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Disclaimer 

This information is distributed solely for the purpose of pre-dissemination discussion under 
applicable information quality guidelines. It has not been formally disseminated by EPA. It does not 
represent and should not be construed to represent any Agency determination or policy. Mention of 
trade names or commercial products does not constitute endorsement or recommendation for use.
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1. INTRODUCTION 

1.1. Purpose 
The primary purpose of this document and associated software is to support discussions at 

the EPA model averaging workshop to be held December 10-11, 2015.1 This support material is 
intended to assist in the evaluation of prevailing model averaging methods and options. The 
software package facilitates the analysis of continuous data, i.e., dose-response data that have 
responses measured (and reported) on a continuous scale (e.g., body weight or serum enzyme 
levels). The software and the test runs that have been completed using it are the first step in a 
process in which various model averaging techniques will be subject to peer consultation and 
comment, with an ultimate goal to identify model averaging approaches that are of greatest 
advantage in the context of dose-response analysis and health assessment. 

While model averaging may be viewed as one of several approaches designed to address 
model uncertainty, it has been the primary focus of recent EPA research because it has been 
extensively vetted in the literature for this purpose. It also offers potential advantages over existing 
approaches that rely on selection of a single model, including the ability to take into account prior 
knowledge (e.g., biological and historical information) regarding models and parameters under 
consideration. While the other approaches (e.g., semi-parametric modeling) may turn out to be 
viable options in some circumstances, this document and the scope of the research/development 
process are limited to methods that employ averaging. No attempt is made at this time to compare 
the averaging methods described here to the alternative approaches.  

The model averaging techniques described in this document have been amalgamated into a 
prototype software package that performs all of the methods in a single pass. At this stage, the 
benefit of having all methods computed simultaneously is that it allows for a comparison of the 
results, both with respect to run times and with respect to BMDL estimates. Thus, the software 
provides the means by which systematic and extensive testing can be performed by, and peer 
consultation can be obtained from, a variety of experts participating in the workshop. 

In addition to describing the methods implemented in the associated software package, this 
document presents a set of test results of the methods applied to some real and some simulated 
datasets. Of primary interest here are run times (because some of the methods employ bootstrap-
based calculations) and the benchmark dose (BMD) values estimated. These results are the start of 

                                                       
1 For information on the planned December 10-11, 2015 model averaging peer consultation webinar workshop 
visit http://www2.epa.gov/bmds/model-averaging-webinar-workshop-announcement.  

http://www2.epa.gov/bmds/model-averaging-webinar-workshop-announcement
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the process of evaluation of the proposed methods described below. Preliminary observations 
about the relative outputs of the model averaging methods are provided. Finally, additional steps 
and suggestions for enhancing the software’s utility for testing the methods and assumptions are 
presented. 

1.2. Background 
Model development to describe available dose-response data and predict the sensitivity of 

specific species to specific toxic chemicals can be quite complex, largely because of the highly 
interdisciplinary nature of the underlying processes, broad variety of the molecular targets and 
modes of action (MOA), and a large number of diverse factors involved.  

This complexity may (and often does) result in model uncertainty – situations where 
modeling outcome depends on the choice of a particular model and/or the assignment of values to 
its parameters. Different models may yield close but still different results, or small modifications in 
the data or the model may trigger a qualitative change in the modeling outcome. For example, when 
predicting low-dose response using high-dose data, the outcome may dramatically change 
depending on the choice of a particular model [1].  

To address model uncertainty, concepts of model selection and model averaging were 
introduced in the 1970’s [2]. Model selection methods, including those currently employed by EPA 
[3,4], provide means to identify the best model out of a given set of models, whereas model 
averaging methods employ weighted averaging of results from multiple models in hopes of 
improving the quality of an assessment and providing more accurate predictions [2].  

The research areas of model selection and model averaging are broad and so a complete 
description of all available approaches is beyond this document's scope. Instead, the support 
material prepared for this workshop focuses on modern approaches to model averaging that are 
best suited for dose-response analysis for health assessments, specifically on Bayesian model 
averaging introduced in the 1990’s. The latter has been proposed as an alternative to the single-
model, selected benchmark dose (BMD) [5]. The literature on model averaging is large, and the 
approaches to it discussed in this document represent a synthesis (with variations) of many of the 
considerations presented in that literature. Therefore, rather than cite all potential sources for the 
methods presented here, we have provided a bibliography of citations (Appendix A) that form the 
background for the discussions to follow. There has been active discussion of the merits of model 
averaging with respect to improving inferences, and that discussion is reflected in the bibliography.  

To broadly apply model averaging to health assessment tasks, one needs to identify a 
standardized approach. As a first step towards that goal, EPA initiated work on the research and 
development of model averaging methods in 2013. The materials developed and distributed in 
support of this workshop have undergone internal reviews by the Agency’s Statistical Workgroup 
(SWG), which have inspired important enhancements to the methods, test procedures and 
prototype software such as the addition of exponential models to the suite of models being 
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averaged, enhancements to the bootstrap approach for derivation of BMD lower bound confidence 
limits (BMDLs) and modifications that allow users to apply non-equal prior weights to models 
being averaged (e.g., based on biological plausibility). The methods described here and 
implemented in the associated software package were developed for continuous response data, but 
may be applicable, with relatively minor modifications, to dichotomous response data (see 
discussion in Section 4.3).  

The remainder of this document presents five methods (with submethods) that are 
proposed options for implementation in dose-response modeling contexts. Those methods have 
been implemented in a software package. The construction, testing, and proposed usage of the 
software package for evaluating the averaging approaches it implements are also described in the 
following sections. 
 

 
2. METHODS 

2.1. Model Averaging Methods  
The methods investigated and described in this document have all been proposed in (or are 

simple extrapolations from) approaches that have been presented in the literature. While the 
majority of model averaging techniques are based on Bayesian statistics [6], and while a full 
Bayesian analysis may be possible in some instances, simpler approximate methods for averaging 
have been presented. The methods under consideration here fall within the set of those “simpler” 
approaches. 

Those methods depend on computing model weights in order to define the weighted 
average to be applied. Kang et al. [7] defined weights based on the Akaike information criterion 
(AIC). Weights based on the Bayesian information criterion (BIC) have been examined and found to 
provide adequate results much faster (than the corresponding full Bayesian analysis), in that case 
for non-informative priors [6]. Use of the BIC has been compared to the use of other information 
criteria such as the AIC, its finite-sample corrected version (AICc), and the focused information 
criterion (FIC), or their modifications (see for example, [2], [6], and [8]]. The overall literature does 
not clearly indicate that any of these choices are categorically better than any other. 

Nevertheless, the methods incorporated into the prototype software and evaluated here use 
model weighting (or model-estimate weighting) that is based on BIC (see [9] for a rationale for that 
choice based on Bayes factors). Additional approaches using other information criteria or other 
weighting methods altogether could be proposed and/or considered as part of the peer-
consultation process. Other weighting schemes would be trivial to implement given the Model 
Averaging software version discussed here, though the implications may be different.  
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Model weights are defined as follows. 
Let 

m(i, j) = exp(-BIC(i, j)/2) 

for model i in bootstrap iteration j. BIC(i, j) is the BIC value being considered for that particular 
iteration, j, of any of the methods for model averaging described (2a, 2b, …, 5b, 5c). BIC(i,j) may 
differ from method to method (some use original-data BICs, others use iteration-specific BICs), 
even for the same model i. 

Then the weights are given by 

wt(i,j) = pw(i)*m(i,j) / ∑ pw(k) ∗ m(k, j)𝑀𝑀
𝑘𝑘=1  . Eq. 1 

where pw(i) is the prior weight given to model i, with a total of M models. 
In general, BIC is defined as 

)log(),(2),( NpjiLjiBIC i+−=

where L(i,j) is the log-likelihood maximized by maximum likelihood estimation (MLE) for the ith 
model at the jth bootstrap iteration, pi is the total number of the parameters in the ith model, and N is 
the experimental sample size.  

Taking the current outputs available from dose-response models (as implemented in BMDS) 
and then considering the various approaches suggested by the synthesis of the literature 
mentioned above (particularly the publications by Wheeler and Bailer, [10] and [11], who 
specifically looked at averaging for dose-response models applied to dichotomous endpoints), five 
model-averaging methods were selected as a starting point2 for implementation and then testing of 
their properties: 

Method 1: A simple extension of the calculations normally done with dose-response modeling, e.g., 
as implemented in BMDS. 

° Calculate lower statistical confidence limit of the benchmark dose (the BMDL) for each 
included model using MLE and profile likelihood methods; 

° Calculate individual model weights using BIC (Eq. 1); 

° Calculate the weighted averaged BMDL as a weighted sum of the individual BMDLs for 
each model. 

2 We realize that other methods could be defined, but those that have some history in risk assessment contexts 
have been the primary focus here. 
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Method 2: Moerbeek et al. [12] proposed using bootstrap methods for deriving BMDLs. Methods 2 – 
5 are all based on versions of bootstrapping for BMDL calculation.  

° Method 2 uses a semi-parametric bootstrap, sampling from normal distributions 
defined by the observed means and standard deviations in the dataset under 
consideration, to derive BMDL values. 

° Three submethods (a-c) implemented for this method differ with respect to if and how 
the BMDL estimates so derived are used. 

a) Following the work of Wheeler and Bailer [10] an averaged BMDL was computed 
from the bootstrap-based, model-specific BMDLs with weights determined from Eq. 
1 and BICs derived from the original dataset. 

b) In place of averaging the BMDLs, the weighted BMD for each bootstrap iteration is 
calculated (using Eq. 1). The 5th percentile of the weighted BMDs over all iterations 
is selected as the BMDL.  

• Weights for averaging in each iteration are determined by the weights 
(BICs) calculated in that specific iteration. 

c) In place of averaging the BMDLs, the weighted BMD for each bootstrap iteration is 
calculated (using Eq. 1). The 5th percentile of the weighted BMDs over all iterations 
is selected as the BMDL.  

• Weights for averaging in each iteration are determined by the weights 
(BICs) calculated from the original dataset. 

Method 3: The same as Method 2 except with respect to the basis for the bootstrap sampling. 

° Method 3 uses parametric bootstrapping [6]. Each simulated dataset was generated 
from distributions defined by the means and variances predicted by one of the models 
fit to the original data. The model used was selected randomly in accordance with the 
BIC-based weights (Eq. 1) when fit to the original data. Note that those weights are fixed 
and constant once the original data have been fit by all the models. The means and 
variances for the normal response distributions associated with the dose groups were 
equal to the predicted means and variances from that model.  

° The three submethods (a-c) implemented for this method differ with respect to if and 
how the BMDL estimates so derived are used. 

a)  Following the work of Wheeler and Bailer [10] an averaged BMDL was computed 
from the bootstrap-based, model-specific BMDLs with weights determined from Eq. 
1 with BICs derived from original dataset. 

b)  In place of averaging the BMDLs, the weighted BMD for each bootstrap iteration is 
calculated (using Eq. 1). The 5th percentile of the weighted BMDs over all iterations 
is selected as the BMDL.  
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•  Weights for averaging in each iteration are determined by the weights 
(BICs) calculated in that specific iteration. 

c)  In place of averaging the BMDLs, the weighted BMD for each bootstrap iteration is 
calculated (using Eq. 1). The 5th percentile of the weighted BMDs over all iterations 
is selected as the BMDL.  

• Weights for averaging in each iteration are determined by the weights 
(BICs) calculated from the original dataset. 

Method 4: Based on the “model averaging” concept [11], in which model predictions are averaged 
(for all doses) and those “average model” predictions are used to derive BMDs and BMDLs.  

° Generate Bootstrap using the semi-parametric procedure (from normal distributions 
defined by the observed means and variances). 

° Identify the dose such that the averaged response (using Eq. 1) at that dose is equal to 
the response that corresponds to the definition of the BMR, relative to the averaged 
response for dose equal to zero.3 Do this for each bootstrap iteration. The 5th percentile 
of the identified doses, over the bootstrap iterations, is set to the BMDL. 

° The two submethods b and c4 implemented for this method differ with respect to the 
weighting used to average the responses in each iteration: 

b)  Weights for averaging in each iteration are determined by the weights (BICs) 
calculated in that specific iteration. 

c) Weights for averaging in each iteration are determined by the weights (BICs) 
calculated from the original dataset. 

Method 5: The same as Method 4 except for the basis for the bootstrap sampling. 

° Generate bootstrap samples using the parametric procedure (using normal 
distributions defined by model-predicted means and variances; model chosen 
randomly, with model selection probability dictated by the original BIC-based model 
weights). 

° Identify the dose such that the averaged response (using Eq. 1) at that dose is equal to 
the response that corresponds to the definition of the BMR, relative to the averaged 
response for dose equal to zero. Do this for each bootstrap iteration. The 5th percentile 
of the identified doses, over the bootstrap iterations, is set to the BMDL. 

° The two submethods b and c implemented for this method differ with respect to the 
weighting used to average the responses in each iteration: 

                                                       
3 For example, with the BMR being 10% change in response, the BMD is that dose at which the averaged 
response is 1.1 (or 0.9 for decreasing responses) times the averaged background response. 
4 There is no submethod a for Methods 4 and 5. 
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b)  Weights for averaging in each iteration are determined by the weights (BICs) 
calculated in that specific iteration. 

c) Weights for averaging in each iteration are determined by the weights (BICs) 
calculated from the original dataset. 

Table 1 summarizes the approaches and differences among the five methods and their 
submethods. Diagrams 1a and 1b show the methods as flow charts delineating the steps in the 
processes. The methods will be referred to as Method 1, Methods 2a - 2c, Methods 3a – 3c, Methods 
4b – 4c, and Methods 5b – 5c, as defined here and in Table 1.  

Method 1 and the “a” submethods average BMDLs (or their bootstrap equivalents). The “b” 
and “c” submethods compute or average BMDs and then determine a percentile over all bootstrap 
iterations to be the BMDL estimate. These are two very different approaches. Both have been 
investigated in the literature on dichotomous dose-response models ([10, 11]). 

No bias corrections or accelerating options (see [13]) for using bootstrap results have been 
employed here. 

2.2. Implementation of Model Averaging Methods 

2.2.1. Available Models and Specification of Model Modifications 

The current version of the Model Averaging software implements the following six models: 

• Linear 

• Poly3 (Polynomial with degree 3) 

• Power 

• Hill 

• Exponential 3 (Exp3) 

• Exponential 5 (Exp5) 

Equations for these models are given in the BMDS Help file (available at 
http://www2.epa.gov/bmds/benchmark-dose-software-bmds-user-manual). The Discussion 
Section offers suggestions for inclusion of additional models, but this set was chosen because they 
were considered to span the range of possible curve shapes available in BMDS. 

  
For the purposes of the Model Averaging software, slight modifications were made to the 

currently available models in BMDS5: 

                                                       
5 EPA plans to make future versions of BMDS consistent with these modifications, where appropriate. 

http://www2.epa.gov/bmds/benchmark-dose-software-bmds-user-manual


Background and Support Material for EPA Model Averaging Workshop 

  8  

• The Linear model is a limiting case of the Poly3 model. Hence, its likelihood should always 
be less than or equal to that from the Poly3 model. In any case where the likelihood for the 
Poly3 model was less than that for the Linear model (indicating a problem of fitting by the 
Poly3 model), Poly3 model results (log-likelihood, parameter estimates, model predictions) 
were set equal to the corresponding values from the Linear model.  

• The Power model is a limiting case of the Hill model. Hence, its likelihood should always be 
less than or equal to that from the Hill model. In any case where the likelihood for the Hill 
model was less than that for the Power model (indicating a problem of fitting by the Hill 
model), Hill model results (log-likelihood, parameter estimates, model predictions) were set 
equal to the corresponding values from the Power model. 

• The Exp3 model is a limiting case of the Exp5 model. Hence, its likelihood should always be 
less than or equal to that from the Exp5 model. In any case where the likelihood for the 
Exp5 model was less than that for the Exp3 model (indicating a problem of fitting by the 
Exp5 model), Exp5 model results (log-likelihood, parameter estimates, model predictions) 
were set equal to the corresponding values from the Exp3 model. 

• For all models, if the BMD estimate was greater than 1000 times the maximum dose in the 
dataset under consideration, the BMD reported by the Model Averaging software is 9999 
times that maximum dose. This provides an easily identifiable flag for when a model is 
extremely flat (including perfectly flat, with associated infinite BMD). That identifiability 
extends to the averaging: averaged values that include a BMD of 9999 times the maximum 
dose are still apparent after the averaging has been done. Moreover, the averaged values 
will be on the high end of the distribution of averaged BMDs, so percentiles of interest for 
defining the BMDL (e.g., the 5th percentile for a 95% confidence interval) are insensitive to 
the exact value chosen to substitute for extremely large (perhaps infinite) BMD estimates. 

• A BMD having the value of -9999 for a model run indicates failure to converge. The flag of -
9999 is treated in the Model Averaging software as a number for the purposes of averaging 
the BMDs. Any negative values of averaged BMDs are ignored when percentiles across the 
bootstrap iterations are computed. 

Other constraints currently imposed on the Model Averaging runs include the following (in 
some cases, options that could be added in a future version are listed): 

• In the Model Averaging software distributed with this document, the user must specify the 
adverse direction rather than allowing the program to select it automatically. This is to 
ensure that, for the BMD computations performed for all bootstrap generated datasets, the 
BMD is consistently associated with the same magnitude of response in the same direction 
the user considers to be the adverse direction. Restrictions on model parameters (for the 
Linear, Poly3, Exp3, and Exp5 models in the current version) are linked to the specified 
adverse direction and cannot be changed. For example, if the adverse direction is up, then 
the dose coefficients of the Linear and Poly3 models, when restricted, are restricted to be 
non-negative. 

• The BMR type must be relative deviation. Future versions could include other BMR options 
such as the absolute deviation, standard deviation, and point estimate. These are options 
offered in BMDS. 
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• The response data are assumed to be normally distributed. Future versions could also allow 
the assumption of a lognormal distribution for the underlying continuous responses. 

• No parameter values for any of the models can be specified to be equal to a user-selected 
value. Future versions could allow users to inform model parameter estimations with prior 
information (e.g., regarding parameter ranges/boundaries). 

• For this version of the Model Averaging software, EPA used datasets with at least four dose 
groups. This is because important models that EPA wanted to test, such as the Poly3, Hill, 
and Exp5 models, have four parameters and will not run for datasets with fewer than four 
dose groups. In this version of the model averaging software, smaller datasets will result in 
null results because the models will quit when they determine that the number of 
parameters is greater than the number of observations. As discussed in Section 4.2, a later 
version could make adjustments for the number of dose groups in a dataset such as 
applying parameter constraints when the number of parameters exceeds the number of 
dose groups, or running a subset of the models on the dataset in question. 

2.3. Running the Model Averaging Software 
Model averaging software designed for purposes of the December 10-11, 2015 peer 

consultation workshop was distributed on November 10, 2015 as two zip files.6 Software for 
performing model runs on a single dataset using a Windows graphical user interface (GUI) (Run 
Options 1) are contained in the file “ModelAvgGUI_20151106.zip.”  Software for performing model 
runs on a multiple datasets in a batch fashion (Run Options 2) are contained in the file 
“ModelAvgBatch_20151106.zip.” The datasets used to perform the batch test runs described in this 
document are contained in a third zip file called “MA_data.zip.”  

 
Run Option 1: For single datasets, one can run a graphical user interface (GUI) which 

displays the various elements affecting the software’s behavior. Instructions for using the GUI are 
contained the file “BMDS Model Averaging Quick Start.docx” distributed within the 
“ModelAvgGUI_20151106.zip” file. The following is a screenshot showing the default options of the 
model averaging GUI. 

 

                                                       
6 Visit http://www2.epa.gov/bmds/model-averaging-webinar-workshop-announcement to download the 
software prior to the workshop. Contact Jeff Gift, Ph.D., NCEA, at gift.jeff@epa.gov or by phone at 919-541-4828 
with questions concerning the use of the software. 

http://www2.epa.gov/bmds/model-averaging-webinar-workshop-announcement
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The GUI automatically creates and runs the avg text file that is required for input into the 
model averaging program. The format for an avg file is presented in Appendix B. These avg text files 
can also be created using any word processing program and run from the DOS command line by 
navigating within the DOS program of your computer to the folder that contains the model 
averaging executable (CModelAvg.exe) and the avg file of interest and entering the following 
command at the DOS prompt. 

Prompt >> CModelAvg.exe *.avg 

The asterisk in the above represents the base name of the selected avg file. The output file 
(having an extension of .log) will have that base name.  
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Run Option 2: The “matest2.sh” shell script distributed within the 
“ModelAvgBatch_20151106.zip” file, can be used, along with a csv dataset file, to create and run avg 
files automatically for multiple datasets. The “matest2.sh” program must be called from a MinGW 
command window. MinGW, which stands for “Minimalist GNU for Windows,” provides an Open 
Source tool set that resembles Linux for building and running applications on Microsoft Windows. 

To install MinGW you must first download the MinGW installer.7 You will be asked to 
designate an installation directory with the default being “c:\MinGW.” If you choose to change the 
install location, be sure to install into a directory for which you have administrative rights and no 
spaces in the directory path name. Select “…on the desktop” under the program shortcuts options. 
Once installed, double-click on the “MinGW installer” short-cut on your desktop and you should see 
the following screen. 

In this window, select “Basic Setup” and choose “mingw-developer-toolkit,” “mingw32-
base” and “msys-base.”  Then click on “Installation,” then “Apply Changes.” Navigate within 
Windows Explorer to the installation location you designated, locate the “msys.bat” file within the 
“msys\1.0” folder and create a shortcut to it from your desktop. Double-click on the “msys.bat” 
short-cut. Using the “cd” command (type “help cd” for a definition of this command) to navigate in 

7 See the BMDS Source Code Download page (http://www2.epa.gov/bmds/download-benchmark-dose-
software-bmds-source-code) for additional details and download links. 

http://www2.epa.gov/bmds/download-benchmark-dose-software-bmds-source-code
http://www2.epa.gov/bmds/download-benchmark-dose-software-bmds-source-code
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the MinGW32 window to the ModelAvgBatch folder that you extracted from the 
“ModelAvgBatch_20151106.zip” file and then type the following: 

 
Matest2.sh <test set name> <adverse dir> <variance flag> <# iterations> 
 

 where: 
• <test set name> = csv file name (without the ‘csv’ extension). This MUST match the test 

name in the top-left cell of the csv file (cell A1 when viewing the CSV file in Excel). 
• <adverse dir> = -1 or 1 for down or up direction of adversity, respectively 
• <variance flag> = 1 for constant variance, 0 for non-constant (modeled) variance 
• <# iterations> = optional argument indicating number of bootstrap iterations to run for 

each dataset (defaults to 1,000; 100 is recommended for preliminary runs). 

The matest2.sh file and the csv file to be run must be in the same folder (directory). Running 
matest2.sh in that folder will create a subfolder with the name of the csv file; that subfolder will 
contain the *.err, *.log, and *.stdout files (one of each type for each row in the csv file representing a 
dataset). A csv summary file (having the name of the data-containing csv file with “_Summary” 
appended to that base name) is also created. For example, running matest2.sh with the data-
containing csv file named “real_data_up.csv” will create a subfolder named “real_data_up” (with .err, 
.log, and .stdout files) and the csv file “real_data_up_Summary.csv.” The latter file will not be in the 
subfolder, but rather the ‘parent’ folder with the data-containing csv file (and matest2.sh).  

An example of a csv file having the correct input format is shown in Appendix C. The csv 
files used for the batch test runs created for this document, including the “real_data_up.csv” file 
pictured in Appendix C are contained in the “MA_data.zip” file. 

Run option 2 allows the user to run more than one dataset at a time. However, the following 
constraints are in place at this time:8 

• The adverse direction for all the datasets in the csv file must be the same. 

• The choice of variance model (constant or non-constant) must be the same for each model 
applied to each dataset. 

                                                       
8 It has been observed that on some occasions matest2.sh will hang up on a dataset. Although this has 
apparently been fixed (has not reoccurred in testing after it was initially noted) the following can be used as 
work-arounds. In cases matest2.sh does not terminate because it hangs and fails to progress to the next dataset 
the user may:  

• terminate matest2.sh and restart the run;  
• terminate matest2.sh and then create a new csv file that has data lines only for the dataset on which 

matest2.sh hung and subsequent datasets;  
• kill CmodeAvg.exe from the Windows Task Manager.  

The latter option will abort the run on the dataset causing the problem and move processing on to the next 
dataset, albeit without getting results for the dataset that hung up. 
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• The confidence level, BMR type, and BMR factor must be the same for all models and 
datasets. 

When matest2.sh is run, the .avg files necessary for CModelAvg.exe to run are created 
automatically from the csv file containing the data (one .avg file per line of data). Those .avg files 
will be in the newly created subfolder. 

Matest2.sh and its associated awk files; a sample csv file; the CModelAvg executable and its 
associated subfolder (“SysData”) and dll files; and a sample avg file are included in the zip file 
“ModelAvgBatch_20151106.zip.” 
 

 

2.4. Test Runs: Methods 
Testing of the Model Averaging software was completed using two types of datasets: 

datasets of real data from toxicology experiments, and simulated datasets generated from known 
underlying dose-response relationships. These two types are henceforward referred to as the Real 
datasets and the Simulated datasets.  

For all the runs included in this document, the following settings were always in place 
(unless specified elsewhere when results are presented): 

• 95% confidence limit is used to define the BMDL 

• BMR type is relative deviation  

• BMRF is 0.10 

• Response distribution is normal 

• Seeding for random number generation is automatic 

• All models were run “restricted:” power parameters were constrained to be greater than or 
equal to 1 (Power, Hill, Exp3, and Exp5 models) and dose coefficients were constrained to 
have the same sign, consistent with the chosen adverse direction (Linear and Poly3 
models). The power parameters were also always constrained to be less than 18 (the same 
constraint imposed by BMDS). 

• All 6 models were included in the averaging. The runs assumed equal model prior weights 
(1/6). 

2.4.1. Real Datasets 

The Real datasets come from a repository of data that have been retained and used for 
testing of BMDS models during model development. There are a total of 100 such datasets having 
continuous responses. The identities of the tested compounds and of the endpoints from which the 
data were obtained have been blinded. 
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As discussed previously, the test was restricted to datasets having four or more dose 
groups. With that restriction a total of 76 Real datasets were available for testing. Twenty-three of 
them had an adverse direction of “up;” 53 had an adverse direction of “down.” 

Electronic Attachment “MA_data.zip” contains the two csv files that list all the Real data, one 
for each adverse direction: real_data_up.csv, and real_data_down.csv. 

2.4.2. Simulated Datasets  

The disadvantage of a Real dataset is that the underlying, “true” BMD for the dose-response 
relationship generating the observations is unknown. The Simulated data provide a better means of 
judging the adequacy of the MA methods by comparing the estimated BMDLs to the known BMD. 

The Simulated datasets were generated from one of 64 Templates. The Templates define 
the experimental design of the hypothetical toxicology study, the assumed response distribution, 
and the actual dose-response relationship (with known BMD) used to generate the data. 

The 64 templates were defined by all combinations of the following features: 

• Experimental design: 2 possible designs referred to as chronic or subchronic. Each chronic-
design template had 4 log-spaced dose groups (0, 0.25, 0.5, and 1) and 50 animals per 
group. Each subchronic-design template had 5 log-spaced dose groups (0, 0.125, 0.25, 0.5, 
and 1) and 10 animals per group.  

• Response distribution: 2 distributions, normal or lognormal. For the normal distribution, 
the standard deviation was constant at 14. For the lognormal distribution, the log-scale 
standard deviation was constant at 0.14.9 

• Dose-response relationships: 16 dose-response relationships (4 for each of 4 model types) 
as defined in Table 2 and displayed in Figures 1 – 16. Two model types (Power and Hill) are 
models that are included in the set of dose-response models being averaged. The other two 
(Poly and Exponential 4) are not included among the fitted models, though the fitted model 
Exp5 contains Exp4 as a special case (power parameter = 1).10 

The 64 csv files that contain the 1000 simulated datasets per Template are in the electronic 
Attachment “MA_data.zip.” 

 

                                                       
9 No units are attached to the standard deviations, just as there are no real units attached to the simulated data. 
10 The Poly templates are from a non-fitted model for two reasons: the Poly models used to generate the 
simulated data have degree 4 (only a 3rd degree polynomial is included in the set of fitted, averaged, models); 
and those 4th degree generating polynomials have some negative coefficients (the fitted polynomial model 
restricted parameters to be non-negative). 
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3. RESULTS 

3.1. Timing 
Timing of the various methods under consideration was evaluated with respect to the real 

datasets. For that purpose, EPA ran each dataset through the methods a total of five times; i.e., there 
are five replicates of the analysis per dataset. Each replicate invoked 10,000 bootstrap iterations. 

The times associated with Method 1 are independent of bootstrap method or number of 
iterations. They do include time for calculating the profile likelihood BMDLs for each model, which 
is not included in the times computed for Methods 2 through 5. Methods 2 through 5 substitute the 
time for bootstrapping in lieu of the time for profile likelihood methods. Methods 2a and 3a, are 
most similar to Method 1 in that they all get a BMDL for each model separately and then average 
them to get the final result. Methods 2b-c, 3b-c, 4b-c, and 5b-c all involve weighted averaging for 
each iteration. 

The Method 1 run times are summarized for the real data, fit with constant-variance and 
non-constant-variance models, in Tables 3a and 3b. When fit assuming constant variance, a large 
majority of the runs took well less than a second to run; the 95th percentile of all 76 real datasets 
was 0.14 seconds on average. Run times were notably longer when the models allowed for a non-
constant variance; the 95th percentile for average run time was about 5 seconds. 

Despite the fact that no bootstrap iterations affect Method 1 run times, there was some 
variability in observed run time for that method across runs. With constant variance, the CVs 
(within dataset, across the five replicate runs) ranged up to 0.17, with 95% being less than 0.112. 
The CVs for run times with a non-constant variance had a maximum of 0.14.  

Given the relatively consistent Method 1 runs times within dataset, and an even smaller 
magnitude for variation in Methods 2 through 5 (maximum CV was less than 0.09 for all non-
constant variance and constant variance runs), the following comparisons of run times across 
Methods are based on the average times (of 5 runs) for each Method (e.g., as summarized in the 
‘Mean’ column of Tables 3a and 3b). Tables 4a and 4b summarize Method 2 through 5 run times 
relative to the corresponding Method 1 run time for each dataset; (Method ‘x’ run time for dataset 
y) / (Method 1 run time for dataset y).  

The run times across the submethods (a-c) within Methods 2 through 5 were essentially 
identical within each dataset. In fact, the run times of corresponding submethods for Method 2 and 
Method 4 were essentially identical, as were the corresponding times for Method 3 and Method 5. 
Using Methods 2 and 3 to gauge the difference in times contributed by the bootstrapping method 
(semi-parametric for Methods 2 and 4; parametric for Methods 3 and 5) it appears that there is no 
consistent difference in run times (Table 5). Regardless of the variance model used in the fitting, 
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Methods 2 and 3 run times differed no more than by a factor of 2.22. Interestingly, for the constant 
variance modeling 45% of the datasets were fit faster with Method 3 than with Method 2 (59% for 
the non-constant variance modeling), despite the fact that Method 3 involves an extra step of 
selecting a model to generate the bootstrap samples (at each iteration). Presumably, the shorter 
run times for Method 3 in those cases are due to the faster fitting (maximum likelihood estimation) 
achieved because at least one of the models being fit was the one used to generate the simulated 
data). 

3.2. BMDL Estimates 

3.2.1. Real Data 

Similar to the timing estimates presented above, the real datasets can inform us about the 
relative values obtained among the methods. Moreover, the adequacy of using 10,000 bootstrap 
iterations can be evaluated through examination of the CVs associated with the BMDL estimates, by 
dataset, across the 5 replicates of analyses that were done. ‘Adequacy’ in this case refers to the 
precision of the estimates; if 1000 bootstrap iterations are adequate, then there should be little 
variation (small CVs) across those replicates. 

Precision, in terms of CVs, is summarized in Tables 6a and 6b.11 The median CVs are similar 
across methods (ranging between <0.1% and 0.8% regardless of the variance modeling approach). 
However, there is a tendency for the ‘b’ submethods (those that re-weight the average each 
iteration) to be more sensitive to some aspects of data differences, in the sense that those methods 
can attain CVs that are notably larger than the other methods (see the 90th, 95th and maximum CV 
values for the ‘b’ submethods compared to the others). Methods 2c and 4c look particularly good in 
this comparison, and might be judged more efficient, in the sense that the variability in the BMDL 
estimates for 10,000 bootstrap iterations is notably less than that for the other methods. In the 
future, if running the ‘b’ submethods, one might be better served to run more than 10,000 bootstrap 
iterations. It is expected that CVs would decrease with increasing number of bootstrap iterations 
per run. A previous set of runs using only 1000 iterations had median BMDL CVs in the range of 1% 
to 2% (data not shown) as opposed to the maximum of 0.8% observed with 10,000 bootstrap 
iterations. 

Tables 7a and 7b summarize the Method 2a-c, 3a-c, 4b-c, and 5b-c BMDL estimates relative 
to the Method 1 BMDL estimate, for each dataset. The ratios presented for relative BMDLs are 
based on the average BMDL (over 5 replicates) for each dataset divided by the Method 1 BMDL. 

The median relative BMDL for every method (with the exceptions of Method 4b and, to a 
lesser extent, 5b) is very close to 1, indicating that “on average” the BMDL from Methods 2-5 did not 
differ greatly from that from Method 1. There are some highly divergent values, however. These are 

                                                       
11 No results are shown for Method 1 because all BMDL estimates for that method are the same across replicates 
(it does not require any bootstrapping). 
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in some cases “artifacts” (or perhaps “indicators”) of the fact that some of the datasets showed little 
or no dose-related response. In such cases, one or more of the models will yield a very large (or 
infinite) BMD (or, for Method 1, BMDL); such large (or infinite) estimates are set to 9999 times the 
maximum dose. Limiting attention to datasets for which there was a significant dose-response 
relationship would tend to eliminate such extreme values. 

The true BMDs for these Real datasets are not known, thus, this approach cannot be used to 
evaluate the accuracy of the methods. That is not the case for the simulated data, for which the true 
BMD is known. Issues of accuracy and coverage are discussed in relation to those datasets in the 
next section. 

3.2.2. Simulated data 

For the Simulated data, the true BMD is known. Therefore, the performance of the various 
methods and submethods can be evaluated with respect to two metrics. 

First, the medians and inter-quartile ranges for the BMD estimates are presented for the 
two main categories of methods, BMD-averaging methods (Methods 1, 2a-2c, and 3a-3c) and 
model-averaging methods (Methods 4b-4c, 5b-5c). It may be more typical to present expected 
values (means) and variances of the BMDs (corresponding to bias and precision metrics), but EPA 
hesitates to do so in this analysis because of the arbitrary decision to set “large” BMD estimates 
(greater than 1000 and possibly infinite) equal to 9999. Percentiles (including the median) will be 
predominantly unaffected by that decision; means and variances may be greatly affected. 

Second, methods are presented and evaluated according to “coverage” of the BMDLs. The 
estimated BMDLs can be compared to the known BMD value. Because all the BMDLs calculated are 
intended to correspond to a 95% one-sided confidence limit, the ideal distribution of BMDLs for 
each method would have 95% of that distribution less than or equal to the true BMD (i.e., to have 
the “advertised” 95% coverage). Because each submethod evaluated here differs from the others in 
some respect (weights used, bootstrap approach, or whether it is a BMD-averaging or model-
averaging method) plots displaying coverage (distributions of BMDLs across the 10,000 simulated 
datasets per template) show the performance of each submethod as a separate curve. 

The median and inter-quartile range values discussed above are presented with the 
corresponding plot of the BMDL distributions for each template. 

Case 1: Response Distribution Assumptions All Correct; Data Generating Model Included 
 
The results of the runs on the Simulated data are organized by first examining behavior for 

those templates expected to have the best performance: those with a data-generating model 
included in the averaged models (Power and Hill, or “w” and “h,” templates) having response data 
distributed normally around the median values. These templates have a constant variance, so 
models fit assuming constant variance are shown. Performance for those templates is illustrated in 
Figures 17 – 32. In all but one case (Figure 26, Template h1_normal_subchronic) the coverage for 
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each submethod is at or near the advertised level (95%) and in some cases somewhat exceeds the 
advertised level. These results do not strongly favor any method over another, since they all are 
fairly good (as expected). In the one exceptional case (Figure 26), the bias for the two main 
approaches was notable; the true BMD was just about at the 25th percentile of the distribution of 
BMDs estimated by the BMD-averaging methods, and only slightly better for the model-averaging 
methods. Interestingly, that degree of bias and insufficient coverage was not in evidence for the 
corresponding chronic design template (Figure 25). 

Case 2: Response Distribution Assumptions All Correct; Data Generating Model Not Included  
 
When the data-generating model is not in the set of models being averaged, the results are 

somewhat different (Figures 33 – 40). In fact, the performance of each averaging method is 
determined by the bias associated with its BMD estimates (here represented by the difference 
between the median BMD and the true BMD).  

Thus, for the “p” templates (Figures 33 – 40), when the BMD is higher (around 0.5) the 
biases are negative and the coverage tends to be adequate, at the cost of having some extremely low 
BMDL estimates possible. Conversely, when the BMD is lower (around 0.14, less than the lowest 
chronic dose and close the lowest subchronic dose) the biases are uniformly positive, greatly so in 
some cases. This makes the coverage very poor.  

Case 3: Response Distribution Assumptions All Correct; Data Generating Model Bounds an Included Model 
 
For the “e” templates (Figures 41 – 48), all methods resulted in positive biases, regardless of 

the relative magnitude of the BMD. Therefore, BMDL coverages tended to be very poor (less than 
advertised). The Methods 4b, 2b, 5b, and 3b (roughly in that order) tended to do better with 
coverage despite the bias. These are methods that redefine the model weights at every bootstrap 
iteration. Methods 4b and 2b use a semi-parametric bootstrapping technique (data-driven); 3b and 
5b use a parametric bootstrapping technique (model-driven). 

The Exp4 model generated the data for these templates; it is a nested submodel of the Exp5 
model (nested because the power in Exp4 is fixed at 1) that included in the set of averaged models. 
In fact, it bounds the set of Exp5 models since the latter are constrained to have power > 1. 
Nevertheless, the coverage of the model averaging methods under consideration was still poor, due 
to biases in the estimates, as noted above. 
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With respect to including Exp5 (and Exp3) in the set of averaged models, note the following. 
Previous runs were performed without the Exp models. For those runs, the coverage for Method 4b 
(representing the best achieved by the methods under consideration) are tabulated here: 

Template (corresponding Figure 
Number) 

Coverage for e Templates 
Without Exp 

models 
With Exp 
models 

e1_normal_chronic (41) 0.731 0.76 
e1_normal_subchronic (42) 0.678 0.713 

e2_normal_chronic (43) 0.632 0.665 
e2_normal_subchronic (44) 0.806 0.823 

e3_normal_chronic (45) 0.873 0.873 
e3_normal_subchronic (46) 0.752 0.766 

e4_normal_chronic (47) 0.663 0.702 
e4_normal_subchronic (48) 0.792 0.827 

The addition of the Exp models did improve coverage of averaging Method 4b (and the 
others) slightly. The Exp5 models itself did have excellent coverage, as, quite often, did the Hill 
model (see Figures 41 – 48). But enough weight was still given to the other models to “degrade” the 
performance of the averaging. 

Case 4: All Response Distribution Assumptions Incorrect; Data Generating Model Included 

In this case, the underlying response distribution is lognormal. Thus, the assumptions made 
during the course of model fitting are wrong on two counts. First, the response data are truly 
lognormally distributed, but the models assume normality. Second, the fitting is done assuming 
constant variance whereas the true variances differ across dose levels (as a consequence of 
assuming a constant log-scale variance for the data generation). 

However, the models do include the data generating model in the sense that the dose-
related median values are known to be described by either a Power or a Hill model.  

Figures 49-64 display the behavior of the various methods under these conditions. It 
appears that the incorrect specification of the underlying response distribution and variance 
structure had little impact on the performance of the methods. Here, as in the Case 1 where 
everything was specified correctly (Figures 17 – 32), the biases are not great and the coverage is 
generally close to the desired 95%. If there is a slight difference between the sets of figures, it is that 
with the lognormal data the separation between BMDL distributions for Methods 2 and 4, on the 
one hand, and 3 and 5, on the other hand, is even more distinct, for templates in which the 
separation was not great in the normal-data case (e.g., compare Figures 17 and 49). Methods 2 and 
4 (semi-parametric bootstrap) appear to be a bit less conservative than Methods 3 and 5 
(parametric bootstrap). 
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Case 5: Response Distribution Assumption Incorrect, but Variance Model Correct; Data Generating Model 
Included 

 
If the previous case is “corrected” slightly (Figures 65 – 80), where the variance of the 

underlying data could be modeled correctly (but the type of response distribution is still mis-
specified), results look even more like the original case (where all assumptions were correct, 
Figures 17-32), in the sense that when results are good, all the methods perform similarly well (e.g., 
Figures 65 – 72). When the methods differ (as for most of the templates with a Hill data-generating 
model) the pattern observed for Case 4 is maintained; Methods 3 and 5 tend to be a bit more 
conservative than Methods 2 and 4. Submethod ‘b’ within Methods 2 and 4 appears to be more 
conservative than submethod ‘c;’ sometimes this leads to better coverage (e.g., Figures 70, 74, 76, 
78, and 80 – i.e., for the subchronic designs, regardless of the magnitude of the BMD). 

Case 6: Response Distribution Assumption Incorrect, but Variance Model Correct; Data Generating Model 
Not Included or Is a Bounding Model 

 
Finally (Figures 81 – 96), one can consider the case analogous to Case 2, where the data-

generating model is not included in the set of models being averaged or is a bounding case for one 
of the averaged models. In this case, however, the incorrect type of response distribution is 
assumed, although the variance structure could be estimated (non-constant variance is allowed). As 
was true of Case 2, the biases were often substantial and coverage was consequently adversely 
affected. Bias was worse when the BMD was low (near or below the lowest dose, even in the 
subchronic design). Overall, when bias and coverage tended to be particularly poor, Models 2b and 
4b provided better coverage (though still coverage that was too low) than the other methods 
(Figures 85 – 86, 89 – 96). 

 

 
4. DISCUSSION 

The primary purpose of this document and associated software is to facilitate discussions at 
the EPA model averaging workshop to be held December 10-11, 2015. This workshop support 
package allows for the evaluation of prevailing model averaging methods and options. Within the 
constraints of the options that are included to date (see below), the software has been successfully 
run on a variety of datasets, both real and simulated, and the model average methods have been 
satisfactorily implemented.  

It should be noted that all individual steps in the Model Averaging methods (fitting, 
weighting, and bootstrap simulation) have been examined separately and determined to be 
returning correct values. That is, EPA employed a separate and independent investigator to 



Background and Support Material for EPA Model Averaging Workshop 

  21  

implement each component (unit) of the process that yields the BMD and BMDL estimates for each 
method. The results of the independent unit tests matched those obtained from the developed 
Model Averaging software for the various test data sets.  

At this point, the Model Averaging software is deemed ready for follow-up investigations by 
the workshop peer consultants. Additional considerations for these follow-up investigations are 
discussed in Section 4.4. 

4.1. Overall Observations 
The main conclusions of the testing completed to date are the following: 

• By far the biggest impact on bias and coverage is due to whether or not the data-generating 
dose-response model is included in the set of models being averaged. For the cases 
investigated so far, this factor dominated any other consideration. From that perspective, 
one of the priorities for developing a model averaging procedure to apply in health 
assessments should be the inclusion of as many reasonable dose-response relationships as 
possible. While more computationally involved, the inclusion of additional model shapes 
should add no “interpretation burden.” This is because the evidence so far suggests that 
there is no onus on selecting a model from the set of models that have been fit to a dataset; 
it appears the averaged value can be used without worrying about which model(s) did or 
did not fit the data well. In other words, it appears that if one is fairly certain that the true 
dose-response is among the models being averaged, then just using the averaged BMD and 
BMDL values should suffice.  
 
This conclusion may appear to be at odds with recent analyses that have reported on the 
adequacy of the Hill and/or Exponential models [14]. However, it should be noted that in 
that investigation, it was not simply the full Hill model (as used here) or the Exp5 model 
alone that were evaluated. Rather an entire family of “Hill” and Exponential models were 
considered, stepping up to the more complex versions only if needed (via a series of 
likelihood ratio tests). That investigation did not consider coverage probabilities or bias of 
the BMD and BMDL estimates for the selected Hill or Exponential models. Note also that 
there has been extensive discussion in the literature about the inability to correctly 
estimate confidence intervals for estimators once model selection (as was done by Slob and 
Setzer [14]) has occurred (see Leeb and Pötscher [15] for a relatively recent discussion). 
That has been one of the driving factors for development of model averaging approaches. 
 
Note also that having an array of possible models for averaging may enhance the role of 
biological/toxicological considerations in dose-response analyses. Suppose prior 
information is available that suggests that certain curve shapes (e.g., low-dose linear) are 
more biologically plausible than others. If a subset of the models included in the set of 
models to be averaged reflects the biologically based assumptions, greater a priori weight 
can be assigned to that subset of models. The software developed for this workshop has the 
capability to assign such prior weights and to therefore transparently reflect assumptions 
that are made in any dose-response modeling exercise. 

• The comments in the immediately preceding bullet should be tempered to some degree, 
perhaps based on the results for the “e” templates. Those templates are generated from a 
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model that is nested within, and is a bounding case for,12 one of the averaged models. Even 
with the more general model included in the averaging set, the coverage for all the 
averaging methods was not close to the advertised level of 0.95. This points up a need to 
consider bounding cases when determining which models to average. Aside from the 
addition of the Exp2 and Exp4 models, one might consider the addition of a Michaelis-
Menten model, even though its more general form (the Hill model) is already included. 
Wheeler and Bailer [11] noted similar difficulties for model averaging of dichotomous 
response models when the true model is a bounding case. 
 
Considered in relation to the first bullet item above, the proposed approach may be 
characterized as one that expands the model space, especially inclusion of edge cases 
(bounding models) rather than selecting from a smaller set of nested models and then 
making inferences from the selected model(s) as in [14].  
 
That approach is consistent with another decision made in the current implementation. 
That is, for three models (Power, Hill and Exp5) there are corresponding nested models 
(Linear, Power, and Exp3) that impute their values (log-likelihood and BMD estimates) 
when the more complicated models “fail to perform.” This is not a selection process, but 
rather reflects the known difficulty of fitting models (particularly those with a response 
asymptote) to certain data sets. Moreover, it is based on the known, logical relationship 
within each pair of models, i.e., that the log-likelihood for the more complex model must be 
at least as great as that for the simpler model. It is worth remembering that when the Exp5 
or Hill model results (e.g., with respect to coverage or bias) are good, some of that may be 
attributable to the fact that those models can default to the simpler forms automatically (in 
the current software). 

• Surprisingly, if the distribution of the underlying response data is misrepresented (as in the 
cases where a normal distribution is assumed but the response data are lognormally 
distributed), the effect on BMDL estimation was relatively small. This remained the case 
even if the variance was constrained to be constant even when the variance actually 
changed as a function of dose (through the change in the median). This may be largely due 
to the fact that the BMR for these test cases is based on relative change in the median 
response (BMR10%). Had the BMR been examined based on change relative to the standard 
deviation, or a “hybrid” definition for the BMD [4, Section 2.3.3.1], then this mis-
specification may have been of greater importance. 

• There were no large and over-riding differences among the methods that have been 
investigated. There was a suggestion that Methods 2b and 4b might perform better (though 
not all that well) than other methods should the data-generating model not be among those 
averaged. This was true even in preliminary runs that did not include the Exp models, 
suggesting that merely widening the set of models included in the averaging set does not 
appear to reduce or eliminate the performance margin for Methods 2b and 4b. 

• A minor conclusion is that one probably ought to fit nonconstant variance models as a 
matter of course for model averaging. The effect of the variance assumption on the model-
averaging results was minor. Therefore, at the cost of somewhat longer run times (but still 
with run times on the order of 10 seconds or less per 1000 bootstrap samples) one can 

                                                       
12 By “bounding case” we mean a model that is nested within another, “larger” model and is obtained when a 
parameter value for the larger model is on the boundary of the parameter space allowed for that parameter. 
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cover all possible variance models (constant variance being a special case of the 
nonconstant variance models considered in BMDS). It may actually be desirable to run, 
together, both constant and nonconstant variance versions of each model included in the 
averaging set. If that was done, one would be averaging both over the possible median dose-
response curve and over the variance model options. 

• The biggest effect associated with experimental design (chronic vs. subchronic) was the 
greater spread in BMD estimates obtained from the subchronic design (compare the IQR 
values between corresponding plots that differ only with respect to experimental design). 
The total sample size for the subchronic design was 50 units (spread equally over 5 dose 
groups) whereas the chronic design included 200 units (50 in each of four dose groups). 
Peer-reviewers may be interested in other designs. 

• Within the limitations of the designs considered here, there was a tendency for there to be 
greater (positive) bias in BMD estimates when the BMD was lower. That bias adversely 
affected coverage and was in the direction that leads to less health-protective estimates.  
Compare, for example the biases and coverage differences between Figures 26 and 28; 
between 34 and 36, between 37 and 39, and between 42 and 44.  In all these cases the 
positive bias was greater for the low-BMD case than for the corresponding high-BMD case.13  
The low-BMD templates considered here had BMDs that were about half the lowest positive 
dose for the chronic design and close to the lowest positive dose in the subchronic design. 
Cautions about extrapolating far below tested doses and their responses appear to be 
applicable also to model averaged results. The degree to which averaging assists in that 
respect needs further investigation. The same applies to the individual models, except when 
the underlying dose-response pattern was one of the averaged models, in which case that 
model showed better coverage for the low-BMD cases. Sometimes this also resulted in 
improved model-averaging coverage. 

4.2. Extensions to Continuous Data Model Averaging Software/Methods 
There were no issues associated with implementation of the computational aspects of the 

software. However, there are several items that may be addressed as the software is developed in 
the next round. These include the following: 

• Inclusion of additional models: Workshop peer consultants may be able to offer 
recommendations on whether other dose-response patterns should be included. The results 
presented here suggest that the Exp4 and Exp2 models, as well as a Michaelis-Menten 
model, could be added because they are bounding cases for models already considered. 

• Additional BMR values (e.g., 1% and 5% relative risk) and types (e.g., absolute deviation, 
standard deviation, and point estimate) could be investigated. Such an investigation could 
help clarify the extent to which adding capabilities to fit non-normal models will add to the 
accuracy and coverage of the model-averaging predictions. Of particular importance would 

                                                       
13 Note, however, that these “corresponding figures” were obtained with different underlying dose-response 
relationships; that is why the BMD values are different.  In these cases, however, the same dose-response 
function is common to each pair (e.g., a low-BMD power model is compared to a high-BMD power model) and 
the experimental design is the same within the compared pairs. 
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be BMRs defined in terms of standard deviation changes or via a hybrid (risk-like) 
designation. 

• Model runs which return a large BMD estimate (greater than 1000 times the highest dose) 
have been flagged by setting the BMD estimate to 9999 times the highest dose. While this is 
partial “protection” against infinite values or nonconvergence, a user-friendly addition 
might be added that provides an explicit warning when this has occurred. Safeguards or 
warnings against the use of unsuitable data should also be incorporated. 

• The Windows-based graphical user interface (GUI) might be re-envisioned so that both 
constant and nonconstant variance models can be included in the set of models to be 
averaged. 

• Addition of computational capabilities to allow the assumption of a lognormal distribution 
for the response observations. Currently all models assume the response data are normally 
distributed. As noted above, the priority for this may depend on further investigation 
related to different BMR types. 

• It has been suggested that it might be useful to have an averaging method that would be 
applied to obtain values of 1/BMDL rather than BMDL itself. This might be useful in a 
context of deriving a cancer slope factor, for example, where one of the terms in that 
calculation could be viewed as 1/BMDL (the slope factor being BMR *(1/BMDL). 
Modifications to the existing code should be relatively straight-forward, requiring only the 
computation of the model-specific 1/BMDL values and then application of any (or all) of the 
averaging methods. 

• Similarly, a possible extension would be to apply these methods to estimates of risk at a 
specified dose. Currently, we are specifying the risk of interest (the BMR) and determining 
the doses corresponding to that risk. Particularly in cancer assessments, one sometimes 
wants to estimate the “risk at a dose.” For Methods 2 and 4, the observed data are used to 
generate the bootstrap samples; for Methods 3 and 5, a randomly chosen model (based on 
the model weights) is chosen as the basis for generating a bootstrap sample for each 
iteration. Given the patterns seen in the test runs to date, and the similarity of the Method 
2/4 and Method 3/5 results (e.g., in terms of bias and coverage for the simulated datasets) 
it may be desirable to combine them to define a “unified” approach to bootstrap sample 
generation. That would be done by treating the saturated model (basically the observed 
means and variances, i.e., the basis for Methods 2 and 4) as another model that gets a weight 
(in relation to the fitted models) for model selection when generation of a bootstrap sample 
is required, as in Methods 3 and 5. This may prove particularly beneficial when none of the 
models fits particularly well. In that case, the random selection would favor the observed 
data, so the bootstrapping would predominantly look like Methods 2 and 4. On the other 
hand, if the models fit well, because they have fewer parameters than the saturated model 
their BICs would be less than that of the saturated model, and they would tend to be 
selected for bootstrapping. In that case, the method would be more like Methods 3 and 5. It 
appears that the proposed method could reap the benefits of both Methods 2/4 and 3/5 and 
perhaps even out the differences in coverage, minimal as they appear to be. This suggestion 
for alternative bootstrapping assumptions might be considered during the peer 
consultation workshop.  
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• On a related note, one might consider fitting models that relax the assumptions on the 
variance. Currently, one has to assume either constant variance or a variance model that is 
parametrically constrained by the estimates of the means. Neither needs to be the case. The 
alternative would be to fit models with a saturated variance model, allowing each variance 
(across dose groups) to be estimated independently of the other variances. This is the 
model that allows greatest flexibility for fitting models of the mean (or median) dose-
response relationship. It is, however, not one of the options currently available in the BMDS 
models and would require modifications to those models for inclusion in the Model 
Averaging software.  

• Some recent work has focused on situations where the true model was “on the edge of” or 
outside the range of averaged models [10, 11]. These are cases that were problematic for 
the averaging methods investigated to date and reported above. See, especially, the results 
for the “e” templates. Wheeler and Bailer [16] have proposed semi-parametric approaches 
to address these concerns; it may be desirable to investigate such approaches as part of 
follow-on analyses. 

• For templates where a more complex model (Hill or Exp4) was the data-generating model 
(the “h” and “e” templates) the averaging appeared to be adversely affected by the BMDs 
estimated by the simpler models (e.g., linear or power models). It appears that too much 
weight is being given to those simpler models. One might consider using, as the basis for 
defining model weights, an alternative to the BIC. The AIC is a natural candidate since it 
would have just the desired effect. Its penalty for additional parameters is less than that for 
the BIC; it has been noted that model selection based on AIC tends to accept more highly 
parameterized models that does selection based on BIC. Investigation of such alternatives to 
the BIC-based weights may be desirable.  

• Decisions need to be made about what to do in relation to data sets with 3 dose groups. One 
option is to run only those models with 3 or fewer parameters. Another option would be to 
define parameters constraints (equality constraints) for one or more of the parameters in 
more-highly parameterized models. Choices for which parameters to constrain need to be 
evaluated. 

• In the runs performed to date, parameters subject to constraints (e.g., power parameters) 
have been constrained. It is not apparent if, or how, imposition of those constraints has 
affected the results shown above. It is possible that removing some of the constraints might 
affect performance for the “edge case” templates discussed above. This may be something 
that is explored further by the workshop consultants recruited to evaluate the proposed 
model averaging methods and options. 

4.3. Applicability to Dichotomous Data 
The analyses described here are for continuous endpoints and continuous dose-response 

models. A logical extension would be to apply the lessons learned here to, or to do additional testing 
on, dichotomous endpoints. Model averaging has been investigated extensively for dichotomous 
models by Drs. Wheeler and Bailer. Any extension of model averaging to dichotomous dose-
response should borrow heavily from their investigations and, to the extent possible, their 
software.  
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Nevertheless, one may need to consider issues like the relationships between the models 
(simpler models nested within more complex models that are known to have certain log-likelihood 
relationships) as has been done for the continuous model software. Extensions of the software that 
EPA has developed for continuous endpoints may need to reflect any averaging issues specific to 
dichotomous responses, if any. The input of the workshop consultants and beta-testers will be 
helpful in identifying potential difficulties associated with a transition to dichotomous endpoints. 

 

4.4. Further Examination and Selection of Model Averaging Methods  
This round of testing suggests that, once the possible additions to the software have been 

agreed upon and successfully implemented, it will be ready to use as the basis for a more complete 
and thorough examination of the Model Averaging methods described above. It is anticipated that 
that process will involve a number of expert workshop consultants (and beta-testers) who can use 
the software to apply the methods in an automated manner. That automation will allow a much 
wider set of test datasets to be examined. Those datasets can differ with respect to experimental 
design as well as dose-response. It would be ideal if the datasets varied as widely as possible to get 
a complete picture of the performance of the Model Averaging methods. 

Another aspect of model averaging that has not been exercised in the test runs to date 
concerns the prior model weights. All runs to date have been completed assuming equal model 
prior weights. Prior weighting schemes that reflected beliefs about biological plausibility might be 
considered. The translation of prior knowledge about underlying biology and toxicology into model 
weights is an important and potentially highly influential aspect that can be explored by the 
workshop consultants. From an implementation standpoint (i.e., regardless of biological 
considerations) the workshop consultants might want to explore the impact of alternative prior 
weightings on the BMD estimates.  A particularly attractive option would be to run the datasets 
generated from the templates used in this report, ones with known underlying dose-response 
relationships and BMD values.  While initial examinations of the effect of prior weighting for such 
datasets can be done using the GUI (i.e., for an individual dataset or two) a fuller exploration of 
differences in BMD estimates as a function of prior weighting could be obtained via a batch run over 
the sets of 1000 realizations for selected templates.  Procedures for batch running the model 
averaging software are described in Section 2.4. The results presented in this document (i.e., all the 
Figures from 17 onward) were generated via such batch running.  The results of altering prior 
weights could be summarized in the same manner and compared to the figures included here. 14 

                                                       
14 When comparing results for different prior weights, consider using the same number of bootstrap iterations 
and a fixed random number seed value. A different number of iterations and random seed values, with input 
settings otherwise identical, can produce differing results. 
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Some potential model averaging methods and areas of exploration have been discussed in 
this workshop support document. There are likely to be other alternative and complementary 
options worth exploring. EPA anticipates that the options and approaches discussed here will spark 
additional suggestions from expert analysts at the planned December 10-11, 2015 peer 
consultation workshop.  
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6. TABLES 

Table 1: Definition of Model Averaging Approaches 

Weighting  

Bootstrap Technique 

None  
(use profile 
likelihood 
methods) 

Semi-
parametric 

(use original 
means and 
variances) 

Parametric 
(use model-

predicted 
means and 
variances) 

From original model fits 

Average model-
specific BMDLs Method 1 Method 2a Method 3a 

Average iteration-
specific BMDs1 -- Method 2c Method 3c 

Compute iteration-
specific dose where 
average response = 

BMR2 

-- Method 4c Method 5c 

From iteration-specific 
model weights 

Average iteration-
specific BMDs1 -- Method 2b Method 3b 

Compute iteration-
specific dose where 
average response = 

BMR2 

-- Method 4b Method 5b 

1 BMDLs are derived from percentiles of resulting iteration-specific averaged BMDs. 
2 BMDLs are derived from percentiles of resulting iteration-specific doses for which average 
response = BMR. 
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Table 2: Models Used to Generate Simulated Data for the Templates and 
Associated BMD Values 

D-R Model Type Template 
Label 

Parameter Values BMD 
a b c g e  

Polynomial p1 80 66 -55 51 -11 .1345 
 p2 80 26 -55 88 -28 .4775 
 p3 100 -70 40 -50 35 .1541 
 p4 100 -20 20 -40 5 .5112 
        

Exponential M4 e1 80 4.5 1.2   .1540 
 e2 80 2.1 1.17   .4225 
 e3 120 3.05 0.75   .1675 
 e4 120 1.68 0.8   .4126 
        

Power w1 80 167  1.9  .2021 
 w2 80 111  3.1  .4281 
 w3 135 -100  1.4  .2392 
 w4 120 -86  2.9  .5071 
        

Hill h1 80 30 0.2 3.1  .1443 
 h2 80 40 0.65 4.5  .4777 
 h3 120 -40 0.2 5  .1688 
 h4 120 -40 0.55 4.5  .4556 

Model equations: m(d) is the dose-dependent median of the distribution of responses. 
Polynomial: m(d) = a + b*d + c*d2 +g*d3 + e*d4 
Exponential M4: m(d) = a *(c + (1-c)*exp(-b*d))) 
Power: m(d) = a + b*dg 
Hill: m(d) = a + b*dg/(cg + dg) 
When the response distribution was assumed to be normal, then mean = median and std = 14 
When the response distribution was assumed to be lognormal, then log-scale std = 0.14 
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Table 3a: Summary Distribution of Method 1 Run Times (milliseconds); Across 
76 Real Datasets; Models Fit Assuming Constant Variance  

Percentiles 
for Run 

Time (ms) 

Run Number1  

1 2 3 4 5 Mean CV 

minimum 7 6 6 6 6 6.2 0.000 
5th 7 7 7 8 7 7.54 0.000 

10th 7 8 8 8 8 7.8 0.000 
25th 10 10 10 10 10 9.8 0.025 
50th 13 15 14.5 14.5 14 14.5 0.051 
75th 22 24.75 24 24 24 23.95 0.071 
90th 63.6 75.5 76.1 75.2 75.5 72.76 0.091 
95th 138.55 144.2 144.35 143.35 143.5 142.79 0.112 

maximum 5020 6058 6048 6053 6071 5850 0.167 
1Runs 1-5 are exactly the same (except for the bootstrap sampled values). Percentiles for ‘Mean’ 
and ‘CV’ values are for the within-dataset means and CVs (i.e., means and CVs across replicates). 
 

Table 3b: Summary Distribution of Method 1 Run Times (milliseconds); 
Across 76 Real Datasets; Models Fit Assuming Non-Constant Variance  

Percentiles 
for Run 

Time (ms) 

Run Number1  

1 2 3 4 5 Mean CV 

minimum 9 9 9 9 10 9.6 0.000 
5th 11 11 11 11 11.85 11 0.000 

10th 13 12 12 12.7 12 12.34 0.000 
25th 17 17 17 17 17 17 0.000 
50th 30 30 30 30 30 30 0.003 
75th 75.5 77 74.5 74.5 74.5 75.2 0.012 
90th 2674.9 2670.8 2675.5 2678.6 2677.3 2675.42 0.026 
95th 5004.95 4967.9 5059.85 5013.05 4977.5 5004.65 0.040 

maximum 10016 9944 9934 9948 9990 9966.4 0.140 
1Runs 1-5 are exactly the same (except for the bootstrap sampled values). Percentiles for ‘Mean’ 
and ‘CV’ values are for the within-dataset means and CVs. 
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Table 4a: Summary Distribution of Relative Run Times (Method x Divided by 
Method 1, unitless); Across 76 Real Datasets; Models Fit Assuming Constant 
Variance  

Percentiles 
for 

Relative 
Run Time  

Method Run Time Divided by Corresponding Method 1 Run Time 

 2a 2b 2c 3a 3b 3c 4b 4c 5b 5c 
minimum 25.5 25.5 25.5 17.9 17.9 17.9 25.6 25.6 18.0 18.0 

5th 1190 1190 1190 943 943 943 1193 1192 946 945 
10th 3000 2999 2999 3187 3187 3187 3011 3009 3192 3191 
25th 4991 4991 4991 4964 4964 4963 5000 4999 4982 4979 
50th 7447 7447 7446 8202 8202 8201 7472 7465 8229 8221 
75th 10378 10378 10376 12756 12756 12755 10388 10385 12800 12780 
90th 12328 12328 12326 17319 17319 17317 12366 12351 17371 17362 
95th 14334 14334 14332 20249 20250 20248 14366 14360 20269 20265 

maximum 34246 34246 34244 23233 23233 23232 34259 34257 23247 23243 
Percentiles are of average run time for the Method in question (five runs per dataset) divided by the 
average run time for Method 1, for 10,000 iterations 
 

Table 4b: Summary Distribution of Relative Run Times (Method x Divided by 
Method 1, unitless); Across 76 Real Datasets; Models Fit Assuming Non-
Constant Variance  

Percentiles 
for Relative 
Run Time  

Method Run Time Divided by Corresponding Method 1 Run Time 

 2a 2b 2c 3a 3b 3c 4b 4c 5b 5c 
minimum 11.7 11.7 11.7 11.3 11.3 11.3 11.7 11.7 11.3 11.3 

5th 32 32 32 34 34 34 32 32 34 34 
10th 108 108 108 79 79 79 108 108 79 79 
25th 3895 3895 3895 3628 3628 3627 3900 3899 3632 3631 
50th 8111 8111 8110 8112 8112 8112 8122 8120 8120 8119 
75th 11837 11837 11837 11845 11845 11845 11846 11844 11860 11857 
90th 15624 15624 15623 15742 15742 15741 15650 15643 15796 15785 
95th 17850 17850 17849 18911 18911 18910 17859 17857 18922 18920 

maximum 19903 19903 19903 22281 22281 22281 19909 19908 22296 22291 
Percentiles are of average run time for the Method in question (five runs per dataset) divided by the 
average run time for Method 1, for 10,000 iterations 
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Table 5: Summary Distribution of Relative Run Times (Method 3x Divided by 
Method 2x, unitless); Across Real Datasets 

 Method 3 Submethod Time Divided by Corresponding Method 2 Submethod Time 
Percentiles 
for Relative 
Run Time  

Assuming Constant Variance Assuming Non-Constant Variance 

 3a/2a 3b/2b 3c/2c 3a/2a 3b/2b 3c/2c 
minimum 0.517 0.517 0.517 0.511 0.511 0.511 

5th 0.630 0.630 0.630 0.721 0.721 0.721 
10th 0.771 0.771 0.771 0.757 0.757 0.757 
25th 0.924 0.924 0.924 0.883 0.883 0.883 
50th 1.041 1.041 1.041 0.965 0.965 0.965 
75th 1.351 1.351 1.351 1.103 1.103 1.103 
90th 1.611 1.611 1.611 1.328 1.328 1.328 
95th 1.776 1.776 1.776 1.422 1.422 1.422 

maximum 2.219 2.219 2.220 2.066 2.067 2.067 
Percentiles are of average run time for the Method 3 submethod (five runs per dataset) divided by 
the average run time for the corresponding Method 2 submethod. 
 

Table 6a: Summary Distribution of Coefficient of Variation (CV) Values of 
BMDLs (unitless); Across 5 Replicates of the Real Datasets; Fit with Constant 
Variance Models 

Percentiles 
for CV 
Values 

Averaging Method 

 2a 2b 2c 3a 3b 3c 4b 4c 5b 5c 
minimum 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 

5th 0.000 0.002 0.000 0.001 0.002 0.001 0.001 0.000 0.002 0.001 
10th 0.001 0.003 0.001 0.001 0.002 0.001 0.001 0.001 0.003 0.001 
25th 0.002 0.004 0.002 0.002 0.004 0.003 0.003 0.002 0.004 0.003 
50th 0.003 0.008 0.004 0.004 0.007 0.005 0.008 0.004 0.007 0.005 
75th 0.006 0.024 0.006 0.006 0.016 0.008 0.014 0.007 0.017 0.008 
90th 0.011 0.053 0.010 0.012 0.043 0.036 0.034 0.012 0.047 0.017 
95th 0.029 0.082 0.012 0.559 0.665 0.562 0.069 0.021 0.070 0.034 

maximum 0.559 0.559 0.031 1.369 1.495 0.921 0.303 0.032 1.267 2.236 
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Table 6b: Summary Distribution of Coefficient of Variation (CV) Values of 
BMDLs (unitless); Across 5 Replicates of the Real Datasets; Fit with Non-
Constant Variance Models 

Percentiles 
for CV 
Values 

Averaging Method 

 2a 2b 2c 3a 3b 3c 4b 4c 5b 5c 
minimum 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 

5th 0.000 0.002 0.001 0.000 0.002 0.001 0.001 0.001 0.002 0.001 
10th 0.001 0.002 0.001 0.001 0.003 0.001 0.002 0.001 0.002 0.001 
25th 0.002 0.004 0.002 0.002 0.004 0.002 0.003 0.002 0.003 0.002 
50th 0.003 0.007 0.004 0.004 0.007 0.004 0.007 0.004 0.007 0.004 
75th 0.006 0.024 0.007 0.005 0.012 0.007 0.017 0.007 0.015 0.007 
90th 0.012 0.049 0.013 0.008 0.037 0.011 0.033 0.018 0.036 0.021 
95th 0.015 0.072 0.016 0.018 0.057 0.020 0.073 0.020 0.052 0.043 

maximum 0.559 0.561 0.038 0.913 0.191 0.559 1.970 0.460 0.672 0.073 
 

Table 7a: Summary Distribution of Relative BMDLs (Method x Divided by 
Method 1, unitless); Across Real Datasets; Models Fit Assuming Constant 
Variance Models 

Percentiles 
for 

Relative 
BMDL 
Values  

Averaging Method 

 2a 2b 2c 3a 3b 3c 4b 4c 5b 5c 
minimum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

5th 0.0004 0.0001 0.0004 0.0003 0.0003 0.0003 0.0000 0.0001 0.0001 0.0000 
10th 0.0022 0.0020 0.0023 0.0023 0.0023 0.0024 0.0009 0.0011 0.0008 0.0006 
25th 0.9419 0.3107 1.0091 0.7397 0.4358 0.9225 0.0501 0.5298 0.2213 0.2636 
50th 1.0084 0.8998 1.0515 0.9991 0.9735 1.0331 0.7185 1.0124 0.8768 0.9779 
75th 1.0856 1.0395 1.1612 1.0323 1.0152 1.1068 1.0081 1.0549 0.9954 1.0363 
90th 1.2420 1.1989 1.3907 1.0503 1.0580 1.2282 1.0897 1.1154 1.0198 1.0719 
95th 1.8525 1.5165 1.9888 1.1015 1.3160 1.4403 1.3282 1.3410 1.0533 1.1451 

maximum 20.9798 39.7791 42.5290 3.6645 7.6062 8.2557 23.6203 15.8380 7.8012 7.3527 
Values for relative BMDL are (BMDL for Method in question) / (BMDL for Method 1). 
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Table 7b: Summary Distribution of Relative BMDLs (Method x Divided by 
Method 1, unitless); Across Real Datasets; Models Fit Assuming Non-Constant 
Variance Models 

Percentiles 
for 

Relative 
BMDL 
Values  

Averaging Method 

 2a 2b 2c 3a 3b 3c 4b 4c 5b 5c 
minimum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

5th 0.0002 0.0001 0.0002 0.0002 0.0001 0.0003 0.0000 0.0003 0.0000 0.0004 
10th 0.0033 0.0031 0.0034 0.0034 0.0035 0.0035 0.0002 0.0034 0.0021 0.0034 
25th 0.9755 0.2231 1.0040 0.8361 0.4025 0.9298 0.0645 0.4819 0.2013 0.4904 
50th 0.9985 0.8699 1.0412 0.9944 0.9356 1.0238 0.7716 0.9960 0.8342 0.9695 
75th 1.0292 1.0200 1.1070 1.0287 0.9972 1.1027 1.0033 1.0400 0.9783 1.0334 
90th 1.1202 1.1643 1.4829 1.0710 1.0288 1.3225 1.0876 1.1523 1.0097 1.0968 
95th 1.9730 1.9951 2.0901 1.1359 1.2944 2.0255 1.8612 1.9597 1.2120 1.3236 

maximum 5.0722 5.4429 5.6469 5.2681 6.5563 6.6870 3.9667 4.0137 4.0927 4.1096 
Values for relative BMDL are (BMDL for Method in question) / (BMDL for Method 1). 
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7. DIAGRAMS

Diagram 1a: Flow Diagram for Methods 1 – 3 
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Diagram 1b: Flow Diagram for Methods 4 – 5 
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Diagram Abbreviations: 
 
BMDmij: BMD for model i from the jth bootstrap-generated data set. 
BMDLmi0: BMDL estimate for model i, model fit to original data. 
Wmi0: Weight for model i, based on fit (BIC) of that model to original data. 
Wmij: Weight for model i, based on fit (BIC) of that model to jth bootstrap-generated data set. 
 
R0(d)mi: Fitted dose-response function for model i, fit to original data. 
Rj(d)mi: Fitted dose-response function for model i, fit to jth bootstrap-generated data set. 
 
 
k models are included in the averaging. 
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8. FIGURES

Figure 1: Dose-response for p1 Templates 

Figure 2: Dose-response for p2 Templates 
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Figure 3: Dose-response for p3 Templates 

Figure 4: Dose-response for p4 Templates 
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Figure 5: Dose-response for e1 Templates 

Figure 6: Dose-response for e2 Templates 
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Figure 7: Dose-response for e3 Templates 

Figure 8: Dose-response for e4 Templates 
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Figure 9: Dose-response for w1 Templates 

Figure 10: Dose-response for w2 Templates 
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Figure 11: Dose-response for w3 

Figure 12: Dose-response for w4 Templates 
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Figure 13: Dose-response for h1 Templates 

Figure 14: Dose-response for h2 Templates 
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Figure 15: Dose-response for h3 Templates 

Figure 16: Dose-response for h4 Templates 
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Figure 17: Template w1_normal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.176844 0.177393 
50 0.191976 0.192116 0.2021 
75 0.205432 0.205638 

IQR 0.0285882 0.0282453 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.972 
Poly3 0.955 2a 0.969 3a 0.983 
Power 0.937 2b 0.984 3b 0.996 

Hill 0.899 2c 0.961 3c 0.976 
Exp3 1 4b 0.984 5b 0.996 
Exp5 0.912 4c 0.961 5c 0.976 
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Figure 18: Template w1_normal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.160301 0.161422 
50 0.187973 0.188754 0.2021 
75 0.221049 0.221267 

IQR 0.0607481 0.0598444 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.957 
Poly3 0.91 2a 0.959 3a 0.982 
Power 0.936 2b 0.96 3b 0.987 

Hill 0.873 2c 0.949 3c 0.972 
Exp3 0.998 4b 0.961 5b 0.987 
Exp5 0.905 4c 0.952 5c 0.975 



Background and Support Material for EPA Model Averaging Workshop 

48 

Figure 19: Template w2_normal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.400244 0.40391 
50 0.425902 0.429576 0.4281 
75 0.451866 0.456503 

IQR 0.0516214 0.0525931 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.952 
Poly3 1 2a 0.952 3a 0.954 
Power 0.938 2b 0.943 3b 0.949 

Hill 0.922 2c 0.952 3c 0.951 
Exp3 0.965 4b 0.926 5b 0.944 
Exp5 0.947 4c 0.937 5c 0.947 
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Figure 20: Template w2_normal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.378695 0.38203 
50 0.425097 0.432969 0.4281 
75 0.481935 0.484141 

IQR 0.10324 0.102111 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.955 
Poly3 1 2a 0.944 3a 0.949 
Power 0.944 2b 0.941 3b 0.948 

Hill 0.944 2c 0.943 3c 0.948 
Exp3 0.959 4b 0.934 5b 0.946 
Exp5 0.957 4c 0.937 5c 0.947 
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Figure 21: Template w3_normal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.233413 0.234039 
50 0.249751 0.250529 0.2392 
75 0.267721 0.268477 

IQR 0.0343073 0.0344378 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.816 
Poly3 0.997 2a 0.819 3a 0.805 
Power 0.936 2b 0.863 3b 0.861 

Hill 0.887 2c 0.823 3c 0.805 
Exp3 0.339 4b 0.858 5b 0.854 
Exp5 0.338 4c 0.814 5c 0.798 
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Figure 22: Template w3_normal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.196491 0.192879 
50 0.245456 0.24402 0.2392 
75 0.288386 0.289079 

IQR 0.0918952 0.0961996 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.876 
Poly3 0.983 2a 0.893 3a 0.892 
Power 0.947 2b 0.929 3b 0.922 

Hill 0.905 2c 0.892 3c 0.895 
Exp3 0.715 4b 0.932 5b 0.927 
Exp5 0.694 4c 0.89 5c 0.886 
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Figure 23: Template w4_normal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.485532 0.48711 
50 0.506508 0.506008 0.5071 
75 0.531691 0.528259 

IQR 0.0461584 0.0411496 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.948 
Poly3 0.969 2a 0.958 3a 0.958 
Power 0.949 2b 0.951 3b 0.952 

Hill 0.967 2c 0.964 3c 0.964 
Exp3 0.944 4b 0.954 5b 0.952 
Exp5 0.959 4c 0.967 5c 0.965 
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Figure 24: Template w4_normal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.460557 0.465478 
50 0.504909 0.503688 0.5071 
75 0.551827 0.544815 

IQR 0.09127 0.0793372 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.954 
Poly3 0.977 2a 0.965 3a 0.963 
Power 0.951 2b 0.955 3b 0.957 

Hill 0.966 2c 0.968 3c 0.965 
Exp3 0.954 4b 0.961 5b 0.96 
Exp5 0.955 4c 0.971 5c 0.974 
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Figure 25: Template h1_normal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.0863961 0.0866751 
50 0.133543 0.135916 0.1443 
75 0.19488 0.201558 

IQR 0.108484 0.114883 

Model Coverage Method Coverage Method Coverage 
Linear 0 1 0.997 
Poly3 0 2a 0.96 3a 0.997 
Power 0 2b 0.961 3b 0.997 

Hill 0.979 2c 0.961 3c 0.996 
Exp3 0 4b 0.956 5b 0.996 
Exp5 0.999 4c 0.957 5c 0.996 
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Figure 26: Template h1_normal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.141553 0.126939 
50 0.199694 0.172439 0.1443 
75 0.23972 0.227303 

IQR 0.0981671 0.100364 

Model Coverage Method Coverage Method Coverage 
Linear 0.008 1 0.707 
Poly3 0.008 2a 0.668 3a 0.691 
Power 0.008 2b 0.818 3b 0.793 

Hill 0.946 2c 0.61 3c 0.622 
Exp3 0 4b 0.876 5b 0.85 
Exp5 0.957 4c 0.775 5c 0.775 
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Figure 27: Template h2_normal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.415388 0.419346 
50 0.463034 0.473736 0.4777 
75 0.509649 0.505302 

IQR 0.0942606 0.0859558 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.971 
Poly3 0.968 2a 0.963 3a 0.976 
Power 0.971 2b 0.964 3b 0.98 

Hill 0.967 2c 0.963 3c 0.976 
Exp3 0.971 4b 0.947 5b 0.979 
Exp5 0.967 4c 0.959 5c 0.976 
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Figure 28: Template h2_normal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.271126 0.264344 
50 0.37863 0.381363 0.4777 
75 0.507871 0.506784 

IQR 0.236745 0.24244 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.988 
Poly3 0.952 2a 0.952 3a 0.991 
Power 0.952 2b 0.982 3b 0.999 

Hill 0.956 2c 0.952 3c 0.99 
Exp3 0.986 4b 0.982 5b 0.999 
Exp5 0.986 4c 0.951 5c 0.99 
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Figure 29: Template h3_normal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.097332 0.0991703 
50 0.151619 0.156612 0.1688 
75 0.198402 0.206705 

IQR 0.10107 0.107535 

Model Coverage Method Coverage Method Coverage 
Linear 0 1 1 
Poly3 0 2a 0.962 3a 1 
Power 0 2b 0.961 3b 1 

Hill 1 2c 0.961 3c 1 
Exp3 0.001 4b 0.959 5b 1 
Exp5 1 4c 0.959 5c 1 
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Figure 30: Template h3_normal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.149477 0.148269 
50 0.179932 0.177922 0.1688 
75 0.22087 0.221705 

IQR 0.0713935 0.073436 

Model Coverage Method Coverage Method Coverage 
Linear 0 1 0.966 
Poly3 0 2a 0.92 3a 0.987 
Power 0 2b 0.907 3b 0.99 

Hill 0.982 2c 0.911 3c 0.98 
Exp3 0.488 4b 0.918 5b 0.995 
Exp5 0.971 4c 0.92 5c 0.988 
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Figure 31: Template h4_normal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.38464 0.389975 
50 0.450407 0.456269 0.4556 
75 0.481698 0.487047 

IQR 0.0970574 0.0970718 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.985 
Poly3 0.973 2a 0.948 3a 0.99 
Power 0.985 2b 0.964 3b 0.996 

Hill 0.979 2c 0.941 3c 0.99 
Exp3 0.984 4b 0.958 5b 0.996 
Exp5 0.974 4c 0.929 5c 0.989 
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Figure 32: Template h4_normal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.333805 0.339512 
50 0.389566 0.406619 0.4556 
75 0.455084 0.473136 

IQR 0.12128 0.133624 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.985 
Poly3 0.901 2a 0.972 3a 0.995 
Power 0.98 2b 0.991 3b 1 

Hill 0.975 2c 0.967 3c 0.995 
Exp3 0.979 4b 0.975 5b 0.999 
Exp5 0.975 4c 0.954 5c 0.995 
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Figure 33: Template p1_normal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.154708 0.154453 
50 0.162718 0.162461 0.1345 
75 0.172119 0.171801 

IQR 0.0174106 0.0173476 

Model Coverage Method Coverage Method Coverage 
Linear 0.186 1 0.159 
Poly3 0.151 2a 0.155 3a 0.142 
Power 0.156 2b 0.211 3b 0.14 

Hill 0.57 2c 0.127 3c 0.113 
Exp3 0 4b 0.239 5b 0.149 
Exp5 0.684 4c 0.135 5c 0.122 
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Figure 34: Template p1_normal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.154113 0.152289 
50 0.172775 0.171382 0.1345 
75 0.200738 0.197847 

IQR 0.046625 0.045557 

Model Coverage Method Coverage Method Coverage 
Linear 0.597 1 0.519 
Poly3 0.531 2a 0.493 3a 0.518 
Power 0.538 2b 0.548 3b 0.506 

Hill 0.714 2c 0.411 3c 0.418 
Exp3 0.002 4b 0.589 5b 0.562 
Exp5 0.655 4c 0.444 5c 0.454 
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Figure 35: Template p2_normal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.35065 0.345455 
50 0.445874 0.444634 0.4775 
75 0.542072 0.539971 

IQR 0.191422 0.194516 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.945 
Poly3 0.935 2a 0.953 3a 0.937 
Power 0.935 2b 0.963 3b 0.949 

Hill 0.933 2c 0.952 3c 0.936 
Exp3 0.944 4b 0.962 5b 0.948 
Exp5 0.943 4c 0.951 5c 0.935 
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Figure 36: Template p2_normal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.28451 0.280504 
50 0.374354 0.369563 0.4775 
75 0.537319 0.534884 

IQR 0.252809 0.25438 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.989 
Poly3 0.937 2a 0.968 3a 0.996 
Power 0.928 2b 0.981 3b 0.999 

Hill 0.932 2c 0.962 3c 0.996 
Exp3 0.978 4b 0.983 5b 0.999 
Exp5 0.981 4c 0.962 5c 0.996 
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Figure 37: Template p3_normal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.168565 0.166723 
50 0.190933 0.188814 0.1541 
75 0.206943 0.205893 

IQR 0.0383781 0.0391697 

Model Coverage Method Coverage Method Coverage 
Linear 0 1 0.405 
Poly3 0 2a 0.39 3a 0.356 
Power 0 2b 0.65 3b 0.41 

Hill 0.879 2c 0.344 3c 0.318 
Exp3 0.455 4b 0.682 5b 0.432 
Exp5 0.874 4c 0.393 5c 0.355 
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Figure 38: Template p3_normal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.186569 0.180091 
50 0.207125 0.20448 0.1541 
75 0.229969 0.227928 

IQR 0.0433999 0.0478363 

Model Coverage Method Coverage Method Coverage 
Linear 0.007 1 0.305 
Poly3 0.007 2a 0.291 3a 0.244 
Power 0.007 2b 0.582 3b 0.296 

Hill 0.85 2c 0.214 3c 0.176 
Exp3 0.739 4b 0.646 5b 0.341 
Exp5 0.888 4c 0.304 5c 0.234 
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Figure 39: Template p4_normal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.41406 0.413191 
50 0.493123 0.493853 0.5112 
75 0.557354 0.555246 

IQR 0.143294 0.142055 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.946 
Poly3 0.937 2a 0.951 3a 0.944 
Power 0.946 2b 0.964 3b 0.952 

Hill 0.957 2c 0.949 3c 0.944 
Exp3 0.945 4b 0.968 5b 0.955 
Exp5 0.956 4c 0.956 5c 0.944 
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Figure 40: Template p4_normal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.33768 0.337994 
50 0.42041 0.424875 0.5112 
75 0.556208 0.54714 

IQR 0.218528 0.209145 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.941 
Poly3 0.937 2a 0.963 3a 0.981 
Power 0.933 2b 0.987 3b 0.995 

Hill 0.941 2c 0.961 3c 0.981 
Exp3 0.931 4b 0.988 5b 0.996 
Exp5 0.936 4c 0.964 5c 0.982 
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Figure 41: Template e1_normal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods 
True 
BMD 

25 0.209167 0.197894 
50 0.297258 0.246475 0.154 
75 0.480379 0.454505 

IQR 0.271212 0.256611 

Model Coverage Method Coverage Method Coverage 
Linear 0 1 0.477 
Poly3 0 2a 0.432 3a 0.444 
Power 0 2b 0.71 3b 0.57 

Hill 0.917 2c 0.385 3c 0.396 
Exp3 0 4b 0.76 5b 0.606 
Exp5 0.905 4c 0.513 5c 0.512 
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Figure 42: Template e1_normal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods 
True 
BMD 

25 0.366967 0.270363 
50 0.511295 0.474799 0.154 
75 0.707826 0.708172 

IQR 0.340859 0.437809 

Model Coverage Method Coverage Method Coverage 
Linear 0 1 0.134 
Poly3 0 2a 0.122 3a 0.123 
Power 0.002 2b 0.472 3b 0.247 

Hill 0.857 2c 0.096 3c 0.097 
Exp3 0.009 4b 0.713 5b 0.369 
Exp5 0.912 4c 0.27 5c 0.227 
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Figure 43: Template e2_normal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.569655 0.567714 
50 0.683129 0.689622 0.4225 
75 0.813988 0.835391 

IQR 0.244333 0.267678 

Model Coverage Method Coverage Method Coverage 
Linear 0.146 1 0.301 
Poly3 0.145 2a 0.294 3a 0.268 
Power 0.146 2b 0.623 3b 0.302 

Hill 0.891 2c 0.243 3c 0.201 
Exp3 0.065 4b 0.665 5b 0.328 
Exp5 0.947 4c 0.297 5c 0.234 
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Figure 44: Template e2_normal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.486051 0.468908 
50 0.693794 0.704292 0.4225 
75 1.10935 1.06368 

IQR 0.623302 0.594777 

Model Coverage Method Coverage Method Coverage 
Linear 0.635 1 0.693 
Poly3 0.586 2a 0.669 3a 0.68 
Power 0.619 2b 0.775 3b 0.672 

Hill 0.78 2c 0.611 3c 0.591 
Exp3 0.548 4b 0.823 5b 0.729 
Exp5 0.931 4c 0.65 5c 0.613 
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Figure 45: Template e3_normal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.156669 0.155976 
50 0.193499 0.191916 0.1675 
75 0.238655 0.233416 

IQR 0.081986 0.0774399 

Model Coverage Method Coverage Method Coverage 
Linear 0 1 0.752 
Poly3 0 2a 0.722 3a 0.707 
Power 0 2b 0.865 3b 0.802 

Hill 0.925 2c 0.709 3c 0.696 
Exp3 0 4b 0.873 5b 0.804 
Exp5 0.926 4c 0.744 5c 0.731 
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Figure 46: Template e3_normal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.248589 0.193359 
50 0.343584 0.309303 0.1675 
75 0.419891 0.402938 

IQR 0.171302 0.20958 

Model Coverage Method Coverage Method Coverage 
Linear 0 1 0.267 
Poly3 0 2a 0.257 3a 0.241 
Power 0 2b 0.668 3b 0.438 

Hill 0.899 2c 0.219 3c 0.206 
Exp3 0 4b 0.766 5b 0.511 
Exp5 0.889 4c 0.388 5c 0.351 
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Figure 47: Template e4_normal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.522717 0.517259 
50 0.585215 0.585866 0.4126 
75 0.65128 0.654846 

IQR 0.128563 0.137587 

Model Coverage Method Coverage Method Coverage 
Linear 0.004 1 0.203 
Poly3 0.004 2a 0.201 3a 0.176 
Power 0.004 2b 0.677 3b 0.279 

Hill 0.949 2c 0.17 3c 0.144 
Exp3 0.08 4b 0.702 5b 0.296 
Exp5 0.943 4c 0.206 5c 0.179 
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Figure 48: Template e4_normal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.496564 0.489506 
50 0.596 0.599969 0.4126 
75 0.74221 0.766374 

IQR 0.245647 0.276868 

Model Coverage Method Coverage Method Coverage 
Linear 0.39 1 0.555 
Poly3 0.372 2a 0.564 3a 0.521 
Power 0.372 2b 0.781 3b 0.559 

Hill 0.856 2c 0.47 3c 0.419 
Exp3 0.521 4b 0.827 5b 0.624 
Exp5 0.935 4c 0.523 5c 0.445 
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Figure 49: Template w1_lognormal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.174468 0.17472 
50 0.186791 0.186988 0.2021 
75 0.19833 0.198651 

IQR 0.0238619 0.0239311 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.999 
Poly3 0.982 2a 0.995 3a 1 
Power 0.988 2b 0.992 3b 1 

Hill 0.985 2c 0.993 3c 0.999 
Exp3 1 4b 0.992 5b 1 
Exp5 0.989 4c 0.993 5c 0.999 
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Figure 50: Template w1_lognormal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.161364 0.16167 
50 0.186344 0.187965 0.2021 
75 0.212934 0.213913 

IQR 0.0515702 0.0522433 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.998 
Poly3 0.953 2a 0.975 3a 0.998 
Power 0.971 2b 0.969 3b 0.997 

Hill 0.962 2c 0.968 3c 0.996 
Exp3 1 4b 0.969 5b 0.997 
Exp5 0.979 4c 0.971 5c 0.998 
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Figure 51: Template w2_lognormal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.399056 0.401075 
50 0.423594 0.42567 0.4281 
75 0.445144 0.448073 

IQR 0.0460885 0.0469979 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.993 
Poly3 1 2a 0.96 3a 0.992 
Power 0.989 2b 0.958 3b 0.991 

Hill 0.986 2c 0.959 3c 0.992 
Exp3 0.996 4b 0.95 5b 0.991 
Exp5 0.994 4c 0.954 5c 0.991 
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Figure 52: Template w2_lognormal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.380818 0.384356 
50 0.424401 0.427869 0.4281 
75 0.470464 0.473598 

IQR 0.0896464 0.0892417 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.979 
Poly3 0.998 2a 0.935 3a 0.978 
Power 0.976 2b 0.935 3b 0.978 

Hill 0.975 2c 0.934 3c 0.978 
Exp3 0.98 4b 0.926 5b 0.978 
Exp5 0.979 4c 0.931 5c 0.978 
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Figure 53: Template w3_lognormal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.226424 0.226995 
50 0.249991 0.250801 0.2392 
75 0.271589 0.272134 

IQR 0.0451654 0.0451389 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.781 
Poly3 0.988 2a 0.833 3a 0.78 
Power 0.931 2b 0.892 3b 0.846 

Hill 0.867 2c 0.839 3c 0.785 
Exp3 0.386 4b 0.888 5b 0.841 
Exp5 0.386 4c 0.832 5c 0.772 
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Figure 54: Template w3_lognormal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.182798 0.178882 
50 0.243011 0.239842 0.2392 
75 0.293527 0.294127 

IQR 0.110729 0.115245 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.858 
Poly3 0.975 2a 0.88 3a 0.885 
Power 0.937 2b 0.924 3b 0.93 

Hill 0.859 2c 0.877 3c 0.885 
Exp3 0.736 4b 0.927 5b 0.937 
Exp5 0.705 4c 0.874 5c 0.885 
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Figure 55: Template w4_lognormal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.483978 0.485105 
50 0.508746 0.508204 0.5071 
75 0.532366 0.528799 

IQR 0.0483877 0.0436942 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.919 
Poly3 0.971 2a 0.951 3a 0.936 
Power 0.922 2b 0.947 3b 0.924 

Hill 0.951 2c 0.958 3c 0.945 
Exp3 0.913 4b 0.949 5b 0.928 
Exp5 0.942 4c 0.96 5c 0.945 
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Figure 56: Template w4_lognormal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.457513 0.461786 
50 0.499192 0.499209 0.5071 
75 0.555677 0.547561 

IQR 0.0981637 0.0857753 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.95 
Poly3 0.996 2a 0.964 3a 0.964 
Power 0.948 2b 0.957 3b 0.957 

Hill 0.964 2c 0.967 3c 0.965 
Exp3 0.946 4b 0.965 5b 0.959 
Exp5 0.947 4c 0.979 5c 0.977 
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Figure 57: Template h1_lognormal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.08576 0.0857399 
50 0.135251 0.137 0.1443 
75 0.198188 0.205155 

IQR 0.112428 0.119415 

Model Coverage Method Coverage Method Coverage 
Linear 0 1 0.996 
Poly3 0 2a 0.966 3a 0.999 
Power 0 2b 0.965 3b 0.998 

Hill 0.974 2c 0.968 3c 0.999 
Exp3 0 4b 0.962 5b 0.996 
Exp5 0.999 4c 0.962 5c 0.998 
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Figure 58: Template h1_lognormal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.139391 0.128069 
50 0.187716 0.168573 0.1443 
75 0.236928 0.22583 

IQR 0.0975368 0.0977607 

Model Coverage Method Coverage Method Coverage 
Linear 0.005 1 0.739 
Poly3 0.005 2a 0.7 3a 0.731 
Power 0.005 2b 0.816 3b 0.796 

Hill 0.955 2c 0.645 3c 0.667 
Exp3 0 4b 0.879 5b 0.838 
Exp5 0.973 4c 0.77 5c 0.8 
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Figure 59: Template h2_lognormal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.419646 0.424498 
50 0.463087 0.473294 0.4777 
75 0.502162 0.500561 

IQR 0.0825155 0.076063 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.984 
Poly3 0.974 2a 0.973 3a 0.988 
Power 0.984 2b 0.97 3b 0.989 

Hill 0.981 2c 0.973 3c 0.988 
Exp3 0.983 4b 0.96 5b 0.987 
Exp5 0.981 4c 0.968 5c 0.987 
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Figure 60: Template h2_lognormal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.300778 0.294058 
50 0.397386 0.397799 0.4777 
75 0.504696 0.502542 

IQR 0.203918 0.208483 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.986 
Poly3 0.965 2a 0.964 3a 0.992 
Power 0.977 2b 0.985 3b 0.997 

Hill 0.976 2c 0.963 3c 0.992 
Exp3 0.986 4b 0.985 5b 0.997 
Exp5 0.986 4c 0.963 5c 0.992 
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Figure 61: Template h3_lognormal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.101294 0.103851 
50 0.149082 0.154329 0.1688 
75 0.197756 0.206451 

IQR 0.0964614 0.1026 

Model Coverage Method Coverage Method Coverage 
Linear 0 1 1 
Poly3 0 2a 0.971 3a 1 
Power 0 2b 0.97 3b 1 

Hill 1 2c 0.97 3c 1 
Exp3 0 4b 0.966 5b 1 
Exp5 1 4c 0.966 5c 1 
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Figure 62: Template h3_lognormal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.145091 0.144347 
50 0.178532 0.176081 0.1688 
75 0.22341 0.223368 

IQR 0.0783191 0.0790213 

Model Coverage Method Coverage Method Coverage 
Linear 0 1 0.948 
Poly3 0 2a 0.925 3a 0.991 
Power 0 2b 0.919 3b 0.993 

Hill 0.968 2c 0.922 3c 0.988 
Exp3 0.483 4b 0.923 5b 0.997 
Exp5 0.948 4c 0.93 5c 0.995 
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Figure 63: Template h4_lognormal_chronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.361197 0.366285 
50 0.429187 0.437941 0.4556 
75 0.47778 0.484914 

IQR 0.116584 0.118629 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.98 
Poly3 0.961 2a 0.941 3a 0.991 
Power 0.982 2b 0.965 3b 0.996 

Hill 0.973 2c 0.938 3c 0.991 
Exp3 0.984 4b 0.957 5b 0.996 
Exp5 0.966 4c 0.928 5c 0.99 
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Figure 64: Template h4_lognormal_subchronic; Models fit assuming constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.321858 0.326538 
50 0.379188 0.393375 0.4556 
75 0.453001 0.470005 

IQR 0.131143 0.143466 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.976 
Poly3 0.886 2a 0.97 3a 0.997 
Power 0.968 2b 0.984 3b 0.999 

Hill 0.971 2c 0.969 3c 0.997 
Exp3 0.969 4b 0.974 5b 0.999 
Exp5 0.969 4c 0.956 5c 0.996 
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Figure 65: Template w1_lognormal_chronic; Models fit assuming non-constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.176174 0.177007 
50 0.19168 0.19213 0.2021 
75 0.206559 0.2066 

IQR 0.0303858 0.0295928 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.974 
Poly3 0.955 2a 0.973 3a 0.984 
Power 0.956 2b 0.984 3b 0.996 

Hill 0.912 2c 0.967 3c 0.981 
Exp3 1 4b 0.984 5b 0.996 
Exp5 0.927 4c 0.967 5c 0.981 
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Figure 66: Template w1_lognormal_subchronic; Models fit assuming non-
constant variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.165195 0.166403 
50 0.191071 0.192183 0.2021 
75 0.22384 0.225151 

IQR 0.058645 0.0587472 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.937 
Poly3 0.919 2a 0.937 3a 0.967 
Power 0.934 2b 0.948 3b 0.974 

Hill 0.877 2c 0.927 3c 0.962 
Exp3 0.992 4b 0.947 5b 0.974 
Exp5 0.9 4c 0.928 5c 0.962 
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Figure 67: Template w2_lognormal_chronic; Models fit assuming non-constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.39898 0.400564 
50 0.424713 0.42754 0.4281 
75 0.448081 0.450625 

IQR 0.0491019 0.0500615 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.957 
Poly3 1 2a 0.95 3a 0.956 
Power 0.938 2b 0.946 3b 0.956 

Hill 0.921 2c 0.947 3c 0.956 
Exp3 0.97 4b 0.936 5b 0.951 
Exp5 0.947 4c 0.94 5c 0.951 
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Figure 68: Template w2_lognormal_subchronic; Models fit assuming non-
constant variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.381787 0.385298 
50 0.426162 0.430857 0.4281 
75 0.47272 0.476176 

IQR 0.0909328 0.0908777 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.941 
Poly3 0.999 2a 0.929 3a 0.941 
Power 0.934 2b 0.921 3b 0.939 

Hill 0.93 2c 0.926 3c 0.939 
Exp3 0.953 4b 0.91 5b 0.937 
Exp5 0.941 4c 0.921 5c 0.937 
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Figure 69: Template w3_lognormal_chronic; Models fit assuming non-constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.227419 0.22775 
50 0.247814 0.24835 0.2392 
75 0.269499 0.270257 

IQR 0.0420794 0.0425071 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.826 
Poly3 0.995 2a 0.827 3a 0.824 
Power 0.939 2b 0.838 3b 0.85 

Hill 0.876 2c 0.826 3c 0.823 
Exp3 0.108 4b 0.834 5b 0.844 
Exp5 0.237 4c 0.813 5c 0.81 
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Figure 70: Template w3_lognormal_subchronic; Models fit assuming non-
constant variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.185504 0.179291 
50 0.245332 0.241669 0.2392 
75 0.297298 0.297072 

IQR 0.111794 0.117781 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.859 
Poly3 0.98 2a 0.864 3a 0.881 
Power 0.929 2b 0.903 3b 0.909 

Hill 0.846 2c 0.858 3c 0.876 
Exp3 0.313 4b 0.905 5b 0.915 
Exp5 0.584 4c 0.854 5c 0.866 
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Figure 71: Template w4_lognormal_chronic; Models fit assuming non-constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.481565 0.483403 
50 0.508955 0.508025 0.5071 
75 0.534072 0.52863 

IQR 0.052507 0.0452269 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.93 
Poly3 0.977 2a 0.937 3a 0.943 
Power 0.929 2b 0.934 3b 0.94 

Hill 0.955 2c 0.94 3c 0.945 
Exp3 0.446 4b 0.937 5b 0.942 
Exp5 0.955 4c 0.94 5c 0.945 
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Figure 72: Template w4_lognormal_subchronic; Models fit assuming non-
constant variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.453489 0.461124 
50 0.499101 0.498702 0.5071 
75 0.559228 0.544795 

IQR 0.10574 0.0836716 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.954 
Poly3 0.959 2a 0.967 3a 0.978 
Power 0.952 2b 0.964 3b 0.972 

Hill 0.966 2c 0.968 3c 0.978 
Exp3 0.556 4b 0.968 5b 0.973 
Exp5 0.957 4c 0.972 5c 0.979 
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Figure 73: Template h1_lognormal_chronic; Models fit assuming non-constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.0833812 0.0838261 
50 0.137823 0.141109 0.1443 
75 0.197964 0.205351 

IQR 0.114583 0.121525 

Model Coverage Method Coverage Method Coverage 
Linear 0 1 0.992 
Poly3 0 2a 0.96 3a 0.998 
Power 0 2b 0.96 3b 0.998 

Hill 0.973 2c 0.96 3c 0.997 
Exp3 0 4b 0.957 5b 0.995 
Exp5 0.999 4c 0.957 5c 0.995 
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Figure 74: Template h1_lognormal_subchronic; Models fit assuming non-
constant variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.13163 0.124518 
50 0.176081 0.160355 0.1443 
75 0.229743 0.224512 

IQR 0.0981124 0.0999938 

Model Coverage Method Coverage Method Coverage 
Linear 0.196 1 0.772 
Poly3 0.196 2a 0.764 3a 0.769 
Power 0.196 2b 0.866 3b 0.812 

Hill 0.922 2c 0.709 3c 0.716 
Exp3 0.011 4b 0.9 5b 0.845 
Exp5 0.94 4c 0.809 5c 0.803 
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Figure 75: Template h2_lognormal_chronic; Models fit assuming non-constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.424172 0.426072 
50 0.468375 0.478108 0.4777 
75 0.505995 0.501588 

IQR 0.081823 0.0755159 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.971 
Poly3 0.965 2a 0.966 3a 0.98 
Power 0.972 2b 0.96 3b 0.98 

Hill 0.966 2c 0.966 3c 0.98 
Exp3 0.971 4b 0.938 5b 0.98 
Exp5 0.965 4c 0.953 5c 0.98 
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Figure 76: Template h2_lognormal_subchronic; Models fit assuming non-
constant variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.308684 0.305247 
50 0.413429 0.41995 0.4777 
75 0.51256 0.50846 

IQR 0.203875 0.203213 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.971 
Poly3 0.955 2a 0.962 3a 0.982 
Power 0.965 2b 0.986 3b 0.994 

Hill 0.965 2c 0.96 3c 0.981 
Exp3 0.97 4b 0.986 5b 0.994 
Exp5 0.97 4c 0.956 5c 0.98 
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Figure 77: Template h3_lognormal_chronic; Models fit assuming non-constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.100372 0.10284 
50 0.149778 0.154509 0.1688 
75 0.19806 0.206278 

IQR 0.0976883 0.103438 

Model Coverage Method Coverage Method Coverage 
Linear 0 1 1 
Poly3 0 2a 0.969 3a 1 
Power 0 2b 0.968 3b 1 

Hill 0.999 2c 0.968 3c 1 
Exp3 0.064 4b 0.964 5b 1 
Exp5 1 4c 0.964 5c 1 
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Figure 78: Template h3_lognormal_subchronic; Models fit assuming non-
constant variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.144591 0.143486 
50 0.177564 0.176425 0.1688 
75 0.224162 0.224681 

IQR 0.0795715 0.0811951 

Model Coverage Method Coverage Method Coverage 
Linear 0.016 1 0.96 
Poly3 0.016 2a 0.918 3a 0.989 
Power 0.016 2b 0.906 3b 0.992 

Hill 0.978 2c 0.909 3c 0.987 
Exp3 0.365 4b 0.913 5b 0.997 
Exp5 0.97 4c 0.916 5c 0.994 
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Figure 79: Template h4_lognormal_chronic; Models fit assuming non-constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.346389 0.35019 
50 0.415115 0.424361 0.4556 
75 0.472987 0.482987 

IQR 0.126598 0.132797 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.986 
Poly3 0.969 2a 0.941 3a 0.992 
Power 0.987 2b 0.968 3b 0.995 

Hill 0.979 2c 0.938 3c 0.992 
Exp3 0.981 4b 0.956 5b 0.995 
Exp5 0.971 4c 0.918 5c 0.992 
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Figure 80: Template h4_lognormal_subchronic; Models fit assuming non-
constant variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.322756 0.325515 
50 0.372426 0.388331 0.4556 
75 0.449126 0.463604 

IQR 0.12637 0.13809 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.974 
Poly3 0.887 2a 0.968 3a 0.993 
Power 0.97 2b 0.987 3b 0.998 

Hill 0.964 2c 0.967 3c 0.992 
Exp3 0.969 4b 0.978 5b 0.998 
Exp5 0.968 4c 0.956 5c 0.991 
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Figure 81: Template p1_lognormal_chronic; Models fit assuming non-constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.153559 0.153268 
50 0.161469 0.161303 0.1345 
75 0.169948 0.169612 

IQR 0.0163889 0.0163438 

Model Coverage Method Coverage Method Coverage 
Linear 0.194 1 0.176 
Poly3 0.156 2a 0.166 3a 0.164 
Power 0.164 2b 0.246 3b 0.156 

Hill 0.604 2c 0.141 3c 0.13 
Exp3 0 4b 0.26 5b 0.161 
Exp5 0.694 4c 0.146 5c 0.14 
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Figure 82: Template p1_lognormal_subchronic; Models fit assuming non-
constant variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.152987 0.151599 
50 0.17129 0.170004 0.1345 
75 0.198557 0.196814 

IQR 0.0455704 0.045215 

Model Coverage Method Coverage Method Coverage 
Linear 0.645 1 0.561 
Poly3 0.548 2a 0.549 3a 0.562 
Power 0.566 2b 0.606 3b 0.555 

Hill 0.749 2c 0.462 3c 0.458 
Exp3 0.014 4b 0.655 5b 0.59 
Exp5 0.667 4c 0.501 5c 0.503 
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Figure 83: Template p2_lognormal_chronic; Models fit assuming non-constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.370432 0.368339 
50 0.462292 0.462792 0.4775 
75 0.537635 0.537827 

IQR 0.167203 0.169488 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.925 
Poly3 0.929 2a 0.94 3a 0.911 
Power 0.919 2b 0.961 3b 0.927 

Hill 0.916 2c 0.941 3c 0.911 
Exp3 0.925 4b 0.96 5b 0.926 
Exp5 0.923 4c 0.94 5c 0.911 
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Figure 84: Template p2_lognormal_subchronic; Models fit assuming non-
constant variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.303709 0.300626 
50 0.408924 0.410344 0.4775 
75 0.57092 0.570033 

IQR 0.267211 0.269406 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.936 
Poly3 0.912 2a 0.943 3a 0.96 
Power 0.896 2b 0.966 3b 0.984 

Hill 0.897 2c 0.934 3c 0.959 
Exp3 0.924 4b 0.965 5b 0.984 
Exp5 0.926 4c 0.936 5c 0.959 
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Figure 85: Template p3_lognormal_chronic; Models fit assuming non-constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.159689 0.158098 
50 0.181911 0.180631 0.1541 
75 0.202974 0.200859 

IQR 0.0432851 0.0427616 

Model Coverage Method Coverage Method Coverage 
Linear 0 1 0.543 
Poly3 0 2a 0.527 3a 0.49 
Power 0 2b 0.715 3b 0.553 

Hill 0.879 2c 0.481 3c 0.451 
Exp3 0.042 4b 0.735 5b 0.577 
Exp5 0.885 4c 0.539 5c 0.489 
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Figure 86: Template p3_lognormal_subchronic; Models fit assuming non-
constant variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.18706 0.179529 
50 0.210786 0.207417 0.1541 
75 0.229675 0.228489 

IQR 0.0426157 0.0489601 

Model Coverage Method Coverage Method Coverage 
Linear 0 1 0.276 
Poly3 0 2a 0.27 3a 0.222 
Power 0 2b 0.579 3b 0.321 

Hill 0.848 2c 0.217 3c 0.186 
Exp3 0.56 4b 0.629 5b 0.355 
Exp5 0.85 4c 0.317 5c 0.256 
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Figure 87: Template p4_lognormal_chronic; Models fit assuming non-constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.450839 0.450706 
50 0.509469 0.509173 0.5112 
75 0.565634 0.559834 

IQR 0.114795 0.109128 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.925 
Poly3 0.915 2a 0.946 3a 0.919 
Power 0.926 2b 0.949 3b 0.923 

Hill 0.935 2c 0.949 3c 0.92 
Exp3 0.91 4b 0.952 5b 0.926 
Exp5 0.934 4c 0.945 5c 0.919 
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Figure 88: Template p4_lognormal_subchronic; Models fit assuming non-
constant variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.342916 0.341238 
50 0.440979 0.445106 0.5112 
75 0.583854 0.576371 

IQR 0.240937 0.235134 

Model Coverage Method Coverage Method Coverage 
Linear 1 1 0.921 
Poly3 0.908 2a 0.937 3a 0.958 
Power 0.911 2b 0.972 3b 0.989 

Hill 0.932 2c 0.935 3c 0.956 
Exp3 0.909 4b 0.976 5b 0.989 
Exp5 0.916 4c 0.938 5c 0.959 
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Figure 89: Template e1_lognormal_chronic; Models fit assuming non-constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods 
True 
BMD 

25 0.171188 0.160622 
50 0.23601 0.234485 0.154 
75 0.366385 0.317186 

IQR 0.195198 0.156564 

Model Coverage Method Coverage Method Coverage 
Linear 0 1 0.601 
Poly3 0 2a 0.557 3a 0.569 
Power 0 2b 0.754 3b 0.675 

Hill 0.905 2c 0.528 3c 0.545 
Exp3 0 4b 0.777 5b 0.687 
Exp5 0.901 4c 0.596 5c 0.6 
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Figure 90: Template e1_lognormal_subchronic; Models fit assuming non-
constant variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods 
True 
BMD 

25 0.289409 0.194234 
50 0.452251 0.411534 0.154 
75 0.64184 0.647884 

IQR 0.352431 0.453649 

Model Coverage Method Coverage Method Coverage 
Linear 0.004 1 0.234 
Poly3 0.005 2a 0.221 3a 0.206 
Power 0.002 2b 0.625 3b 0.372 

Hill 0.847 2c 0.171 3c 0.168 
Exp3 0.01 4b 0.795 5b 0.479 
Exp5 0.896 4c 0.361 5c 0.313 
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Figure 91: Template e2_lognormal_chronic; Models fit assuming non-constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.540035 0.537044 
50 0.645226 0.65591 0.4225 
75 0.771952 0.789654 

IQR 0.231917 0.25261 

Model Coverage Method Coverage Method Coverage 
Linear 0.119 1 0.318 
Poly3 0.116 2a 0.308 3a 0.277 
Power 0.117 2b 0.704 3b 0.351 

Hill 0.898 2c 0.271 3c 0.229 
Exp3 0.036 4b 0.732 5b 0.365 
Exp5 0.941 4c 0.304 5c 0.258 
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Figure 92: Template e2_lognormal_subchronic; Models fit assuming non-
constant variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.486407 0.482779 
50 0.680443 0.700083 0.4225 
75 1.07779 1.0326 

IQR 0.59138 0.549819 

Model Coverage Method Coverage Method Coverage 
Linear 0.571 1 0.651 
Poly3 0.535 2a 0.653 3a 0.634 
Power 0.546 2b 0.797 3b 0.67 

Hill 0.737 2c 0.581 3c 0.548 
Exp3 0.468 4b 0.836 5b 0.702 
Exp5 0.899 4c 0.609 5c 0.573 
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Figure 93: Template e3_lognormal_chronic; Models fit assuming non-constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.155965 0.15494 
50 0.202898 0.199268 0.1675 
75 0.261512 0.24923 

IQR 0.105547 0.0942898 

Model Coverage Method Coverage Method Coverage 
Linear 0 1 0.694 
Poly3 0 2a 0.668 3a 0.654 
Power 0 2b 0.824 3b 0.751 

Hill 0.88 2c 0.65 3c 0.641 
Exp3 0.004 4b 0.832 5b 0.759 
Exp5 0.882 4c 0.698 5c 0.68 
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Figure 94: Template e3_lognormal_subchronic; Models fit assuming non-
constant variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.264619 0.209358 
50 0.368416 0.340183 0.1675 
75 0.454675 0.436225 

IQR 0.190055 0.226867 

Model Coverage Method Coverage Method Coverage 
Linear 0 1 0.254 
Poly3 0 2a 0.244 3a 0.225 
Power 0 2b 0.665 3b 0.405 

Hill 0.862 2c 0.209 3c 0.189 
Exp3 0.008 4b 0.76 5b 0.466 
Exp5 0.875 4c 0.369 5c 0.329 
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Figure 95: Template e4_lognormal_chronic; Models fit assuming non-constant 
variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.533157 0.526414 
50 0.60137 0.60161 0.4126 
75 0.680067 0.681783 

IQR 0.14691 0.155369 

Model Coverage Method Coverage Method Coverage 
Linear 0.011 1 0.198 
Poly3 0.011 2a 0.198 3a 0.167 
Power 0.011 2b 0.669 3b 0.268 

Hill 0.938 2c 0.164 3c 0.135 
Exp3 0.093 4b 0.704 5b 0.278 
Exp5 0.939 4c 0.213 5c 0.165 
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Figure 96: Template e4_lognormal_subchronic; Models fit assuming non-
constant variance 

Percentiles and Inter-
quartile Range for 

BMD Estimates 
BMD-Averaging 

Methods 
Model-Averaging 

Methods True BMD 
25 0.486769 0.473158 
50 0.60089 0.60175 0.4126 
75 0.780708 0.81835 

IQR 0.293939 0.345191 

Model Coverage Method Coverage Method Coverage 
Linear 0.41 1 0.572 
Poly3 0.382 2a 0.572 3a 0.551 
Power 0.384 2b 0.787 3b 0.599 

Hill 0.798 2c 0.498 3c 0.433 
Exp3 0.548 4b 0.811 5b 0.643 
Exp5 0.899 4c 0.537 5c 0.471 
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APPENDIX B. FORMAT OF AN AVG FILE FOR INPUT 
INTO CMODELAVG.EXE 

> Line 1: Model Names 

Linear Polynomial3 Power Hill Exponential3 Exponential5 [list models available] 

> Line 2: Model Weights: 0 < wt(i) < 1; ∑wt(i) = 1 

0.5 0.5 0 0 0 0  [in this example, linear and Poly3 
models would be run with equal prior 
wt] 

> Line 3: Restricted: 0=No, 1=Yes 

0 1 1 1 1 1 [same number of flags as in Line 2, in 
same order] 

> Line 4: Options: a b c d e f g h 

> 4a: Number bootstrap iterations 

> 4b: Confidence limit 

> 4c: BMR Type: 0=Absolute Deviation, 1=Standard Deviation 

2=Relative Deviation, 3=Point Estimate (currently only 
relative deviation, “2,” is available) 

> 4d: BMRF 

> 4e: Distribution: 0=Normal, 1=Lognormal (currently only “0,” Normal, is 
available) 

> 4f: Constant Variance: 0=No, 1=Yes 

> 4g: Random Seed: 16 hex bytes, or “0” for automatic selection of seed) 

> 4h: Adverse Direction: -1=Down, 1=Up  

1000 0.95 2 0.1 0 1 0 1 [in this example, a 95% lower bound on 
a relative risk of 0.01 is computed 
using 1000 bootstrap iterations; 
models assume constant variance; 
random seed is picked automatically, 
and the adverse direction is “up”] 

> Line 5: File name, path, or other identifier(s) 

D:\Projects\ModelAvg\ModelAvg\Data\Continuous4.dax 

> Line 6: Data Column Headers 

Dose N Mean Std 

> Line 7+: Data (in order given by Headers; 1 line per dose group) 

0 10 1.61 0.12 

35 10 1.62 0.13 

105 10 1.71 0.11 

316 10 1.91 0.15 

625 10 2.5 0.13 

 
.
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APPENDIX C. EXAMPLE CSV FILE (REAL_DATA_UP.CSV) FOR RUNNING 
WITH MATEST2.SH 

Note: File name MUST be the same as the name in cell A1 (though the name in A1 need not have the underscores).
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