZMN (except Luna Energy Facility)

| Utility (IOU)                              | Electric  | of NM                                                                                         | Service Company                  |
|--------------------------------------------|-----------|-----------------------------------------------------------------------------------------------|----------------------------------|
| # of plants<br>associated with<br>each IOU | One plant | Six plants                                                                                    | Three plants                     |
| Plant names:                               | Riogrande | Afton Generating Station Las Vegas Lordsburg Generating Reeves Luna Energy Facility* San Juan | Carlsbad<br>Cunningham<br>Maddox |


## Apply eGRID quantification approaches



- eGRID subregion average nonbaseload emission rates
- eGRID plant-level data using "capacity factors"



## eGRID subregions





# eGRID subregion AZNM Non-baseload output emission rates

#### **Criteria Air Pollutants**

NOx: 1.04 lbs/MWh

**SO<sub>2</sub>:** 0.4500 lbs/MWh

#### **Greenhouse Gas Emissions**

**CO2:** 1,211.84 lbs/MWh

CH4: 20.56 lbs/GWh

N2O: 9.31 lbs/GWh



Source: Summary Tables: available at:

http://www.epa.gov/cleanenergy/documents/egridzips/eGRID2010V1\_0\_year

07\_SummaryTables.pdf

# eGRID emission approach using AZNM subregion non-baseload emission rates

### General Approach:

Electricity sales saved from EERS x eGRID emission rates x grid loss factor.

## Units used in equation:

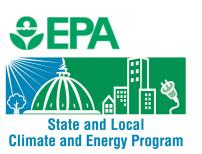
Energy saved (MWh) x emission rate (lbs/MWh) x 1/(1-grid loss factor) x tons/lbs conversion

$$1,290,810 \, MWh \, x \, \frac{1.04 \, lbs \, NOx}{MWh} \, x \, \frac{1}{(1 - 0.0484)} \, x \frac{1 \, ton}{2000 \, lbs} = 705.3 \, tons \, of \, NOx$$

#### Helpful Conversions:



1GWh = 1000 MWh


1 short ton = 2000 lbs

1 metric ton = 2204 lbs

# NM's emission results using eGRID AZNM subregion non-baseload emission rates

#### Displaced emissions from NM's EERS in 2020

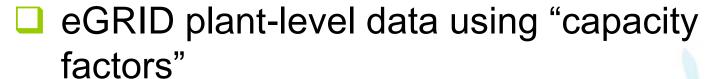
| Greenhouse Gas           |       |                                              | Criteria Pollutant |                 |
|--------------------------|-------|----------------------------------------------|--------------------|-----------------|
| Reductions (metric tons) |       |                                              | Reductions (tons)  |                 |
|                          | ·     | ,                                            |                    |                 |
| $CO_2$                   | CH₄   | N <sub>2</sub> O                             | NO <sub>x</sub>    | SO <sub>2</sub> |
|                          |       | <u>,                                    </u> | ~                  |                 |
| 745,829                  | 12.65 | 5.72                                         | 705.9              | 277             |



## Benefits and Limitations to eGRID Average Emissions Rate Approach

#### Benefits:

- Easy 'back of the envelope' estimate
- Non-baseload output emission rates reflect the plants that would most likely get displaced throughout eGRID subregion.


#### Limitations:

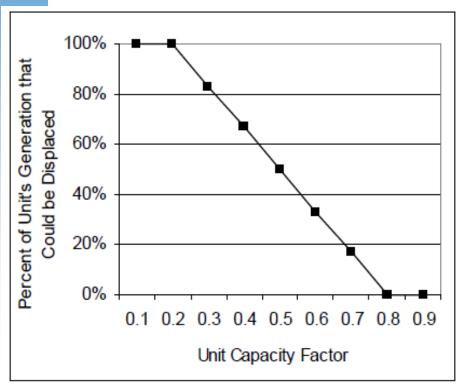
**Climate and Energy Program** 

- Not all NM plants are included in analysis.
- Future looking power plant representation is absent.
  - Some plants in 2007 may have already shutdown or will shutdown in 2020.
- This approach does not show where or which EGUs will be displaced. It uses averages.
- eGRID approach assumes NM policies will affect all on-baseload plants equally.

## Apply eGRID Quantification approaches








# Capacity Factor Approach using eGRID

- The Capacity Factor of a generating unit is the ratio of "the electrical energy produced by a generating unit for a given period of time" to "the electrical energy that could have been produced at continuous full-power operation during the same period." 1
- eGRID assigns a capacity factor for each power plant
  - ➤EGUs with ≥ 0.80 capacity factor is considered a "baseload" plant and emissions would not be displaced
  - ➤ EGUs with a <0.20 capacity factor will be the first to be displaced (marginal units or peaking units)



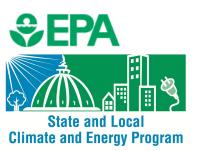
## **Capacity Factor Rule of Thumb**



| Plant Name               | Capacity Factor in eGRID |
|--------------------------|--------------------------|
| Cunningham               | 0.0002                   |
| Afton Generating Station | 0.0003                   |
| Maddox                   | 0.0650                   |
| Las Vegas                | 0.1138                   |
| Carlsbad                 | 0.2580                   |
| Luna Energy Facility     | 0.2764                   |
| Rio Grande               | 0.3041                   |
| Reeves                   | 0.4226                   |
| Lordsburg Generating     | 0.4620                   |
| San Juan                 | 0.6174                   |



\*\*Note: This is a for explanatory purposes only, a complete capacity factor analysis would include all plants within multiple power control areas to properly capture the policy impacts within the electric grid


# Benefits and Limitations of the capacity factor approach using eGRID

#### Benefits

- Emissions can be assigned to each power plant
- Relative easy calculation if infrastructure is set up

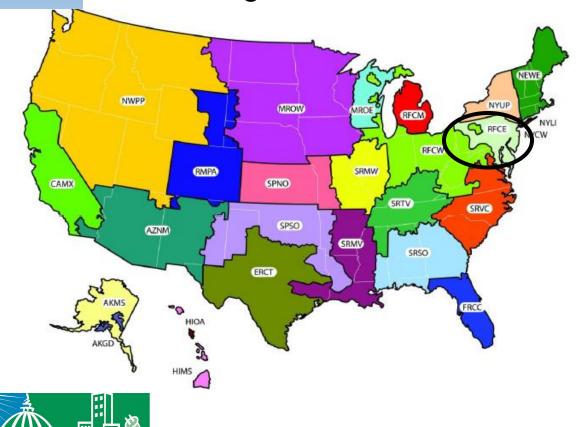
#### Limitations:

- This is a simplified approach assuming power plants have same capacity factor throughout the year
  - Doesn't account for maintenance, outages
- Exported power is not considered
- Assumes all energy savings or generation affect all peaking units first and do not affect any baseload generation
  - which is not always true with some EE programs or RE technologies (E.g., lighting programs, Wind power)



# Delaware Valley Regional Planning Commission (DVRPC)

Quantify electricity consumptions for Regional GHG emissions inventory and


Estimate predicted electricity reductions from LED Change-Out Program





## **DVPRC's Regional GHG Inventory**

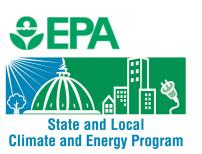
- 2005 GHG Inventory for a 9 county area in NJ and PA
- Entire region falls within eGRID's RFC East subregion



**Climate and Energy Program** 



## RFCE GHG Total Average Emission Rates


CO2: 1,139 lbs/MWh

CH4: 30.3 lbs/GWh

**N2O:** 18.7 lbs/GWh

# Calculate indirect emissions from electricity consumption

- The indirect emissions for the residential, commercial and industrial sectors are estimated using the following equations:
- CO<sub>2</sub> emissions = Electricity consumption ×
   Average RFCE eGRID subregion CO<sub>2</sub> Emission rate
- CH<sub>4</sub> emissions = Electricity consumption x
   Average RFCE eGRID subregion CH<sub>4</sub> Emission rate
- N<sub>2</sub>O emissions = Electricity consumption ×
   Average RFCE eGRID subregion N<sub>2</sub>O Emission rate



# Steps to quantify emissions for DVRPC's 2005 GHG inventory – CO<sub>2</sub> equivalents

Equations to obtain CO<sub>2</sub> equivalent emission rates

- eGRID CO<sub>2</sub> emissions rate: 1,139 lbs/MWh
- eGRID CH<sub>4</sub> emissions rate: 30.3 lbs/GWh
  - $\gt$  30.3 lbs/GWh x (1GWh/1000MWh) x 21 $\rightarrow$  0.63 lb CO<sub>2</sub>e/MWh
- eGRID N<sub>2</sub>O emissions rate: 18.7 lbs N<sub>2</sub>O/GWh
  - > 18.7 lbs  $N_2O/GWh \times (1GWh/1000MWh) \times 310 \rightarrow 5.8$  lbs  $CO_2e/MWh$

Net Emissions Rate = (1139+0.63+5.8) \* 1/(1-0.064) = 1224 lbsCO<sub>2</sub>e/MWh



#### **Important assumptions:**

Transmission and Distribution loss factor: 6.4%

Global Warming Potentials

 $1 \text{ CH}_4 = 21 \text{ CO}_2$  $1 \text{ N}_2 = 310 \text{ CO}_2$ 

## DVPRC's Regional GHG Inventory using eGRID emission rates

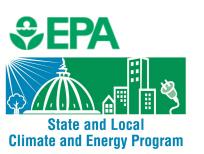
DVRPC then calculated the total regional GHG emissions from electricity consumption of 54,224 GWh as follows:

$$54{,}224~GWh~x \frac{1000~MWh}{GWh}~x \frac{1224~lbs~CO2e}{MWh}~x \frac{1~metric~ton}{2205~lbs}$$

= 30.1 million metric tons  $CO_2e$ 



Helpful Conversions:


1GWh = 1000 MWh

1 metric ton =  $\sim$ 2205 lbs

## **DVRPC's LED Change-Out Program**

- Working with counties and municipalities to change out 10,000 incandescent traffic lights for LEDs
- Projected electricity savings: 3000 MWh annually
- RFC East non-baseload CO<sub>2</sub> factor: 1671.96
   lbs/MWh
- Estimated CO<sub>2</sub> savings as follows:

$$3000 \ MWh \ x \frac{1671.96 \ lbs}{MWh} \ x \ \frac{1 \ metric \ ton}{2205 \ lbs} = 2274 \ mtCO2$$



## **Next Technical Forum Webinars**

- Three Part Series: Assessing the Multiple Benefits of Clean Energy:
  - Inter-workings of the electrical grid
  - Emissions quantification of clean energy policies and programs
    - Displaced emissions approaches
  - Estimating the economic benefits of clean energy policies and programs
    - Jobs, money saved/avoided



### **Contact Information**

Robyn (Kenney) DeYoung
 State and Local Climate and Energy Program
 202-343-9080

deyoung.robyn@epa.gov



### **Appendix A:**

## Steps to quantify emissions for DVRPC's 2005 GHG inventory – CO<sub>2</sub> equivalents

## General Approach to calculate CO<sub>2</sub> equivalents:

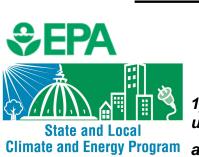
eGRID emission rates x energy conversion factor x Global Warming Potential <sup>1</sup>

## Units used in equation:

emission rate (lbs/GWh) x energy conversion (1GWh/1000MWh) x Global Warming Potential

### **Helpful Conversions**:

1GWh = 1000 MWh


### **Global Warming Potentials**

$$1 \text{ CH}_4 = 21 \text{ CO}_2$$

$$1 N_2 0 = 310 CO_2$$

1)These estimates are from the IPCC's <u>Second Assessment Report</u> (1996). These are the values used internationally for reporting greenhouse gas (GHG) emissions to the United Nations. (EPA

also uses them for the Inventory of U.S. Greenhouse Gas Emissions and Sinks.)



#### **Appendix B:**

## Steps to quantify emissions for DVRPC's 2005 GHG inventory – Quantify GHG emissions

General Approach to quantify CO<sub>2</sub>e emissions:
eGRID emission rates\* x electricity consumption x
metric tons conversion factor

### **Units used in equation:**

emission rate (lbs/MWh) x electricity consumption (MWh) x metric tons/lbs conversion

#### Helpful Conversions:

1GWh = 1000 MWh

1 metric ton =  $\sim$ 2205 lbs



<sup>\*</sup>In this example we calculated CO2e emission rates before applying electricity consumption