Educational Workshops for the Camp Minden Site (in coordination with LDEQ, LMD, and CMCAG)

Baseline Assessment Workplan April 16, 2015

Preparedness April 23, 2015

CBC Workplan and Sampling Plan August, 2015

LAAP Groundwater September, 2015

Baseline Data
November 19, 2015

- Ideas for additional workshops
 - Please make suggestions on the response cards provided or
 - email us at: R6_Camp_Minden@epa.gov

2015 Baseline Data

Educational Workshop

19 November 2015

Site: Camp Minden

Minden, Webster Parish, Louisiana

Presenters:

LMD: COL Stuckey and ESI-Dean Schellhase

LDEQ: Don Caffery

EPA: Adam Adams and Jon Rauscher

Guest: ATSDR - Michelle Watters

Agenda

- Introductions / Welcome
- LMD LMD data access, data, and Sitrep format
- LDEQ LDEQ data access
- EPA -
 - What was conducted during the EPA Baseline Assessment?
 - Where is the data posted?
 - What were the results?
 - Air Monitoring
 - Soil Sampling
 - Air Sampling
- Questions and Answers

LMD - ESI

- Data Reporting
- Data Management
- Sitrep Format

ESI - M6 Destruction Reporting

- Sampling
 - Collection of samples to go for laboratory analysis
 - > Air Emissions, Water, Residual Waste
- Monitoring
 - Continuous (Instrumentation)
 - Air Monitoring Community & Stack
 - Periodic (Data)
 - Processing Rate, lbs./day

ESI - Sampling

Stack

- Quarterly PM, VOC, SVOC,
- Baseline,6 mo., Final Dioxin & Furan
- Community Air Emissions
 - Weekly PM2.5, PM10, SVOC, VOC
 - Baseline, 6 mo., Final Dioxin & Furan

Soil

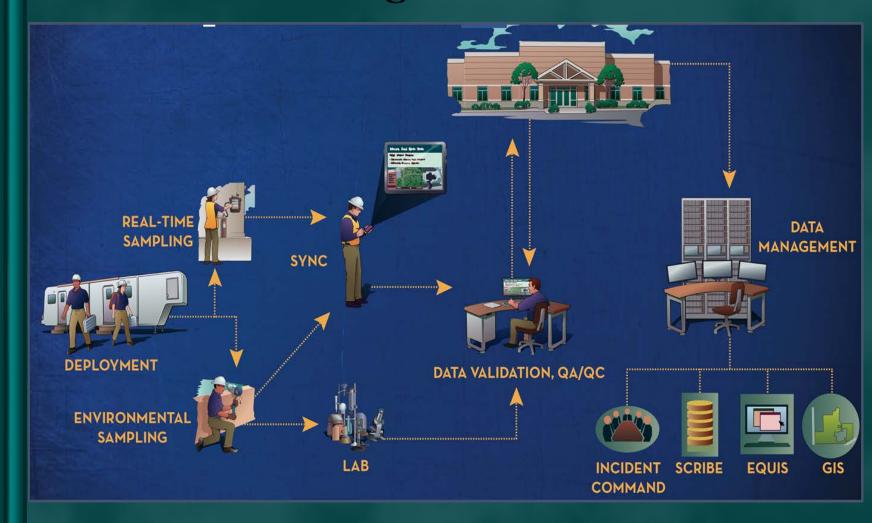
 Baseline & Final – Area I (35) and Monitoring wells (6) VOC, SVOC, Metals, DRO, GRO

ESI - Sampling continued

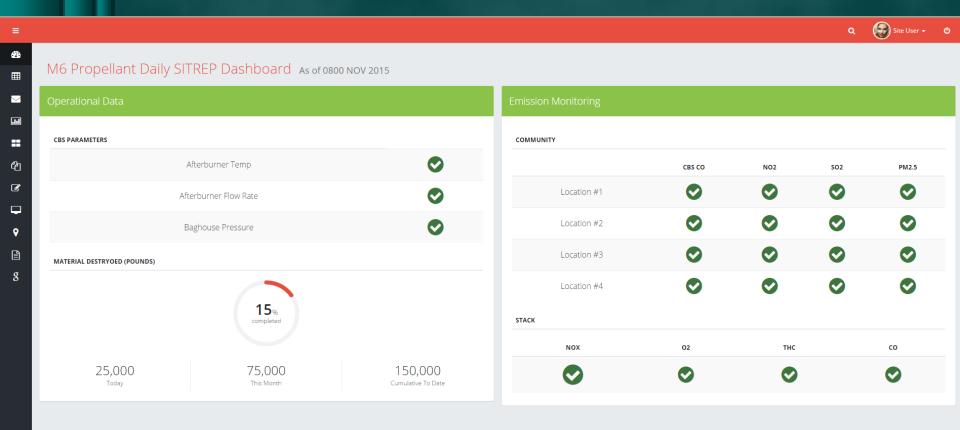
- Surface water & Sediment
 - Baseline & Final VOC & SVOC
- Groundwater
 - Quarterly 6 wells VOC & SVOC
- Off-site Waste
 - As generated RCI, VOC, SVOC, Metals, Explosives

ESI - Monitoring - Operational & Process

- Contained Burn Chamber Pressure/Temp.
- Afterburner Temp. & Combustion Air Flow
- Particulate Filter Pressure Differential
- Gas Cooler/SCR Temperature
- Processing Rate (lbs./day)
- Off-site waste shipments
- # / % Completion magazines emptied


ESI - Monitoring - Environmental

- Stack
 - CEMS O2, CO, NOx, THC, Flow Rate
- Community Air Emissions
 - CEMS CO, NO2, SO2, PM2.5


ESI - Reporting

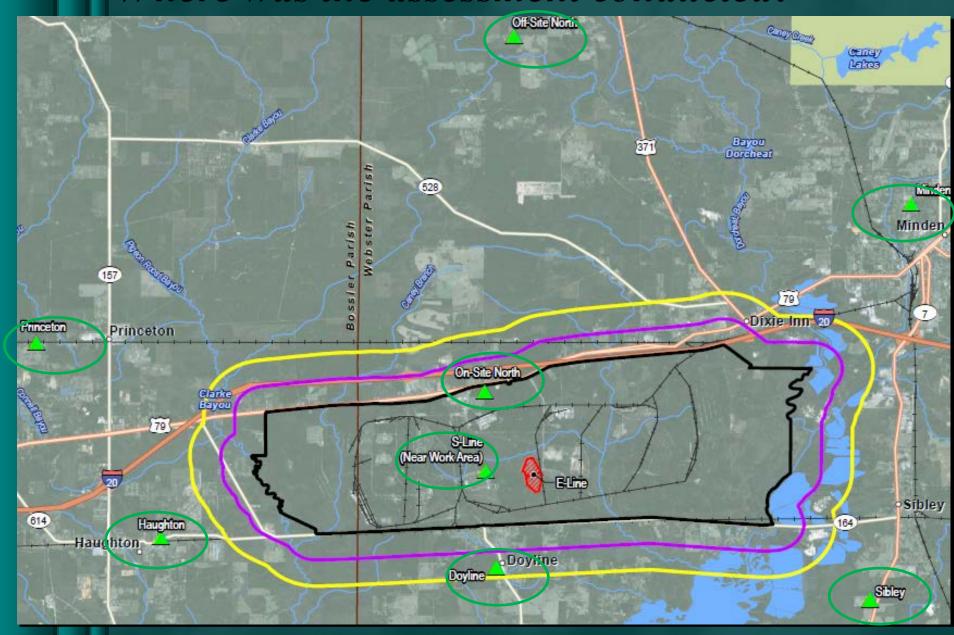
- Daily
 - CEMS Stack & Community Air Monitors, Material Destruction Report
- Weekly
 - Community Air Sampling locations for SVOC, VOC
- Quarterly
 - Groundwater, Stack Emissions (VOC & SVOC)
- Semi-annual
 - Dioxin & Furan (Stack & Community Air Monitors)
- Data Validation/Submittal to LMD for posting

ESI - Data Management

ESI – Draft Daily Sitrep

LMD - ESI

Any questions?


LDEQ

- Data Access / EDMS
 - Edms.deq.Louisiana.gov

Any questions?

EPA Environmental Baseline Assessment

Where was the assessment conducted?

EPA - Baseline Air Sampling and Monitoring Performed (and equipment):

Sampling

- Dioxin/Furans
 - PS-1 PUF Sampler
- SVOC
 - PS-1 PUF Sampler
- PM10
 - BGI PQ200
- PM2.5
 - BGI PQ200
- VOC
 - Summa Canister

Monitoring

- CO
 - Thermo 48iTLE
- **CO2**
 - Teledyne-API Model 360E
- NO2
 - Thermo 42i
- **SO2**
 - Thermo 43i
- PM2.5
 - MetOne BAM1020

EPA - Baseline Soil Sampling Performed:

- Dioxin/Furans
- pH
- SVOC
- TCLP Metals (On Camp Minden only)
- VOC

 Soil was collected from at three points and composited together prior to analysis; disposable scoops were utilized.

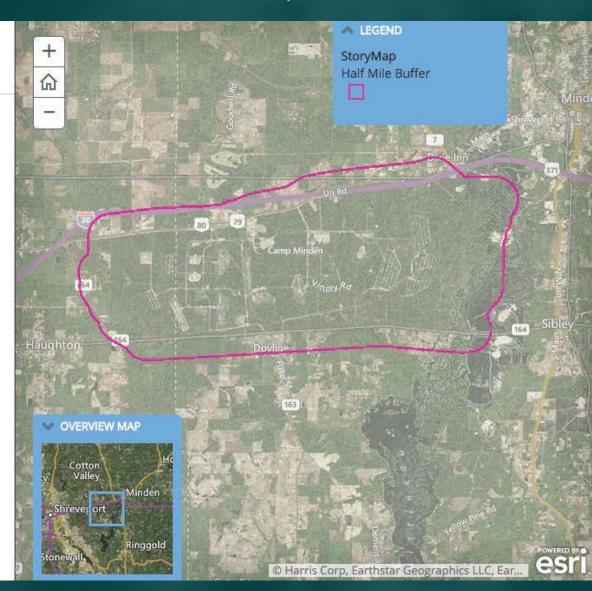
EPA Baseline Reports / Results Packages:

 The Baseline Reports for each station are posted on the EPA Camp Minden website in the documents section (Results Packages).

 A link to the EPA Baseline Assessment Storyboard (Story Map) is also added to the EPA Camp Minden Website in the additional resources section.

EPA Environmental Baseline Assessment: Storyboard (interactive website)

EPA Region 6


No issues detected

Camp Minden Overview

Camp Minden is located in the northwestern portion of the State of Louisiana in Webster and Bossier Parishes. Explo Systems, Inc. is a former explosives recycling company that leased an operations area and bunkers on the Camp Minden installation for approximately 7 years. On 15 October 2012, one of the Explo leased storage bunkers at Camp Minden exploded prompting investigations by the EPA, Louisiana Department of Environmental Quality (LDEQ), and the Louisiana State Police (LSP).

As the primary emergency response authority in Louisiana, LSP responded and discovered large quantities of explosive and propellant materials improperly stored on the Explo-leased areas. LSP immediately ordered Explo Systems, Inc. to store the

EPA Baseline Data Summary:

- Air Monitoring
 - No exceedances above NAAQS
- Soil Sampling
 - No exceedances above EPA RSLs
- Air Sampling
 - PM2.5 exceeded EPA RSL, but is below NAAQS.

EPA Environmental Baseline Assessment:

Doyline Water Tower Baseline Sampling Results Package

And

Camp Minden Baseline Sampling Results Package

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 6 1445 ROSS AVENUE, SUITE 1200 DALLAS, TEXAS 75202-2733

November 17, 2015

Camp Minden ATTN: COL. (Ret) Ronnie D. Stuckey 100 Louisiana Boulevard Minden, Louisiana 71055

RE: May 2015 Sampling of Camp Minden 100 Louisiana Boulevard, Minden, Louisiana

Dear COL (Ret.) Stuckey,

The Environmental Protection Agency (EPA) conducted real-time air monitoring and collected soil and air samples from Camp Minden in May 2015. The monitoring and sampling was conducted to establish a baseline for soil and air prior to implementation of the removal operations at Camp Minden. Air monitoring was for carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxide (NO), nitrogen dioxide (NO2), NOX, sulfur dioxide (SO2), and fine particulates (2.5 micrometers [PM2.5]). Soil samples were analyzed for dioxin/furans, semi-volatile organic compounds (SVOCs), pH, and volatile organic compounds (VOCs). The air samples were analyzed for dioxin/furans, SVOCs, particulates (PM10 and PM2.5), and volatile organic compounds (VOCs).

Maximum detections for air monitoring are summarized on Table 1 - Air Monitoring Summary, and the data collected during the monitoring period is presented as graphs. The analytical results for the soil samples are summarized on the attached Table 2 - Soil Analytical Results. The results for the air samples are summarized on Tables 3 through 5 - Air Analytical Results. The monitoring and sampling locations is shown on the attached figure.

Thank you for your cooperation. Please contact me at 214-665-2779 (office), <u>Adam Adams@epa.gov</u> (email), or the EPA toll free number 800-533-3508 if you have any questions.

Adam Adams On-Scene Coordinator Prevention and Response Branch USEPA Region 6 Dallas, TX

Enclosures: Table 1 - Air Monitoring Summary with graphs by analyte

Table 2 - Soil Analytical Results

Table 3 - Air Analytical Results - Dioxin/Furans

Table 4 - Air Analytical Results - SVOCs and Particulates

Table 5 – Air Analytical Results - VOCs Figure 1 - Sample Location Map

Toxicology Summary

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 6 1445 ROSS AVENUE, SUITE 1200 DALLAS, TEXAS 75202-2733

November 17, 2015

Village of Doyline ATTN: Gary Carter, Mayor P.O. Box 626 Doyline, Louisiana 71023

RE: May 2015 Sampling of Doyline Water Tower

Doyline, Louisiana

Dear Mr. Carter.

The Environmental Protection Agency (EPA) conducted real-time air monitoring and collected soil and air samples from near the Doyline Water Tower in May 2015. The monitoring and sampling was conducted to establish a baseline for soil and air prior to implementation of the removal operations at Camp Minden. Air monitoring was for carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxide (NO), nitrogen dioxide (NO2), NOX, sulfur dioxide (SO2), and fine particulates (2.5 micrometers [PM2.5]). Soil samples were analyzed for dioxin/furans, semi-volatile organic compounds (SVOCs), pH, and volatile organic compounds (VOCs). The air samples were analyzed for dioxin/furans, SVOCs, particulates (PM10 and PM2.5), and volatile organic compounds (VOCs).

Maximum detections for air monitoring are summarized on Table 1 - Air Monitoring Summary, and the data collected during the monitoring period is presented as graphs. The analytical results for the soil samples are summarized on the attached Table 2 - Soil Analytical Results. The results for the air samples are summarized on Tables 3 and 4 - Air Analytical Results. The monitoring and sampling location is shown on the attached figure.

Thank you for your cooperation. Please contact me at 214-665-2779 (office), Adam.Adams@epa.gov (email), or the EPA toll free number 800-533-3508 if you have any questions.

Adam Adams On-Scene Coordinator Prevention and Response Branch USEPA Region 6 Dallas, TX

Enclosures: Table 1 - Air Monitoring Summary with graphs by analyte

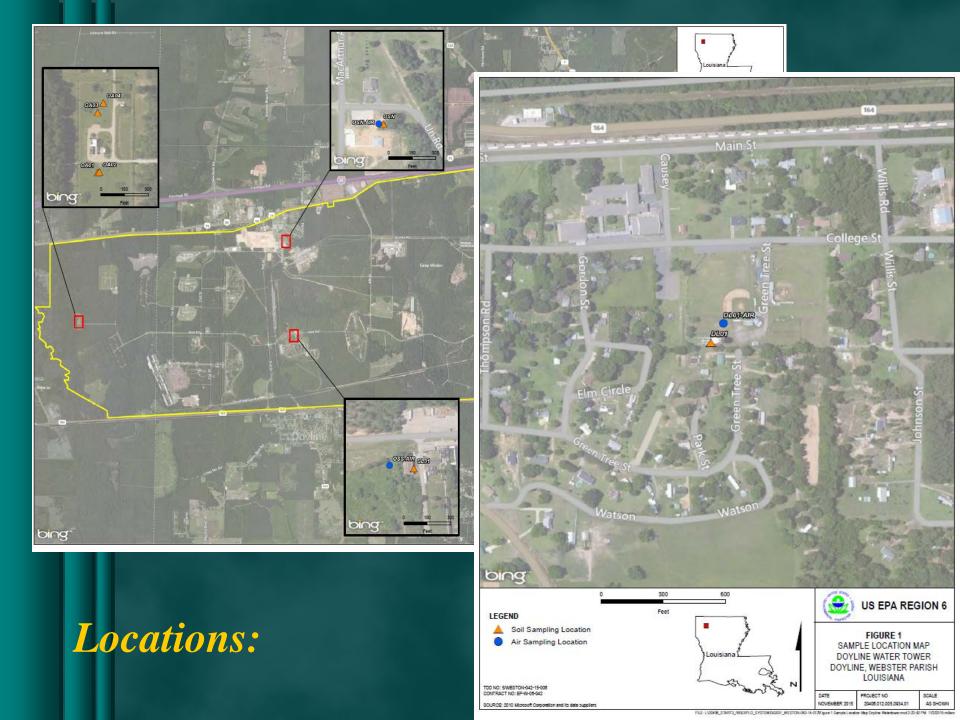

Table 2 – Soil Analytical Results

Table 3 – Air Analytical Results – Dioxin/Furans

Table 4 - Air Analytical Results - SVOCs, Particulates and VOCs

Figure 1 - Sample Location Map

Toxicology Summary

Air Monitoring Summaries:

Summary of Location: Camp Minden North

Parameter	Count of 1-min Readings	Maximum Average Concentration	Maximum Detection	Units	NAAQS Standard
CO	2925	165.2	183	ppb	40,000 (1-hour)
CO2	2958	446900	770400	ppb	
NO	2898	1.217	8.5	ppb	
NO2	2898	3.262	10.5	ppb	100 (1-hour)
NOX	2898	4.272	17.3	ppb	188 (1-hour)
SO2	2796	5.543	8.901	ppb	365 (3-hour)
Parameter	Count of 60-min Readings	Maximum Average Concentration	Maximum Detection	Units	NAAQS Standard
PM 2.5	48	17.065	68	ug/m3	35 (24-hour)

Summary of Location: Camp Minden Central/ S Line

Parameter	Count of 1-min Readings	Maximum Average Concentration	Maximum Detection	Units	NAAQS Standard
CO	2927	260	394	ppb	40,000 (1-hour)
CO2	2752	530400	562400 ppb		
NO	2816	2.493	56.5	ppb	
NO2	2816	2.303	15.6	ppb	100 (1-hour)
NOX	2816	4.06	72.1	ppb	188 (1-hour)
SO2	2885	1.226	7.690	ppb	365 (3-hour)
Parameter	Count of 60-min Readings	Maximum Average Concentration	Maximum Detection	Units	NAAQS standard
PM 2.5	48	2.333	16.8	ug/m3	35 (24-hour)

U.S. ENVIRONMENTAL PROTECTION AGENCY Region VI

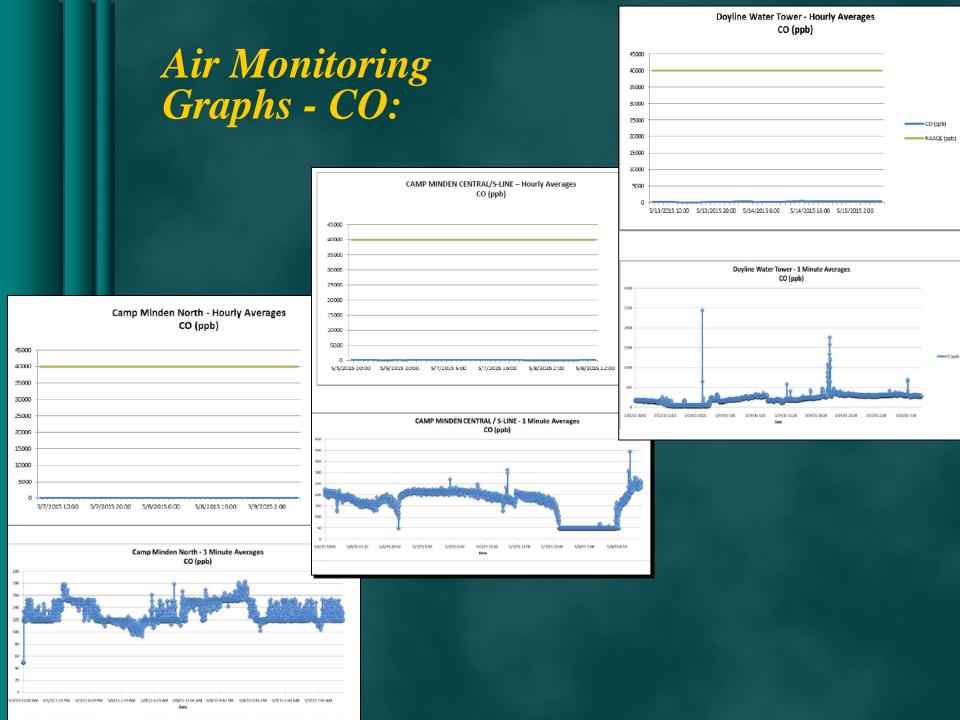
Air Monitoring Summary

Camp Minden Baseline Event

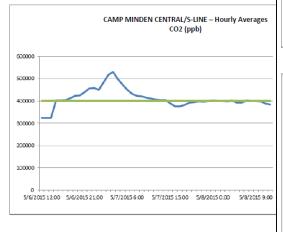
Doyline Water Tower

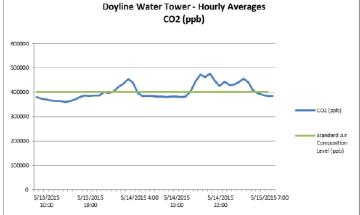
Start Time: 05-13-2015 10:01 - End Time: 05-15-2015 11:01

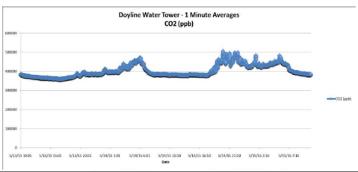
Below is a summary of Doyline Water Tower Air Monitoring Data collected at the location referenced above. The table contains a detailed listing of the following:

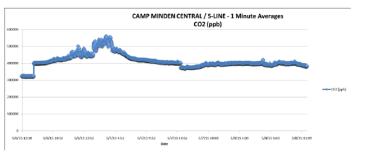

- 1 Total count of readings from May 13, 2015 10:01 through May 15, 2015 11:01
- 2 Average reading of each analyte from May 13, 2015 10:01 through May 15, 2015 11:01
- 3 Maximum reading of each analyte from May 13, 2015 10:01 through May 15, 2015 11:01

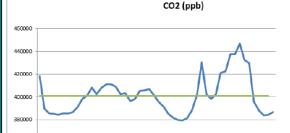
National Ambient Air Quality Standards (NAAQS) are listed with specific time frames and calculation formulas. Please visit NAAQS website for more in-depth information on how these are calculated - http://www.epa.gov/air/criteria.html.

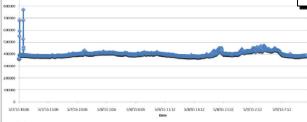

Summary of Location: Doyline Water Tower


Parameter	Count of 1-min Readings	Maximum Average Concentration	Maximum Detection	Units	NAAQS standard
CO	2855	455.8	2442	ppb	40,000 (1-hour)
CO2	2923	477700	505600	ppb	
NO	2912	3.145	24.3	ppb	
NO2	2912	5.905	10.6	ppb	100 (1-hour)
NOX	2912	9.05	29.3	ppb	188 (1-hour)
SO2	2838	4.246	6.557	ppb	365 (3-hour)
Parameter	Count of 60-min Readings	Maximum Average Concentration	Maximum Detection	Units	NAAQS standard
PM 2.5	49	15.7875	23.6	ug/m3	35 (24-hour)

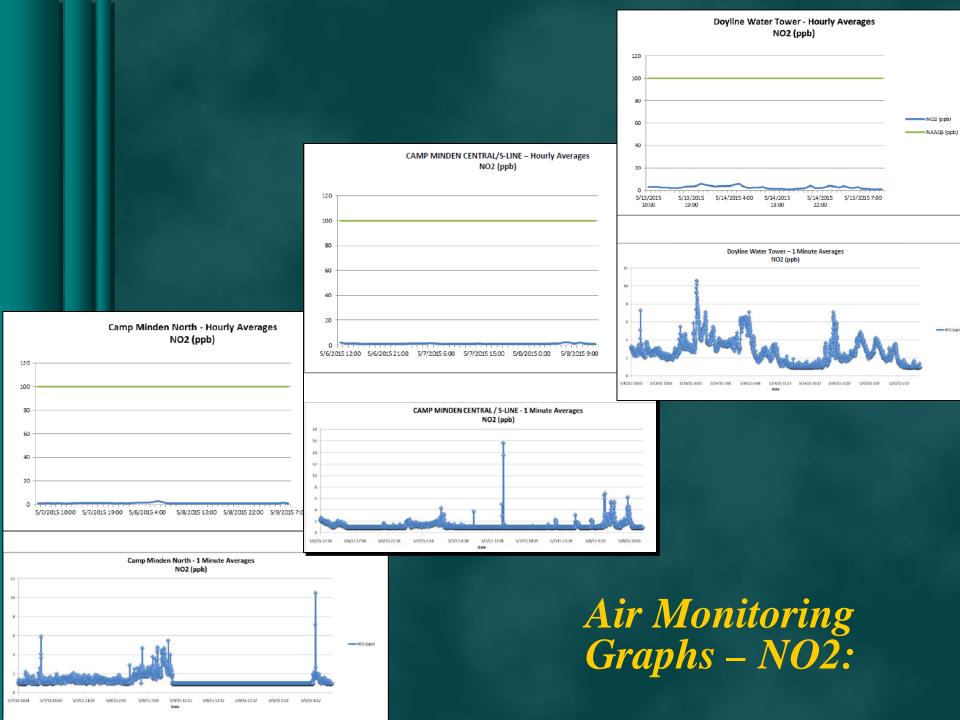

^{**} Note: PM2.5 was captured in 60-min averages. All other analytes were captured in 1-min averages.

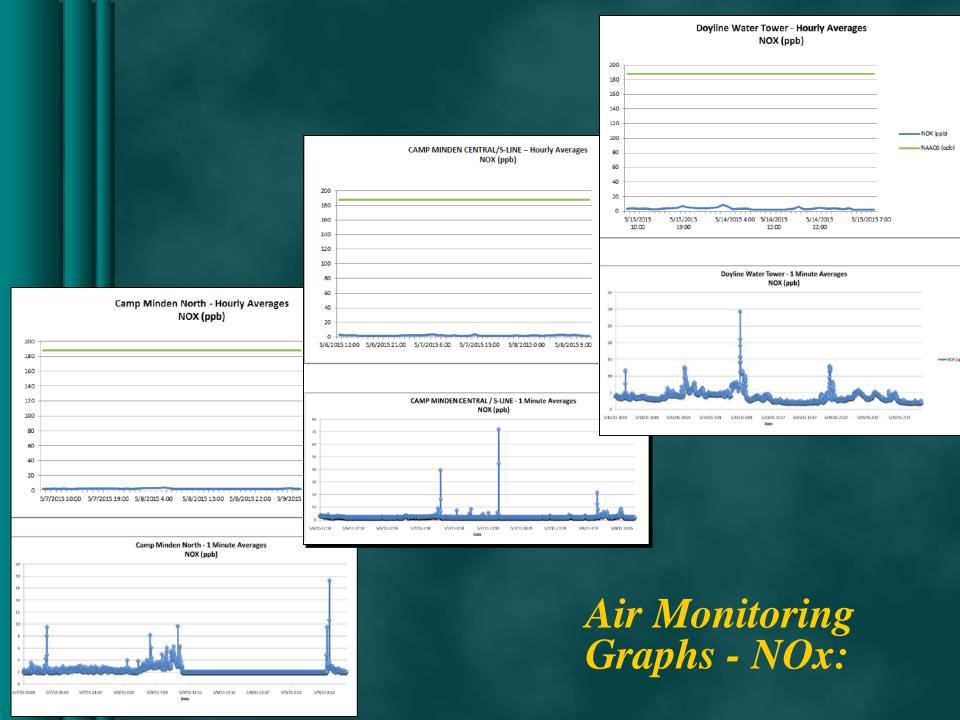


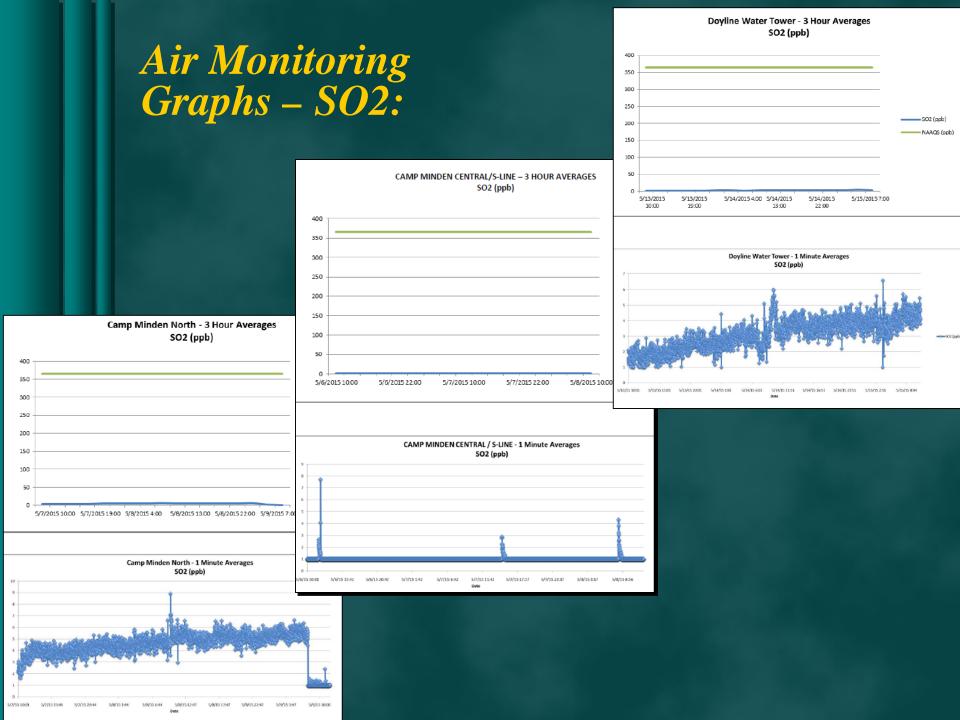

Air Monitoring Graphs – CO2:

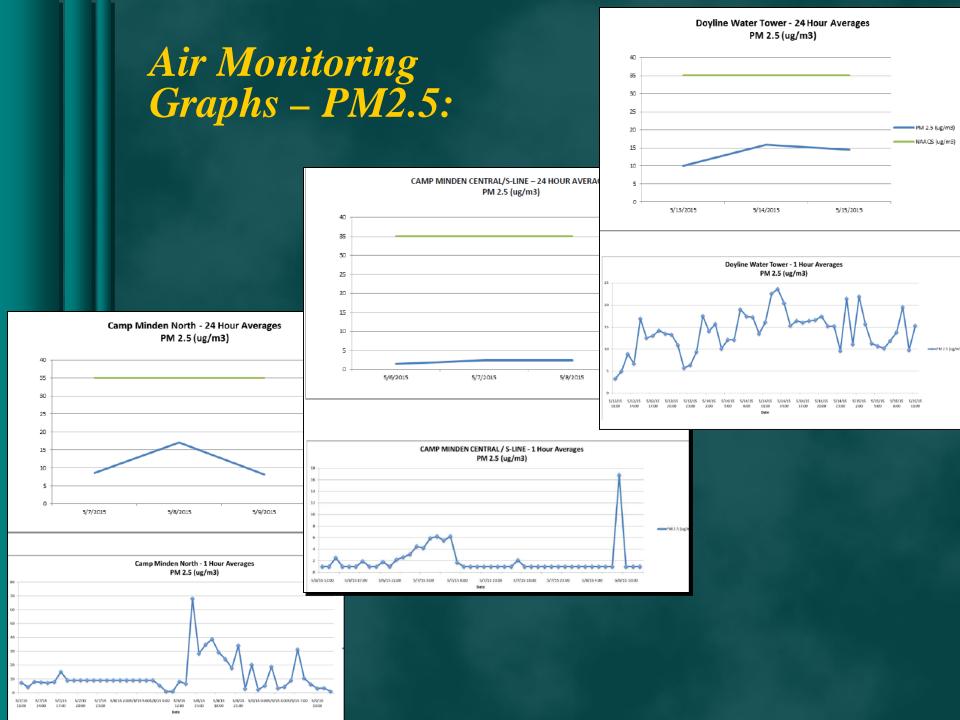







Camp Minden North - Hourly Averages





				Camp Minden North	Camp Mi Central/S	11 (1 (1 (1 (1 (1 (1 (1 (1 (1 (
			Ctation	OSN	SL01	SL01
			Station Date	5/13&14/2015	5/13&14/2015	5/13/2015
Analyte	CAS.NO	Units	Type	FS	FS	DUP
Dioxin TEQ	CASIO	Units	1346	F3	L2	DOP
TEQ WHO2005 ND=0	3333-30-0	ng/kg		0.624	42.2	106
TEQ WHO2005 ND=0.5	3333-30-1	ng/kg	3-2	2.33	42.3	109
Dioxin	3333 30 1	1167 NB	l.	2.33		103
1,2,3,4,6,7,8,9-OCDD	3268-87-9	ng/kg	5c	1540	9990 J	21000 J
1,2,3,4,6,7,8,9-OCDF	39001-02-0	ng/kg	0220	5.41 J	432	1060
1,2,3,4,6,7,8-HpCDD	35822-46-9	ng/kg		14.5	1250	3140
1,2,3,4,6,7,8-HpCDF	67562-39-4	ng/kg	3(55)	1.63 J	330	774
1,2,3,4,7,8,9-HpCDF	55673-89-7	ng/kg		4.53 U	15.2	33.9
1,2,3,4,7,8-HxCDD	39227-28-6	ng/kg		4.53 U	21.9	55.1
1,2,3,4,7,8-HxCDF	70648-26-9	ng/kg	74-27	4.53 U	18.1	46.8
1,2,3,6,7,8-HxCDD	57653-85-7	ng/kg	9 7. 6	4.53 U	51.4	146
1,2,3,6,7,8-HxCDF	57117-44-9	ng/kg	22	4.53 U	9.2	25.4
1,2,3,7,8,9-HxCDD	19408-74-3	ng/kg		4.53 U	49.6	133
1,2,3,7,8,9-HxCDF	72918-21-9	ng/kg	()	4.53 U	1.83 J	22.9 U
1,2,3,7,8-PeCDD	40321-76-4	ng/kg	10 7.7 0	4. 5 3 U	6.24	16.7 J
1,2,3,7,8-PeCDF	57117-41-6	ng/kg	3220	4. 5 3 U	4.55 U	22.9 U
2,3,4,6,7,8-HxCDF	60851-34-5	ng/kg	((4.4))	4.53 U	11.7	30.1
2,3,4,7,8-PeCDF	57117-31-4	ng/kg	(4)	4.53 U	1.52 J	22.9 U
2,3,7,8-TCDD	1746-01-6	ng/kg	0220	0.906 U	0.911 U	4.57 U
2,3,7,8-TCDF	51207-31-9	ng/kg		0.906 U	0.911 U	4.57 U
Total Heptachlorodibenzofuran	38998-75-3	ng/kg	((+=))	5.38	762	1810
Total Heptachlorodibenzo-p-dioxin	37871-00-4	ng/kg	0.5.70	31.9	2240 J	5500
Total Hexachlorodibenzofuran	55684-94-1	ng/kg	222	4. 5 3 U	302	754
Total Hexachlorodibenzo-p-dioxin	34465-46-8	ng/kg	104401	3.26 J	397	1120
Total Pentachlorodibenzofuran	30402-15-4	ng/kg	(C7)	4.53 U	37	92.3
Total Pentachlorodibenzo-p-dioxin	36088-22-9	ng/kg	7227	4.53 U	25.7	55.1
Total Tetrachlorodibenzofuran	30402-14-3	ng/kg	72-27	0.906 U	3.34	4.32 J
Total Tetrachlorodibenzo-p-dioxin	41903-57-5	ng/kg	()	0.906 U	0.448 J	1.63 J

Doyline Water Tower						
DL01						
5/14/2015						
5/14/2013 FS						
0.63						
2.29						
941						
16.7						
29.6						
4.68						
4.42 U						
4.42 U						
4.42 U						
4.42 U						
4.42 U						
4.42 U						
4.42 U						
4.42 U						
4.42 U						
4.42 U						
4.42 U						
0.883 U						
0.883 U						
15.8						
98.2						
1.97 J						
7.77						
4.42 U						
4.42 U						
0.883 U						
0.883 U						

				Camp Minden North	Camp Minden Central/S Line	
Analyte	CAS.NO	Units	Station Date Type	OSN 5/13&14/2015 FS	SL01 5/13&14/2015 FS	SL01 5/13/2015 DUP
pH				2		
рН	C-006	pH Units	5.70	7.2	5.6	5.4
SVOCs		, 20	80		*	
2,4-Dinitrotoluene	121-14-2	μg/Kg	7847	214 U	215 U	222 U
2,6-Dinitrotoluene	606-20-2	μg/Kg	0.756	214 U	215 U	222 U
2-Methylnaphthalene	91-57-6	μg/Kg	922	214 U	215 U	222 U
Acenaphthene	83-32-9	μg/Kg	74-0	214 U	215 U	222 U
Acenaphthylene	208-96-8	μg/Kg	((++))	214 U	215 U	222 U
Anthracene	120-12-7	μg/Kg	15 <u>-</u> 50	214 U	215 U	222 U
Benzo (a) anthracene	56-55-3	μg/Кg	9526	214 U	215 U	222 U
Benzo (a) pyrene	50-32-8	μg/Кg	(44)	214 U	215 U	222 U
Benzo (b) fluoranthene	205-99-2	µg/Кg	3	214 U	215 U	389
Benzo (g,h,i) perylene	191-24-2	μg/Kg	7227	214 U	215 U	222 U
Benzo (k) fluoranthene	207-08-9	μ g /К g	()	214 U	215 U	345
Chrysene	218-01-9	μg/Кg	(6.0)	214 U	215 U	278
Dibenz (a,h) anthracene	53-70-3	μg/Kg		214 U	215 U	222 U
Di-n-butyl phthalate	84-74-2	μ g /К g	9526	214 U	215 U	222 U
Fluoranthene	206-44-0	μg/Кg	1(44)	214 U	215 U	222 U
Fluorene	86-73-7	μg/Kg	(4-5)	214 U	215 U	222 U
Indeno (1,2,3-cd) pyrene	193-39-5	μg/Kg	10.20	214 U	215 U	222 U
Naphthalene	91-20-3	μg/Kg	74-0	214 U	215 U	222 U
N-Nitrosodiphenylamine/Diphenylamine	86-30-6/122-39-4	µg/Кg	((++))	214 U	215 U	222 U
Phenanthrene	85-01-8	μg/Kg	10.77	214 U	215 U	222 U
Pyrene	129-00-0	µg/Кg	9226	214 U	215 U	222 U
TCLP Metals						
Arsenic	7440-38-2	mg/L	()	1 U	1 U	1 U
Barium	7440-39-3	mg/L	1223	0.84	1.38	1.2
Cadmium	7440-43-9	mg/L	()	0.05 U	0.05 U	0.05 U
Chromium	7440-47-3	mg/L	((4.6))	0.1 U	0.1 U	0.1 U
Lead	7439-92-1	mg/L	97.76	0.3 U	0.3 U	0.3 U
Selenium	7782-49-2	mg/L	3526	1 U	1 U	1 U
Silver	7440-22-4	mg/L	(68)	0.1 U	0.1 U	0.1 U

I	Doyline Water
-	Tower
ı	DL01
١	5/14/2015
ı	FS
Į	5.3
-	
١	223 U
Į	223 U
ļ	223 U
ı	223 U
١	223 U
ı	223 U
ı	223 U
ı	223 U
Į	223 U
Į	223 U
ı	223 U
	223 U
ı	223 U
	223 U
[223 U
[223 U
	223 U
	223 U
	223 U
ı	223 U
-[223 U
ı	
Į	NA
l	NA
ı	NA
[NA
[NA
[NA
Į	NA

				Camp Minden	Camp Minden
				North	Central/ S-Line
			Station	OSN	SL01
			Date	5/13&14/2015	5/14/2015
Analyte	CAS.NO	Units	Туре	FS	FS
VOCs					
1,1,1-Trichloroethane	71-55-6	μg/Kg		4.3 U	6.3 U
1,1,2,2-Tetrachloroethane	79-34-5	μg/Kg		4.3 U	6.3 U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	μg/Kg		4.3 U	6.3 U
1,1,2-Trichloroethane	79-00-5	μg/Kg		4.3 U	6.3 U
1,1-Dichloroethane	75-34-3	μg/Kg		4.3 U	6.3 U
1,1-Dichloroethene	75-35-4	µg/Кg		4.3 U	6.3 U
1,2,4-Trichlorobenzene	120-82-1	μg/Kg		4.3 U	6.3 U
1,2-Dibromo-3-chloropropane	96-12-8	μg/Kg	1	4.3 U	6.3 U
1,2-Dibromoethane	106-93-4	μg/Kg		4.3 U	6.3 U
1,2-Dichlorobenzene	95-50-1	μg/Kg		4.3 U	6.3 U
1,2-Dichloroethane	107-06-2	μg/Kg		4.3 U	6.3 U
1,2-Dichloropropane	78-87-5	µg/Кg		4.3 U	6.3 U
1,3-Dichlorobenzene	541-73-1	μg/Kg	1	4.3 U	6.3 U
1,4-Dichlorobenzene	106-46-7	μg/Kg		4.3 U	6.3 U
2-Butanone	78-93-3	μg/Kg		4.3 U	6.3 U
2-Hexanone	591-78-6	μg/Kg		4.3 U	6.3 U
4-Methyl-2-pentanone	108-10-1	μg/Kg		4.3 U	6.3 U
Acetone	67-64-1	µg/Кg		10.8 B, J	22.9 B, J
Benzene	71-43-2	μg/Kg		4.3 U	6.3 U
Bromodichloromethane	75-27-4	μg/Kg		4.3 U	6.3 U
Bromoform	75-25-2	μg/Kg		4.3 U	6.3 U
Bromomethane	74-83-9	μg/Kg		4.3 U	6.3 U
Carbon disulfide	75-15-0	μg/Kg		4.3 U	6.3 U
Carbon tetrachloride	56-23-5	μg/Kg		4.3 U	6.3 U
Chlorobenzene	108-90-7	μg/Kg		4.3 U	6.3 U
Chloroethane	75-00-3	μg/Kg		4.3 U	6.3 U
Chloroform	67-66-3	μg/Kg		4.3 U	6.3 U
Chloromethane	74-87-3	µg/Кg	183	4.3 U	6.3 U
cis-1,2-Dichloroethene	156-59-2	μg/Kg	193	4.3 U	6.3 U
cis-1,3-Dichloropropene	10061-01-5	μg/Kg	14.9	4.3 U	6.3 U
Cyclohexane	110-82-7	μg/Kg	183	4.3 U	6.3 U
Dibromochloromethane	124-48-1	μg/Kg	163	4.3 U	6.3 U
Dichlorodifluoromethane	75-71-8	μg/Kg	163	4.3 U	6.3 U

Doyline Water							
Tower							
DL01							
5/14/2015							
FS							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
11.7 B, J							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							
4.5 U							

				Camp Minden North	Camp Minden Central/ S-Line
			Station Date	OSN	SL01 5/14/2015
Analyte	CAS.NO	Units	Туре	FS	FS
Ethylbenzene	100-41-4	μg/Kg		4.3 U	6.3 U
Isopropylbenzene	98-82-8	μg/Kg		4.3 U	6.3 U
meta-/para-Xylene	na	μg/Kg		8.6 U	12.6 U
Methyl acetate	79-20-9	μg/Kg	18-	4.3 U	6.3 U
Methyl tert-butyl ether	1634-04-4	μg/Kg		4.3 U	6.3 U
Methylcyclohexane	108-87-2	μg/Kg) = =	4.3 U	6.3 U
Methylene chloride	75-09-2	μg/Kg	1==	4.3 U	6.3 U
ortho-Xylene	95-47-6	μg/Kg		4.3 U	6.3 U
Styrene	100-42-5	μg/Kg	(mm	4.3 U	6.3 U
Tetrachloroethene	127-18-4	μg/Kg	(mm	4.3 U	6.3 U
Toluene	108-88-3	μg/Kg	1919	4.3 U	6.3 U
trans-1,2-Dichloroethene	156-60-5	μg/Kg	(mm	4.3 U	6.3 U
trans-1,3-Dichloropropene	10061-02-6	μg/Kg	tere.	4.3 U	6.3 U
Trichloroethene	79-01-6	μg/Kg	155	4.3 U	6.3 U
Trichlorofluoromethane	75-69-4	μg/Kg	12.7	4.3 U	6.3 U
Vinyl chloride	75-01-4	μg/Kg	.==	4.3 U	6.3 U
Xylenes (total)	1330-20-7	μg/Kg	.==	0	0

Doyline Water
Tower
DL01
5/14/2015
FS
4.5 U
4.5 U
9.1 U
4.5 U
0

				Camp Mi	nden North	Camp Minden Central/S Line	
Analyte	CAS.NO	Units	Station Date Type	OSN-Air 5/9/2015 FS	OSN-Air 5/9/2015 DUP	SL01-Air 5/8/2015 FS	
Dioxins/Furans - TEQ Calculat	ion 2005				2		
TEQ (Dioxin) ND = DL	1746-01-6	pg/m3	680	0.006617549207	0.0056941891403	0.0066424603714	
TEQ (Dioxin) ND = 0	1746-01-6	pg/m3	16 <u>273</u>	0.001886655917	0.0024314503303	0.0020242577414	
TEQ (Dioxin) ND = DL/2	1746-01-6	pg/m3	822	0.004252102562	0.0040628197353	0.0043333590564	
Dioxins/Furans	70						
1,2,3,4,6,7,8-HpCDD	35822-46-9	pg/m3	10707	0.035666398 J	0.011757688 J	0.030044661 J	
1,2,3,4,6,7,8-HpCDF	67562-39-4	pg/m3	1922	0.011276482 J	0.009822375 J	0.011747192 J	
1,2,3,4,7,8,9-HpCDF	55673-89-7	pg/m3	394	0.001555377 U	0.000823171 U	0.00120314 U	
1,2,3,4,7,8-HxCDD	39227-28-6	pg/m3	677	0.001903996 U	0.001816013 U	0.001583435 U	
1,2,3,4,7,8-HxCDF	70648-26-9	pg/m3	10/23	0.002413516 J	0.002081124 J	0.002327785 J	
1,2,3,6,7,8-HxCDD	57653-85-7	pg/m3	322	0.003968892 J	0.002014846 U	0.002963865 J	
1,2,3,6,7,8-HxCDF	57117-44-9	pg/m3	3 81	0.002279431 J	0.002372747 J	0.002639058 J	
1,2,3,7,8,9-HxCDD	19408-74-3	pg/m3	16767	0.001971038 U	0.001882291 U	0.002598457 J	
1,2,3,7,8,9-HxCDF	72918-21-9	pg/m3	1922	0.001128989 U	0.000811241 U	0.000955474 U	
1,2,3,7,8-PeCDD	40321-76-4	pg/m3	884	0.001903996 U	0.001471368 U	0.002084179 U	
1,2,3,7,8-PeCDF	57117-41-6	pg/m3	677	0.002346474 U	0.00269088 J	0.002611991 U	
2,3,4,6,7,8-HxCDF	60851-34-5	pg/m3	6,52	0.002105122 J	0.001842524 J	0.002327785 J	
2,3,4,7,8-PeCDF	57117-31-4	pg/m3	1922	0.0023 7 329 U	0.002982503 J	0.002652592 U	
2,3, 7 ,8-TCDD	1746-01-6	pg/m3	Sex	0.00152856 U	0.0011307 U	0.001393964 U	
2,3,7,8-TCDF	51207-31-9	pg/m3	H J EQ	0.002855994 J	0.00595175 J	0.002828529 J	
OCDD	3268-87-9	pg/m3	1922	0.171627782	0.044671262 J	0.116524564 J	
OCDF	39001-02-0	pg/m3	884	0.011477608 J	0.006521739 J	0.009446474 J	
Total HpCDD	37871-00-4	pg/m3	6707	0.072271386	0.031680806 J	0.081743132	
Total HpCDF	38998-75-3	pg/m3	627	0.022526146 J	0.014316013 J	0.018270402 J	
Total HxCDD	34465-46-8	pg/m3	1922	0.028157683 J	0.018160127 J	0.04181892 J	
Total HxCDF	55684-94-1	pg/m3	(inter-	0.042772861 J	0.036717922 J	0.044119637 J	
Total PeCDD	36088-22-9	pg/m3	1757	0.006717619 J	0.01016702 J	0.023683854 J	
Total PeCDF	30402-15-4	pg/m3	1922	0.045454545 J	0.073700954	0.084585194	
Total TCDD	41903-57-5	pg/m3	394	0.012805042 J	0.018160127	0.012884017 J	
Total TCDF	55722-27-5	pg/m3	677	0.062349155	0.132025451	0.11408851	

Doyline Water Tower DL01-Air
DEGT-WII
5/15/2015
FS
0.0591982035768
0.0591982035768
0.0591982035768
0.144013163
0.144013167
0.26608147
0.032231518 J
0.008078453 J
0.054039226 J
0.024687971 J
0.055959402 J
0.017418735 J
0.029076944 J
0.008078453 J
0.025785215 J
0.106021122
0.041558085 J
0.00227678 J
0.01549856
0.215333973
0.120285283
0.370319572
0.410094637
0.529419833
0.7598409
0.622685503
0.934028254
1.080784529
1.051981895

				Camp Minden North			Camp Minden Central/S Line		
			Station	OSN-Air	OSN-Air	OSN-Air	SL01-Air	SL01-Air	SL01-Air
			Date	5/8/2015	5/8/2015	5/9/2015	5/7/2015	5/7/2015	5/8/2015
Analyte	CAS.NO	Units	Type	FS	DUP	FS	FS	DUP	FS
PAHs									
2,4-Dinitrotoluene	121-14-2	μg/m3	I	0.0067 U	NA	0.015 U	0.015 U	0.014 U	0.015 U
2,6-Dinitrotoluene	606-20-2	μg/m3		0.0067 U	NA	0.015 U	0.015 U	0.014 U	0.015 U
2-Chloronaphthalene	91-58-7	μg/m3	-	0.0013 U	NA	0.0031 U	0.0029 U	0.0028 U	0.0029 U
2-Methylnaphthalene	91-57-6	μg/m3		0.022	NA	0.013	0.0082	0.0072	0.0041
Acenaphthene	83-32-9	μg/m3		0.022	NA	0.014	0.0048	0.0035	0.0029 U
Acenaphthylene	208-96-8	μg/m3		0.0013 U	NA	0.0031 U	0.0029 U	0.0028 U	0.0029 U
Anthracene	120-12-7	μg/m3	1	0.0013 U	NA	0.0031 U	0.0029 U	0.0028 U	0.0029 U
Benzo(a)anthracene	56-55-3	μg/m3	-	0.0013 U	NA	0.0031 U	0.0029 U	0.0028 U	0.0029 U
Benzo(a)pyrene	50-32-8	μg/m3		0.0013 U	NA	0.0031 U	0.0029 U	0.0028 U	0.0029 U
Benzo(b)fluoranthene	205-99-2	μg/m3		0.0013 U	NA	0.0031 U	0.0029 U	0.0028 U	0.0029 U
Benzo(g,h,i)perylene	191-24-2	μg/m3		0.0013 U	NA	0.0031 U	0.0029 U	0.0028 U	0.0029 U
Benzo(k)fluoranthene	207-08-9	μg/m3	-	0.0013 U	NA	0.0031 U	0.0029 U	0.0028 U	0.0029 U
Chrysene	218-01-9	μg/m3		0.0013 U	NA	0.0031 U	0.0029 U	0.0028 U	0.0029 U
Dibenz(a,h)anthracene	53-70-3	μg/m3		0.0013 U	NA	0.0031 U	0.0029 U	0.0028 U	0.0029 U
di-n-Butylphthalate	84-74-2	μg/m3		0.063	NA	0.062 U	0.059 U	0.055 U	0.059 U
Diphenylamine	122-39-4	μg/m3		0.013 U	NA	0.031 U	0.029 U	0.028 U	0.029 U
Fluoranthene	206-44-0	μg/m3		0.0013 U	NA	0.0031 U	0.0029 U	0.0028 U	0.0029 U
Fluorene	86-73-7	μg/m3		0.013	NA	0.0092	0.0042	0.003	0.0029 U
Indeno(1,2,3-c,d)pyrene	193-39-5	μg/m3		0.0013 U	NA	0.0031 U	0.0029 U	0.0028 U	0.0029 U
Naphthalene	91-20-3	μg/m3	3	0.02	NA	0.012	0.013	0.012	0.0066
Phenanthrene	85-01-8	μg/m3	-	0.017	NA	0.013	0.0089	0.0065	0.0059
Pyrene	129-00-0	μg/m3		0.0013 U	NA	0.0031 U	0.0029 U	0.0028 U	0.0029 U
PM10									
PM10	PM10	μg/m3		14.2	NA	18.4	20.3	20.8	13
PM2.5									
PM2.5	PM2.5	μg/m3	550	6.96	6.62	10.3	11.4	NA	6.8

Doyline Water Tower								
DL01-Air	DL01-Air							
5/14/2015	5/15/2015							
FS	FS							
0.014 U	0.013 U							
0.014 U	0.013 U							
0.0028 U	0.0027 U							
0.0057	0.0093							
0.004	0.0054							
0.0028 U	0.0027 U							
0.0028 U	0.0027 U							
0.0028 U	0.0027 U							
0.0028 U	0.0027 U							
0.0028 U	0.0027 U							
0.0028 U	0.0027 U							
0.0028 U	0.0027 U							
0.0028 U	0.0027 U							
0.0028 U	0.0027 U							
0.067	0.054 U							
0.028 U	0.027 U							
0.0028 U	0.0027 U							
0.0031	0.0038							
0.0028 U	0.0027 U							
0.01	0.016							
0.0069	0.0082							
0.0028 U	0.0027 U							
19.3	25.5							
10.6	14.2							

				Camp	Minden North	Camp Minden Central/S Line		
			Station	OSN-Air	OSN-Air	SL01-Air	SL01-Air	SL01-Air
				5/8/2015	5/9/2015	5/7/2015	5/7/2015	5/8/2015
Analyte	CAS.NO	Units	Type	FS	FS	FS	DUP	FS
VOCs								
1,1,1-Trichloroethane	71-55-6	μg/m3	3	5.3 U	4.5 U	4.4 U	4 U	4.8 U
1,1,2,2-Tetrachloroethane	79-34-5	μg/m3	1	6.7 U	5.7 U	5.5 U	5 U	6 U
1,1,2-Trichloroethane	79-00-5	μg/m3	ł	5.3 U	4.5 U	4.4 U	4 U	4.8 U
1,1-Dichloroethane	75-34-3	μg/m3	1	3.9 U	3.4 U	3.2 U	3 U	3.5 U
1,1-Dichloroethene	75-35-4	μg/m3	1	3.9 U	3.3 U	3.2 U	2.9 U	3.5 U
1,2,4-Trichlorobenzene	120-82-1	μg/m3	1	29 U	25 U	24 U	22 U	26 U
1,2,4-Trimethylbenzene	95-63-6	μg/m3		4.8 U	4.1 U	3.9 U	3.6 U	4.3 U
1,2-Dibromoethane (EDB)	106-93-4	μg/m3		7.5 U	6.4 U	6.1 U	5.6 U	6.7 U
1,2-Dichlorobenzene	95-50-1	μg/m3		5.9 U	5 U	4.8 U	4.4 U	5.3 U
1,2-Dichloroethane	107-06-2	μg/m3		3.9 U	3.4 U	3.2 U	3 U	3.5 U
1,2-Dichloropropane	78-87-5	μg/m3		4.5 U	3.8 U	3.7 U	3.4 U	4 U
1,3,5-Trimethylbenzene	108-67-8	μg/m3		4.8 U	4.1 U	3.9 U	3.6 U	4.3 U
1,3-Butadiene	106-99-0	μg/m3		2.2 U	1.8 U	1.8 U	1.6 U	1.9 U
1,3-Dichlorobenzene	541-73-1	μg/m3		5.9 U	5 U	4.8 U	4.4 U	5.3 U
1,4-Dichlorobenzene	106-46-7	μg/m3		5.9 U	5 U	4.8 U	4.4 U	5.3 U
1,4-Dioxane	123-91-1	μg/m3		14 U	12 U	12 U	10 U	13 U
2,2,4-Trimethylpentane	540-84-1	μg/m3		4.6 U	3.9 U	3.7 U	3.4 U	4.1 U
2-Butanone (MEK)	78-93-3	μg/m3		12 U	9.8 U	9.4 U	8.7 U	10 U
2-Hexanone	591-78-6	μg/m3		16 U	14 U	13 U	12 U	14 U
2-Propanol	67-63-0	μg/m3		9.6 U	8.2 U	7.9 U	7.2 U	8.6 U
3-Chloropropene	107-05-1	μg/m3		12 U	10 U	10 U	9.2 U	11 U
4-Ethyltoluene	622-96-8	μg/m3		4.8 U	4.1 U	3.9 U	3.6 U	4.3 U
4-Methyl-2-pentanone	108-10-1	μg/m3		4 U	3.4 U	3.3 U	3 U	3.6 U
Acetone	67-64-1	μg/m3		23 U	20 U	19 U	25	21 U
alpha-Chlorotoluene	100-44-7	μg/m3		5 U	4.3 U	4.1 U	3.8 U	4.5 U
Benzene	71-43-2	μg/m3		3.1 U	2.6 U	2.6 U	2.3 U	2.8 U
Bromodichloromethane	75-27-4	μg/m3		6.5 U	5.6 U	5.4 U	4.9 U	5.9 U
Bromoform	75-25-2	μg/m3		10 U	8.6 U	8.3 U	7.6 U	9 U
Bromomethane	74-83-9	μg/m3		38 U	32 U	31 U	28 U	34 U
Carbon Disulfide	75-15-0	μg/m3		12 U	10 U	10 U	9.2 U	11 U
Carbon Tetrachloride	56-23-5	μg/m3		6.1 U	5.2 U	5 U	4.6 U	5.5 U
Chlorobenzene	108-90-7	μg/m3		4.5 U	3.8 U	3.7 U	3.4 U	4 U

Doyline Water Tower						
DL01-Air	DL01-Air					
5/14/2015	5/15/2015					
FS	FS					
5.3 U	6.1 U					
6.6 U	7.6 U					
5.3 U	6.1 U					
3.9 U	4.5 U					
3.8 U	4.4 U					
29 U	33 U					
4.8 U	5.5 U					
7.4 U	8.6 U					
5.8 U	6.7 U					
3.9 U	4.5 U					
4.5 U	5.2 U					
4.8 U	5.5 U					
2.1 U	2.5 U					
5.8 U	6.7 U					
5.8 U	6.7 U					
14 U	16 U					
4.5 U	5.2 U					
11 U	13 U					
16 U	18 U					
9.5 U	11 U					
12 U	14 U					
4.8 U	5.5 U					
4 U	4.6 U					
23 U	26 U					
5 U	5.8 U					
3.1 U	3.6 U					
6.5 U	7.5 U					
10 U	12 U					
38 U	43 U					
12 U	14 U					
6.1 U	7 U					
4.5 U	5.1 U					

				Camp	Minden North	th Camp Minden Central/S Lin		
			Station	OSN-Air	OSN-Air	SL01-Air	SL01-Air	SL01-Air
			Date	5/8/2015	5/9/2015	5/7/2015	5/7/2015	5/8/2015
Analyte	CAS.NO	Units	Type	FS	FS	FS	DUP	FS
Chloroethane	75-00-3	μg/m3	3	10 U	8.8 U	8.4 U	7.8 U	9.2 U
Chloroform	67-66-3	μg/m3	3	4.8 U	4 U	3.9 U	3.6 U	4.3 U
Chloromethane	74-87-3	μg/m3	1	20 U	17 U	16 U	15 U	18 U
cis-1,2-Dichloroethene	156-59-2	μg/m3	1	3.9 U	3.3 U	3.2 U	2.9 U	3.5 U
cis-1,3-Dichloropropene	10061-01-5	μg/m3	1	4.4 U	3.8 U	3.6 U	3.3 U	4 U
Cumene	98-82-8	μg/m3	1	4.8 U	4.1 U	3.9 U	3.6 U	4.3 U
Cyclohexane	110-82-7	μg/m3		3.4 U	2.8 U	2.8 U	2.5 U	3 U
Dibromochloromethane	124-48-1	μg/m3		8.3 U	7.1 U	6.8 U	6.3 U	7.4 U
Ethanol	64-17-5	μg/m3		7.3 U	6.2 U	6 U	5.5 U	6.6 U
Ethyl Benzene	100-41-4	μg/m3	I	4.2 U	3.6 U	3.5 U	3.2 U	3.8 U
Freon 11	75-69-4	μg/m3	1	5.5 U	4.7 U	4.5 U	4.1 U	4.9 U
Freon 113	76-13-1	μg/m3	1	7.5 U	6.4 U	6.1 U	5.6 U	6.7 U
Freon 114	76-14-2	μg/m3		6.8 U	5.8 U	5.6 U	5.1 U	6.1 U
Freon 12	75-71-8	μg/m3	-	4.8 U	4.1 U	4 U	3.6 U	4.3 U
Heptane	142-82-5	$\mu g/m3$		4 U	3.4 U	3.3 U	3 U	3.6 U
Hexachlorobutadiene	87-68-3	μg/m3	1	42 U	35 U	34 U	31 U	37 U
Hexane	110-54-3	μg/m3	I	3.4 U	26	2.8 U	2.6 U	3.1 U
m,p-Xylene	08-38-3/106-42	μg/m3	1	4.2 U	3.6 U	3.5 U	3.2 U	3.8 U
Methyl tert-butyl ether	1634-04-4	$\mu g/m3$	Ī	3.5 U	3 U	2.9 U	2.6 U	3.2 U
Methylene Chloride	75-09-2	μg/m3	ı	34 U	29 U	28 U	26 U	30 U
o-Xylene	95-47-6	μg/m3	I	4.2 U	3.6 U	3.5 U	3.2 U	3.8 U
Propylbenzene	103-65-1	μg/m3	ŧ	4.8 U	4.1 U	3.9 U	3.6 U	4.3 U
Styrene	100-42-5	μg/m3	ī	4.2 U	3.5 U	3.4 U	3.1 U	3.7 U
Tetrachloroethene	127-18-4	μg/m3	E	6.6 U	5.6 U	5.4 U	5 U	5.9 U
Tetrahydrofuran	109-99-9	μg/m3	I	2.9 U	2.4 U	2.4 U	2.2 U	2.6 U
Toluene	108-88-3	$\mu g/m3$	3	3.7 U	3.1 U	3 U	2.8 U	3.3 U
trans-1,2-Dichloroethene	156-60-5	μg/m3		3.9 U	3.3 U	3.2 U	2.9 U	3.5 U
trans-1,3-Dichloropropene	10061-02-6	μg/m3	1	4.4 U	3.8 U	3.6 U	3.3 U	4 U
Trichloroethene	79-01-6	μg/m3	1	5.2 U	4.5 U	4.3 U	4 U	4.7 U
Vinyl Chloride	75-01-4	μg/m3	1	2.5 U	2.1 U	2 U	1.9 U	2.2 U

Doyline Water Tower						
DL01-Air	DL01-Air					
5/14/2015	5/15/2015					
FS	FS					
10 U	12 U					
4.7 U	5.4 U					
20 U	23 U					
3.8 U	4.4 U					
4.4 U	5.1 U					
4.8 U	5.5 U					
3.3 U	3.8 U					
8.3 U	9.5 U					
7.3 U	8.4 U					
4.2 U	4.8 U					
5.4 U	6.3 U					
7.4 U	8.5 U					
6.8 U	7.8 U					
4.8 U	5.5 U					
4 U	4.6 U					
41 U	48 U					
3.4 UB	3.9 UB					
4.2 U	4.8 U					
3.5 U	4 U					
34 U	39 U					
4.2 U	4.8 U					
4.8 U	5.5 U					
4.1 U	4.7 U					
6.6 U	7.6 U					
2.9 U	3.3 U					
3.6 U	4.2 U					
3.8 U	4.4 U					
4.4 U	5.1 U					
5.2 U	6 U					
2.5 U	2.8 U					

Toxicology Summary - Camp Minden

Soil Results

The EPA collected soil samples collected from three locations located on Camp Minden. The soil samples were analyzed for the presence of volatile organic chemicals (VOCs), semivolatile organic chemicals (SVOCs) and dioxin/furans. Analytical results were compared to the Regional Screening Level (RSL) and the Preliminary Remediation Goal (PRG) for residential and industrial soils. The results indicated that VOCs did not exceed the comparison levels.

The results indicated that dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) Toxicity Equivalence (TEQ)) did not exceed the noncarcinogenic screening level for residential and industrial soil, but did exceed the carcinogenic screening level for both residential and industrial soils at one location Camp Minden Central S- Line [both field sample and duplicate SL 5/13 &14/2015 FS/ SL 5/14/2015 DUP. The noncancer RSL for 2,3,7,8-TCDD is a concentration of 50 ng/kg or parts per trillion (PPT) for residential land use and 720 ng/kg for industrial land use, and the carcinogenic RSL for 2,3,7,8-TCDD RSL is 4.9 ng/kg for residential land use and 22 ng/kg for industrial land use. The noncancer RSL for dioxin in soil typically is used as the preliminary remediation goal (PRG) for Superfund site decisions.

SL 5/13&14/2015 FS Camp Minden S-Line 42.3 ng/kg (TEQ ND=0.5)
SL 5/14/2015 DUP Camp Minden S-Line 109 ng/kg (TEQ ND=0.5)

In addition, some dioxin levels may be reflective of background values in the Camp Minden area. A comprehensive evaluation identified 18 studies with data on dioxin background levels in both rural and urban areas. The data from this evaluation found that TEQ concentrations in background rural soils ranged from 0.1 to 22.9 ng/kg, while mean rural TEQ concentrations ranged from 1.1 to 7.1 ng/kg and that the concentration in urban and suburban soils were substantially higher and more variable than those in rural soils, with TEQ concentrations ranging from 0.1 to 186.2 ng/kg. The range of the mean TEQ concentrations in urban/suburban soils was also substantially higher and range from 2.2 to 56.6 ng/kg" (Urban et al. 2013).

One soil sample that exceeded the residential screening value for the benzo(b)fluoranthene but it did not exceed the industrial screening value. The RSL for benzo(b)fluoranthene is $150~\mu g/kg$ for residential land use and $2.900~\mu g/kg$ for industrial land use. Benzo(b)fluoranthene was only detected in the duplicate sample at the Camp Minden S-Line location. This area is an industrial area and did not exceed the industrial screening value. There were no other chemicals detected in soil that exceeded the RSLs.

SL 5/14/2015 DUP Camp Minden S-Line 389 µg/kg

Air Monitoring/Sampling Data

The EPA did air monitoring and sampling at eight locations located on or near Camp Minden. Analytical result were compared to the National Ambient Air Quality Standards (NAAQS) air quality standards as well as the Regional Screening Level (RSL). The air monitoring and analytical data did not exceed the comparison values.

Reference

Urban, J.D, Wikoff, D.S, Bunch, A.T, Harris, M.A., Haws, L.C. 2013. A review of background dioxin concentrations in urban/suburban and rural soils across the United States: Implications for site assessment and the establishment of soil cleanup levels. Science of the Total Environment, 466-467.

Toxicology Summary - Doyline Water Tower

Soil Results

The EPA collected one soil sample from the Doyline Water Tower. The soil sample was analyzed for the presence of volatile organic chemicals (VOCs), semivolatile organic chemicals (SVOCs) and dioxin/furans. Analytical results were compared to the Regional Screening Level (RSL) and the Preliminary Remediation Goal (PRG) for residential and industrial soils. The results indicated that VOCs, SVOCs, and dioxin/furans did not exceed the comparison levels

In addition, these dioxin levels may be reflective of background values in the Camp Minden area. A comprehensive evaluation identified 18 studies with data on dioxin background levels in both rural and urban areas. The data from this evaluation found that TEQ concentrations in background rural soils ranged from 0.1 to 22.9 ng/kg, while mean rural TEQ concentrations ranged from 1.1 to 7.1 ng/kg and that the concentration in urban and suburban soils were substantially higher and more variable than those in rural soils, with TEQ concentrations ranging from 0.1 to 186.2 ng/kg. The range of the mean TEQ concentrations in urban/suburban soils was also substantially higher and range from 2.2 to 56.6 ng/kg" (Urban et al, 2013).

Air Monitoring/Sampling Data

The EPA did air monitoring and sampling at one location located at the Doyline Water Tower. Analytical result were compared to the National Ambient Air Quality Standards (NAAQS) air quality standards as well as the Regional Screening Level (RSL).

The 24-hour average PM 2.5 level did exceed the RSL standard of 12 $\mu g/m^3$, however did not exceed the 24-hour NAAQS standard of 35 $\mu g/m^3$.

Reference

Urban, J.D, Wikoff, D.S, Bunch, A.T, Harris, M.A., Haws, L.C. 2013. A review of background dioxin concentrations in urban/suburban and rural soils across the United States: Implications for site assessment and the establishment of soil cleanup levels. Science of the Total Environment, 466-467.

EPA Baseline Data Summary:

- Air Monitoring
 - No exceedances above NAAQS
- Soil Sampling
 - No exceedances above EPA RSLs
- Air Sampling
 - PM2.5 exceeded EPA RSL, but is below NAAQS.

Questions R6_Camp_Minden@epa.gov

Any questions?

- We need your feedback on:
 - Future Workshop Topics

Email: R6_Camp_Minden@epa.gov

Info: www.epa.gov/region6 (click on Camp Minden) or www2.epa.gov/la/camp-minden

Thank you again.