Background and Support Materials for Peer Consultation Webinar Workshop on Model Averaging Methods for Dose-Response Analysis

6 November 2015

U. S. Environmental Protection Agency Office of Research and Development National Center for Environmental Assessment Washington, D.C.

Disclaimer

This information is distributed solely for the purpose of pre-dissemination discussion under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

CONTENTS

1.	INTRODUCTION	1
	1.1. Purpose	1
	1.2. Background	2
2.	METHODS	3
	2.1. Model Averaging Methods Under Consideration	3
	2.2. Implementation of Model Averaging Methods	7
	2.2.1. Available Models and Specification of Model Modifications	7
	2.3. Running the Model Averaging Software	9
	2.4. Test Runs: Methods	13
	2.4.1. Real Datasets	13
	2.4.2. Simulated Datasets	14
3.	RESULTS	15
	3.1. Timing	15
	3.2. BMDL Estimates	16
	3.2.1. Real Data	16
	3.2.2. Simulated data	17
4.	DISCUSSION	20
	4.1. Overall Observations	21
	4.2. Extensions to Continuous Data Model Averaging Software/Methods	23
	4.3. Applicability to Dichotomous Data	25
	4.4. Further Examination and Selection of Model Averaging Methods	26
5.	REFERENCES	27
6.	TABLES	28
7.	DIAGRAMS	35
8.	FIGURES	38
APF	PENDIX A. BIBLIOGRAPHY OF LITERATURE ON MODEL AVERAGING	126
APF	PENDIX B. FORMAT OF AN AVG FILE FOR INPUT INTO CMODELAVG.EXE	133
APF	PENDIX C. EXAMPLE CSV FILE (REAL_DATA_UP.CSV) FOR RUNNING WITH MATEST2.SH	134

1. INTRODUCTION

1.1. Purpose

The primary purpose of this document and associated software is to support discussions at the EPA model averaging workshop to be held December 10-11, 2015.¹ This support material is intended to assist in the evaluation of prevailing model averaging methods and options. The software package facilitates the analysis of continuous data, i.e., dose-response data that have responses measured (and reported) on a continuous scale (e.g., body weight or serum enzyme levels). The software and the test runs that have been completed using it are the first step in a process in which various model averaging techniques will be subject to peer consultation and comment, with an ultimate goal to identify model averaging approaches that are of greatest advantage in the context of dose-response analysis and health assessment.

While model averaging may be viewed as one of several approaches designed to address model uncertainty, it has been the primary focus of recent EPA research because it has been extensively vetted in the literature for this purpose. It also offers potential advantages over existing approaches that rely on selection of a single model, including the ability to take into account prior knowledge (e.g., biological and historical information) regarding models and parameters under consideration. While the other approaches (e.g., semi-parametric modeling) may turn out to be viable options in some circumstances, this document and the scope of the research/development process are limited to methods that employ averaging. No attempt is made at this time to compare the averaging methods described here to the alternative approaches.

The model averaging techniques described in this document have been amalgamated into a prototype software package that performs all of the methods in a single pass. At this stage, the benefit of having all methods computed simultaneously is that it allows for a comparison of the results, both with respect to run times and with respect to BMDL estimates. Thus, the software provides the means by which systematic and extensive testing can be performed by, and peer consultation can be obtained from, a variety of experts participating in the workshop.

In addition to describing the methods implemented in the associated software package, this document presents a set of test results of the methods applied to some real and some simulated datasets. Of primary interest here are run times (because some of the methods employ bootstrap-based calculations) and the benchmark dose (BMD) values estimated. These results are the start of

¹ For information on the planned December 10-11, 2015 model averaging peer consultation webinar workshop visit <u>http://www2.epa.gov/bmds/model-averaging-webinar-workshop-announcement</u>.

the process of evaluation of the proposed methods described below. Preliminary observations about the relative outputs of the model averaging methods are provided. Finally, additional steps and suggestions for enhancing the software's utility for testing the methods and assumptions are presented.

1.2. Background

Model development to describe available dose-response data and predict the sensitivity of specific species to specific toxic chemicals can be quite complex, largely because of the highly interdisciplinary nature of the underlying processes, broad variety of the molecular targets and modes of action (MOA), and a large number of diverse factors involved.

This complexity may (and often does) result in model uncertainty – situations where modeling outcome depends on the choice of a particular model and/or the assignment of values to its parameters. Different models may yield close but still different results, or small modifications in the data or the model may trigger a qualitative change in the modeling outcome. For example, when predicting low-dose response using high-dose data, the outcome may dramatically change depending on the choice of a particular model [1].

To address model uncertainty, concepts of model selection and model averaging were introduced in the 1970's [2]. Model selection methods, including those currently employed by EPA [3,4], provide means to identify the best model out of a given set of models, whereas model averaging methods employ weighted averaging of results from multiple models in hopes of improving the quality of an assessment and providing more accurate predictions [2].

The research areas of model selection and model averaging are broad and so a complete description of all available approaches is beyond this document's scope. Instead, the support material prepared for this workshop focuses on modern approaches to model averaging that are best suited for dose-response analysis for health assessments, specifically on Bayesian model averaging introduced in the 1990's. The latter has been proposed as an alternative to the single-model, selected benchmark dose (BMD) [5]. The literature on model averaging is large, and the approaches to it discussed in this document represent a synthesis (with variations) of many of the considerations presented in that literature. Therefore, rather than cite all potential sources for the methods presented here, we have provided a bibliography of citations (Appendix A) that form the background for the discussions to follow. There has been active discussion of the merits of model averaging with respect to improving inferences, and that discussion is reflected in the bibliography.

To broadly apply model averaging to health assessment tasks, one needs to identify a standardized approach. As a first step towards that goal, EPA initiated work on the research and development of model averaging methods in 2013. The materials developed and distributed in support of this workshop have undergone internal reviews by the Agency's Statistical Workgroup (SWG), which have inspired important enhancements to the methods, test procedures and prototype software such as the addition of exponential models to the suite of models being

averaged, enhancements to the bootstrap approach for derivation of BMD lower bound confidence limits (BMDLs) and modifications that allow users to apply non-equal prior weights to models being averaged (e.g., based on biological plausibility). The methods described here and implemented in the associated software package were developed for continuous response data, but may be applicable, with relatively minor modifications, to dichotomous response data (see discussion in Section 4.3).

The remainder of this document presents five methods (with submethods) that are proposed options for implementation in dose-response modeling contexts. Those methods have been implemented in a software package. The construction, testing, and proposed usage of the software package for evaluating the averaging approaches it implements are also described in the following sections.

2. METHODS

2.1. Model Averaging Methods

The methods investigated and described in this document have all been proposed in (or are simple extrapolations from) approaches that have been presented in the literature. While the majority of model averaging techniques are based on Bayesian statistics [6], and while a full Bayesian analysis may be possible in some instances, simpler approximate methods for averaging have been presented. The methods under consideration here fall within the set of those "simpler" approaches.

Those methods depend on computing model weights in order to define the weighted average to be applied. Kang et al. [7] defined weights based on the Akaike information criterion (AIC). Weights based on the Bayesian information criterion (BIC) have been examined and found to provide adequate results much faster (than the corresponding full Bayesian analysis), in that case for non-informative priors [6]. Use of the BIC has been compared to the use of other information criteria such as the AIC, its finite-sample corrected version (AICc), and the focused information criterion (FIC), or their modifications (see for example, [2], [6], and [8]]. The overall literature does not clearly indicate that any of these choices are categorically better than any other.

Nevertheless, the methods incorporated into the prototype software and evaluated here use model weighting (or model-estimate weighting) that is based on BIC (see [9] for a rationale for that choice based on Bayes factors). Additional approaches using other information criteria or other weighting methods altogether could be proposed and/or considered as part of the peer-consultation process. Other weighting schemes would be trivial to implement given the Model Averaging software version discussed here, though the implications may be different.

3

Model weights are defined as follows.

Let

$$m(i, j) = exp(-BIC(i, j)/2)$$

for model i in bootstrap iteration j. BIC(i, j) is the BIC value being considered for that particular iteration, j, of any of the methods for model averaging described (2a, 2b, ..., 5b, 5c). BIC(i,j) may differ from method to method (some use original-data BICs, others use iteration-specific BICs), even for the same model i.

Then the weights are given by

wt(i,j) = pw(i)*m(i,j) /
$$\sum_{k=1}^{M} pw(k) * m(k,j)$$
. Eq. 1

where pw(i) is the prior weight given to model i, with a total of M models.

In general, BIC is defined as

$$BIC(i, j) = -2L(i, j) + p_i \log(N)$$

where L(i,j) is the log-likelihood maximized by maximum likelihood estimation (MLE) for the *i*th model at the jth bootstrap iteration, p_i is the total number of the parameters in the ith model, and *N* is the experimental sample size.

Taking the current outputs available from dose-response models (as implemented in BMDS) and then considering the various approaches suggested by the synthesis of the literature mentioned above (particularly the publications by Wheeler and Bailer, [10] and [11], who specifically looked at averaging for dose-response models applied to dichotomous endpoints), five model-averaging methods were selected as a starting point² for implementation and then testing of their properties:

Method 1: A simple extension of the calculations normally done with dose-response modeling, e.g., as implemented in BMDS.

- ° Calculate lower statistical confidence limit of the benchmark dose (the BMDL) for each included model using MLE and profile likelihood methods;
- ° Calculate individual model weights using BIC (Eq. 1);
- ° Calculate the weighted averaged BMDL as a weighted sum of the individual BMDLs for each model.

² We realize that other methods could be defined, but those that have some history in risk assessment contexts have been the primary focus here.

Method 2: Moerbeek et al. [12] proposed using bootstrap methods for deriving BMDLs. Methods 2 – 5 are all based on versions of bootstrapping for BMDL calculation.

- Method 2 uses a semi-parametric bootstrap, sampling from normal distributions defined by the observed means and standard deviations in the dataset under consideration, to derive BMDL values.
- ° Three submethods (a-c) implemented for this method differ with respect to if and how the BMDL estimates so derived are used.
 - a) Following the work of Wheeler and Bailer [10] an averaged BMDL was computed from the bootstrap-based, model-specific BMDLs with weights determined from Eq. 1 and BICs derived from the original dataset.
 - b) In place of averaging the BMDLs, the weighted BMD for each bootstrap iteration is calculated (using Eq. 1). The 5th percentile of the weighted BMDs over all iterations is selected as the BMDL.
 - Weights for averaging in each iteration are determined by the weights (BICs) calculated in that specific iteration.
 - c) In place of averaging the BMDLs, the weighted BMD for each bootstrap iteration is calculated (using Eq. 1). The 5th percentile of the weighted BMDs over all iterations is selected as the BMDL.
 - Weights for averaging in each iteration are determined by the weights (BICs) calculated from the original dataset.

Method 3: The same as Method 2 except with respect to the basis for the bootstrap sampling.

- ^o Method 3 uses parametric bootstrapping [6]. Each simulated dataset was generated from distributions defined by the means and variances predicted by one of the models fit to the original data. The model used was selected randomly in accordance with the BIC-based weights (Eq. 1) when fit to the original data. Note that those weights are fixed and constant once the original data have been fit by all the models. The means and variances for the normal response distributions associated with the dose groups were equal to the predicted means and variances from that model.
- ° The three submethods (a-c) implemented for this method differ with respect to if and how the BMDL estimates so derived are used.
 - a) Following the work of Wheeler and Bailer [10] an averaged BMDL was computed from the bootstrap-based, model-specific BMDLs with weights determined from Eq. 1 with BICs derived from original dataset.
 - b) In place of averaging the BMDLs, the weighted BMD for each bootstrap iteration is calculated (using Eq. 1). The 5th percentile of the weighted BMDs over all iterations is selected as the BMDL.

- Weights for averaging in each iteration are determined by the weights (BICs) calculated in that specific iteration.
- c) In place of averaging the BMDLs, the weighted BMD for each bootstrap iteration is calculated (using Eq. 1). The 5th percentile of the weighted BMDs over all iterations is selected as the BMDL.
 - Weights for averaging in each iteration are determined by the weights (BICs) calculated from the original dataset.

Method 4: Based on the "model averaging" concept [11], in which model predictions are averaged (for all doses) and those "average model" predictions are used to derive BMDs and BMDLs.

- ° Generate Bootstrap using the semi-parametric procedure (from normal distributions defined by the observed means and variances).
- ^o Identify the dose such that the averaged response (using Eq. 1) at that dose is equal to the response that corresponds to the definition of the BMR, relative to the averaged response for dose equal to zero.³ Do this for each bootstrap iteration. The 5th percentile of the identified doses, over the bootstrap iterations, is set to the BMDL.
- The two submethods b and c⁴ implemented for this method differ with respect to the weighting used to average the responses in each iteration:
 - b) Weights for averaging in each iteration are determined by the weights (BICs) calculated in that specific iteration.
 - c) Weights for averaging in each iteration are determined by the weights (BICs) calculated from the original dataset.

Method 5: The same as Method 4 except for the basis for the bootstrap sampling.

- Generate bootstrap samples using the parametric procedure (using normal distributions defined by model-predicted means and variances; model chosen randomly, with model selection probability dictated by the original BIC-based model weights).
- ^o Identify the dose such that the averaged response (using Eq. 1) at that dose is equal to the response that corresponds to the definition of the BMR, relative to the averaged response for dose equal to zero. Do this for each bootstrap iteration. The 5th percentile of the identified doses, over the bootstrap iterations, is set to the BMDL.
- [°] The two submethods b and c implemented for this method differ with respect to the weighting used to average the responses in each iteration:

³ For example, with the BMR being 10% change in response, the BMD is that dose at which the averaged response is 1.1 (or 0.9 for decreasing responses) times the averaged background response.

⁴ There is no submethod a for Methods 4 and 5.

- b) Weights for averaging in each iteration are determined by the weights (BICs) calculated in that specific iteration.
- c) Weights for averaging in each iteration are determined by the weights (BICs) calculated from the original dataset.

Table 1 summarizes the approaches and differences among the five methods and their submethods. Diagrams 1a and 1b show the methods as flow charts delineating the steps in the processes. The methods will be referred to as Method 1, Methods 2a - 2c, Methods 3a – 3c, Methods 4b – 4c, and Methods 5b – 5c, as defined here and in Table 1.

Method 1 and the "a" submethods average BMDLs (or their bootstrap equivalents). The "b" and "c" submethods compute or average BMDs and then determine a percentile over all bootstrap iterations to be the BMDL estimate. These are two very different approaches. Both have been investigated in the literature on dichotomous dose-response models ([10, 11]).

No bias corrections or accelerating options (see [13]) for using bootstrap results have been employed here.

2.2. Implementation of Model Averaging Methods

2.2.1. Available Models and Specification of Model Modifications

The current version of the Model Averaging software implements the following six models:

- Linear
- Poly3 (Polynomial with degree 3)
- Power
- Hill
- Exponential 3 (Exp3)
- Exponential 5 (Exp5)

Equations for these models are given in the BMDS Help file (available at http://www2.epa.gov/bmds/benchmark-dose-software-bmds-user-manual). The Discussion Section offers suggestions for inclusion of additional models, but this set was chosen because they were considered to span the range of possible curve shapes available in BMDS.

For the purposes of the Model Averaging software, slight modifications were made to the currently available models in BMDS⁵:

⁵ EPA plans to make future versions of BMDS consistent with these modifications, where appropriate.

- The Linear model is a limiting case of the Poly3 model. Hence, its likelihood should always be less than or equal to that from the Poly3 model. In any case where the likelihood for the Poly3 model was less than that for the Linear model (indicating a problem of fitting by the Poly3 model), Poly3 model results (log-likelihood, parameter estimates, model predictions) were set equal to the corresponding values from the Linear model.
- The Power model is a limiting case of the Hill model. Hence, its likelihood should always be less than or equal to that from the Hill model. In any case where the likelihood for the Hill model was less than that for the Power model (indicating a problem of fitting by the Hill model), Hill model results (log-likelihood, parameter estimates, model predictions) were set equal to the corresponding values from the Power model.
- The Exp3 model is a limiting case of the Exp5 model. Hence, its likelihood should always be less than or equal to that from the Exp5 model. In any case where the likelihood for the Exp5 model was less than that for the Exp3 model (indicating a problem of fitting by the Exp5 model), Exp5 model results (log-likelihood, parameter estimates, model predictions) were set equal to the corresponding values from the Exp3 model.
- For all models, if the BMD estimate was greater than 1000 times the maximum dose in the dataset under consideration, the BMD reported by the Model Averaging software is 9999 times that maximum dose. This provides an easily identifiable flag for when a model is extremely flat (including perfectly flat, with associated infinite BMD). That identifiability extends to the averaging: averaged values that include a BMD of 9999 times the maximum dose are still apparent after the averaging has been done. Moreover, the averaged values will be on the high end of the distribution of averaged BMDs, so percentiles of interest for defining the BMDL (e.g., the 5th percentile for a 95% confidence interval) are insensitive to the exact value chosen to substitute for extremely large (perhaps infinite) BMD estimates.
- A BMD having the value of -9999 for a model run indicates failure to converge. The flag of -9999 is treated in the Model Averaging software as a number for the purposes of averaging the BMDs. Any negative values of averaged BMDs are ignored when percentiles across the bootstrap iterations are computed.

Other constraints currently imposed on the Model Averaging runs include the following (in some cases, options that could be added in a future version are listed):

- In the Model Averaging software distributed with this document, the user must specify the adverse direction rather than allowing the program to select it automatically. This is to ensure that, for the BMD computations performed for all bootstrap generated datasets, the BMD is consistently associated with the same magnitude of response in the same direction the user considers to be the adverse direction. Restrictions on model parameters (for the Linear, Poly3, Exp3, and Exp5 models in the current version) are linked to the specified adverse direction and cannot be changed. For example, if the adverse direction is up, then the dose coefficients of the Linear and Poly3 models, when restricted, are restricted to be non-negative.
- The BMR type must be relative deviation. Future versions could include other BMR options such as the absolute deviation, standard deviation, and point estimate. These are options offered in BMDS.

- The response data are assumed to be normally distributed. Future versions could also allow the assumption of a lognormal distribution for the underlying continuous responses.
- No parameter values for any of the models can be specified to be equal to a user-selected value. Future versions could allow users to inform model parameter estimations with prior information (e.g., regarding parameter ranges/boundaries).
- For this version of the Model Averaging software, EPA used datasets with at least four dose groups. This is because important models that EPA wanted to test, such as the Poly3, Hill, and Exp5 models, have four parameters and will not run for datasets with fewer than four dose groups. In this version of the model averaging software, smaller datasets will result in null results because the models will quit when they determine that the number of parameters is greater than the number of observations. As discussed in Section 4.2, a later version could make adjustments for the number of dose groups in a dataset such as applying parameter constraints when the number of parameters exceeds the number of dose groups, or running a subset of the models on the dataset in question.

2.3. Running the Model Averaging Software

Model averaging software designed for purposes of the December 10-11, 2015 peer consultation workshop was distributed on November 10, 2015 as two zip files.⁶ Software for performing model runs on a single dataset using a Windows graphical user interface (GUI) (Run Options 1) are contained in the file "ModelAvgGUI_20151106.zip." Software for performing model runs on a multiple datasets in a batch fashion (Run Options 2) are contained in the file "ModelAvgBatch_20151106.zip." The datasets used to perform the batch test runs described in this document are contained in a third zip file called "MA_data.zip."

Run Option 1: For single datasets, one can run a graphical user interface (GUI) which displays the various elements affecting the software's behavior. Instructions for using the GUI are contained the file "BMDS Model Averaging Quick Start.docx" distributed within the "ModelAvgGUI_20151106.zip" file. The following is a screenshot showing the default options of the model averaging GUI.

⁶ Visit <u>http://www2.epa.gov/bmds/model-averaging-webinar-workshop-announcement</u> to download the software prior to the workshop. Contact Jeff Gift, Ph.D., NCEA, at gift.jeff@epa.gov or by phone at 919-541-4828 with questions concerning the use of the software.

🖳 BMDS Model Averaging				[- • ×	
File Tools						
Dataset Name Click here to c	hoose a data	aset				
Model Options			Column Mapping			
Adverse Dir. Up)	_		•		
BMR Type Re	el. Dev.	•	# Subjects		•	
Confidence Level		0.95	Mean		•	
BMRF		0.1	Std. Dev.		•	
Distribution	ormal	-	Response		-	
Const. Variance						
Automatic Seed Prior Weights Distribute prior r	nodel weights	equally	Sum of Prior We	eights 1	.00000	
Model Name	Inclue	de?	Restrict?	Р	rior Weight	
Lir	ear 🗸				0.166667	
Polynom	ial3 🛛 🗸				0.166667	
Po	wer 🔽				0.166667	
	Hill				0.166667	
Exponent	ial3 🔽			0.166667		
Exponent	ial5 🛛 🔽				0.166667	
Run			Save S	ave As	S Close	
Ready						

The GUI automatically creates and runs the avg text file that is required for input into the model averaging program. The format for an avg file is presented in Appendix B. These avg text files can also be created using any word processing program and run from the DOS command line by navigating within the DOS program of your computer to the folder that contains the model averaging executable (CModelAvg.exe) and the avg file of interest and entering the following command at the DOS prompt.

The asterisk in the above represents the base name of the selected avg file. The output file (having an extension of .log) will have that base name.

Run Option 2: The "matest2.sh" shell script distributed within the "ModelAvgBatch_20151106.zip" file, can be used, along with a csv dataset file, to create and run avg files automatically for multiple datasets. The "matest2.sh" program must be called from a MinGW command window. MinGW, which stands for "Minimalist GNU for Windows," provides an Open Source tool set that resembles Linux for building and running applications on Microsoft Windows.

To install MinGW you must first download the MinGW installer.⁷ You will be asked to designate an installation directory with the default being "c:\MinGW." If you choose to change the install location, be sure to install into a directory for which you have administrative rights and no spaces in the directory path name. Select "...on the desktop" under the program shortcuts options. Once installed, double-click on the "MinGW installer" short-cut on your desktop and you should see the following screen.

Installation Package Settin	ngs			Help				
Basic Setup	Package	Class Installed Version	Repository Version	Description				
All Packages	S mingw-developer-tool	bin	2013072300	An MSYS Installation for MinGW Developers (n				
	mingw32-base	bin	2013072200	A Basic MinGW Installation				
	mingw32-gcc-ada	bin	4.8.1-4	The GNU Ada Compiler				
	mingw32-gcc-fortran	bin	4.8.1-4	The GNU FORTRAN Compiler				
	mingw32-gcc-g++	bin	4.8.1-4	The GNU C++ Compiler				
	mingw32-gcc-objc	bin	4.8.1-4	The GNU Objective-C Compiler				
	🐑 msys-base	bin	2013072300	A Basic MSYS Installation (meta)				
	<							
	General Description Depe A Basic MinGW Installation This meta package provides libraries and windows API su	endencies Installed Files V on s a basic GCC installation, a upport, mingw32-make, and	ersions nd includes the C com a debugger. Other com	piler, linker and other binary tools, the runtime ponents can be added manually as needed.				
	General Description Depe A Basic MinGW Installatio This meta package provides libraries and windows API su	endencies Installed Files V on s a basic GCC installation, a upport, mingw32-make, and	ersions nd includes the C com a debugger. Other com	piler, linker and other binary tools, the runtime ponents can be added manually as needed.				
	General Description Depe A Basic MinGW Installation This meta package provides libraries and windows API su	endencies Installed Files V on s a basic GCC installation, a upport, mingw32-make, and	ersions nd includes the C com a debugger. Other com	piler, linker and other binary tools, the runtim ponents can be added manually as needed.				
	General Description Depe A Basic MinGW Installatic This meta package provides libraries and windows API su	andencies Installed Files V on s a basic GCC installation, a upport, mingw32-make, and	ersions nd includes the C com a debugger. Other com	piler, linker and other binary tools, the runtim ponents can be added manually as needed.				
	General Description Depe A Basic MinGW Installatic This meta package provides libraries and windows API su	andencies Installed Files V on s a basic GCC installation, a upport, mingw32-make, and	ersions nd includes the C com a debugger. Other com	piler, linker and other binary tools, the runtim ponents can be added manually as needed.				

In this window, select "Basic Setup" and choose "mingw-developer-toolkit," "mingw32base" and "msys-base." Then click on "Installation," then "Apply Changes." Navigate within Windows Explorer to the installation location you designated, locate the "msys.bat" file within the "msys\1.0" folder and create a shortcut to it from your desktop. Double-click on the "msys.bat" short-cut. Using the "cd" command (type "help cd" for a definition of this command) to navigate in

⁷ See the BMDS Source Code Download page (<u>http://www2.epa.gov/bmds/download-benchmark-dose-software-bmds-source-code</u>) for additional details and download links.

the MinGW32 window to the ModelAvgBatch folder that you extracted from the "ModelAvgBatch_20151106.zip" file and then type the following:

Matest2.sh <test set name> <adverse dir> <variance flag> <# iterations>

where:

- <test set name> = csv file name (**without the 'csv' extension**). This **MUST** match the test name in the top-left cell of the csv file (cell A1 when viewing the CSV file in Excel).
- <adverse dir> = -1 or 1 for down or up direction of adversity, respectively
- <variance flag> = 1 for constant variance, 0 for non-constant (modeled) variance
- <# iterations> = optional argument indicating number of bootstrap iterations to run for each dataset (defaults to 1,000; 100 is recommended for preliminary runs).

The matest2.sh file and the csv file to be run must be in the same folder (directory). Running matest2.sh in that folder will create a subfolder with the name of the csv file; that subfolder will contain the *.err, *.log, and *.stdout files (one of each type for each row in the csv file representing a dataset). A csv summary file (having the name of the data-containing csv file with "_Summary" appended to that base name) is also created. For example, running matest2.sh with the data-containing csv file named "real_data_up.csv" will create a subfolder named "real_data_up" (with .err, .log, and .stdout files) and the csv file "real_data_up_Summary.csv." The latter file will not be in the subfolder, but rather the 'parent' folder with the data-containing csv file (and matest2.sh).

An example of a csv file having the correct input format is shown in Appendix C. The csv files used for the batch test runs created for this document, including the "real_data_up.csv" file pictured in Appendix C are contained in the "MA_data.zip" file.

Run option 2 allows the user to run more than one dataset at a time. However, the following constraints are in place at this time:⁸

- The adverse direction for all the datasets in the csv file must be the same.
- The choice of variance model (constant or non-constant) must be the same for each model applied to each dataset.

- terminate matest2.sh and restart the run;
- terminate matest2.sh and then create a new csv file that has data lines only for the dataset on which matest2.sh hung and subsequent datasets;
- kill CmodeAvg.exe from the Windows Task Manager.

⁸ It has been observed that on some occasions matest2.sh will hang up on a dataset. Although this has apparently been fixed (has not reoccurred in testing after it was initially noted) the following can be used as work-arounds. In cases matest2.sh does not terminate because it hangs and fails to progress to the next dataset the user may:

The latter option will abort the run on the dataset causing the problem and move processing on to the next dataset, albeit without getting results for the dataset that hung up.

• The confidence level, BMR type, and BMR factor must be the same for all models and datasets.

When matest2.sh is run, the .avg files necessary for CModelAvg.exe to run are created automatically from the csv file containing the data (one .avg file per line of data). Those .avg files will be in the newly created subfolder.

Matest2.sh and its associated awk files; a sample csv file; the CModelAvg executable and its associated subfolder ("SysData") and dll files; and a sample avg file are included in the zip file "ModelAvgBatch_20151106.zip."

2.4. Test Runs: Methods

Testing of the Model Averaging software was completed using two types of datasets: datasets of real data from toxicology experiments, and simulated datasets generated from known underlying dose-response relationships. These two types are henceforward referred to as the Real datasets and the Simulated datasets.

For all the runs included in this document, the following settings were always in place (unless specified elsewhere when results are presented):

- 95% confidence limit is used to define the BMDL
- BMR type is relative deviation
- BMRF is 0.10
- Response distribution is normal
- Seeding for random number generation is automatic
- All models were run "restricted:" power parameters were constrained to be greater than or equal to 1 (Power, Hill, Exp3, and Exp5 models) and dose coefficients were constrained to have the same sign, consistent with the chosen adverse direction (Linear and Poly3 models). The power parameters were also always constrained to be less than 18 (the same constraint imposed by BMDS).
- All 6 models were included in the averaging. The runs assumed equal model prior weights (1/6).

2.4.1. Real Datasets

The Real datasets come from a repository of data that have been retained and used for testing of BMDS models during model development. There are a total of 100 such datasets having continuous responses. The identities of the tested compounds and of the endpoints from which the data were obtained have been blinded.

As discussed previously, the test was restricted to datasets having four or more dose groups. With that restriction a total of 76 Real datasets were available for testing. Twenty-three of them had an adverse direction of "up;" 53 had an adverse direction of "down."

Electronic Attachment "MA_data.zip" contains the two csv files that list all the Real data, one for each adverse direction: real_data_up.csv, and real_data_down.csv.

2.4.2. Simulated Datasets

The disadvantage of a Real dataset is that the underlying, "true" BMD for the dose-response relationship generating the observations is unknown. The Simulated data provide a better means of judging the adequacy of the MA methods by comparing the estimated BMDLs to the known BMD.

The Simulated datasets were generated from one of 64 Templates. The Templates define the experimental design of the hypothetical toxicology study, the assumed response distribution, and the actual dose-response relationship (with known BMD) used to generate the data.

The 64 templates were defined by all combinations of the following features:

- Experimental design: 2 possible designs referred to as chronic or subchronic. Each chronicdesign template had 4 log-spaced dose groups (0, 0.25, 0.5, and 1) and 50 animals per group. Each subchronic-design template had 5 log-spaced dose groups (0, 0.125, 0.25, 0.5, and 1) and 10 animals per group.
- Response distribution: 2 distributions, normal or lognormal. For the normal distribution, the standard deviation was constant at 14. For the lognormal distribution, the log-scale standard deviation was constant at 0.14.9
- Dose-response relationships: 16 dose-response relationships (4 for each of 4 model types) as defined in Table 2 and displayed in Figures 1 16. Two model types (Power and Hill) are models that are included in the set of dose-response models being averaged. The other two (Poly and Exponential 4) are not included among the fitted models, though the fitted model Exp5 contains Exp4 as a special case (power parameter = 1).¹⁰

The 64 csv files that contain the 1000 simulated datasets per Template are in the electronic Attachment "MA_data.zip."

⁹ No units are attached to the standard deviations, just as there are no real units attached to the simulated data. ¹⁰ The Poly templates are from a non-fitted model for two reasons: the Poly models used to generate the simulated data have degree 4 (only a 3rd degree polynomial is included in the set of fitted, averaged, models); and those 4th degree generating polynomials have some negative coefficients (the fitted polynomial model restricted parameters to be non-negative).

3. RESULTS

3.1. Timing

Timing of the various methods under consideration was evaluated with respect to the real datasets. For that purpose, EPA ran each dataset through the methods a total of five times; i.e., there are five replicates of the analysis per dataset. Each replicate invoked 10,000 bootstrap iterations.

The times associated with Method 1 are independent of bootstrap method or number of iterations. They do include time for calculating the profile likelihood BMDLs for each model, which is not included in the times computed for Methods 2 through 5. Methods 2 through 5 substitute the time for bootstrapping in lieu of the time for profile likelihood methods. Methods 2a and 3a, are most similar to Method 1 in that they all get a BMDL for each model separately and then average them to get the final result. Methods 2b-c, 3b-c, 4b-c, and 5b-c all involve weighted averaging for each iteration.

The Method 1 run times are summarized for the real data, fit with constant-variance and non-constant-variance models, in Tables 3a and 3b. When fit assuming constant variance, a large majority of the runs took well less than a second to run; the 95th percentile of all 76 real datasets was 0.14 seconds on average. Run times were notably longer when the models allowed for a non-constant variance; the 95th percentile for average run time was about 5 seconds.

Despite the fact that no bootstrap iterations affect Method 1 run times, there was some variability in observed run time for that method across runs. With constant variance, the CVs (within dataset, across the five replicate runs) ranged up to 0.17, with 95% being less than 0.112. The CVs for run times with a non-constant variance had a maximum of 0.14.

Given the relatively consistent Method 1 runs times within dataset, and an even smaller magnitude for variation in Methods 2 through 5 (maximum CV was less than 0.09 for all non-constant variance and constant variance runs), the following comparisons of run times across Methods are based on the average times (of 5 runs) for each Method (e.g., as summarized in the 'Mean' column of Tables 3a and 3b). Tables 4a and 4b summarize Method 2 through 5 run times relative to the corresponding Method 1 run time for each dataset; (Method 'x' run time for dataset y) / (Method 1 run time for dataset y).

The run times across the submethods (a-c) within Methods 2 through 5 were essentially identical within each dataset. In fact, the run times of corresponding submethods for Method 2 and Method 4 were essentially identical, as were the corresponding times for Method 3 and Method 5. Using Methods 2 and 3 to gauge the difference in times contributed by the bootstrapping method (semi-parametric for Methods 2 and 4; parametric for Methods 3 and 5) it appears that there is no consistent difference in run times (Table 5). Regardless of the variance model used in the fitting,

Methods 2 and 3 run times differed no more than by a factor of 2.22. Interestingly, for the constant variance modeling 45% of the datasets were fit faster with Method 3 than with Method 2 (59% for the non-constant variance modeling), despite the fact that Method 3 involves an extra step of selecting a model to generate the bootstrap samples (at each iteration). Presumably, the shorter run times for Method 3 in those cases are due to the faster fitting (maximum likelihood estimation) achieved because at least one of the models being fit was the one used to generate the simulated data).

3.2. **BMDL Estimates**

3.2.1. Real Data

Similar to the timing estimates presented above, the real datasets can inform us about the relative values obtained among the methods. Moreover, the adequacy of using 10,000 bootstrap iterations can be evaluated through examination of the CVs associated with the BMDL estimates, by dataset, across the 5 replicates of analyses that were done. 'Adequacy' in this case refers to the precision of the estimates; if 1000 bootstrap iterations are adequate, then there should be little variation (small CVs) across those replicates.

Precision, in terms of CVs, is summarized in Tables 6a and 6b.¹¹ The median CVs are similar across methods (ranging between <0.1% and 0.8% regardless of the variance modeling approach). However, there is a tendency for the 'b' submethods (those that re-weight the average each iteration) to be more sensitive to some aspects of data differences, in the sense that those methods can attain CVs that are notably larger than the other methods (see the 90th, 95th and maximum CV values for the 'b' submethods compared to the others). Methods 2c and 4c look particularly good in this comparison, and might be judged more efficient, in the sense that the variability in the BMDL estimates for 10,000 bootstrap iterations is notably less than that for the other methods. In the future, if running the 'b' submethods, one might be better served to run more than 10,000 bootstrap iterations per run. A previous set of runs using only 1000 iterations had median BMDL CVs in the range of 1% to 2% (data not shown) as opposed to the maximum of 0.8% observed with 10,000 bootstrap iterations.

Tables 7a and 7b summarize the Method 2a-c, 3a-c, 4b-c, and 5b-c BMDL estimates relative to the Method 1 BMDL estimate, for each dataset. The ratios presented for relative BMDLs are based on the average BMDL (over 5 replicates) for each dataset divided by the Method 1 BMDL.

The median relative BMDL for every method (with the exceptions of Method 4b and, to a lesser extent, 5b) is very close to 1, indicating that "on average" the BMDL from Methods 2-5 did not differ greatly from that from Method 1. There are some highly divergent values, however. These are

¹¹ No results are shown for Method 1 because all BMDL estimates for that method are the same across replicates (it does not require any bootstrapping).

in some cases "artifacts" (or perhaps "indicators") of the fact that some of the datasets showed little or no dose-related response. In such cases, one or more of the models will yield a very large (or infinite) BMD (or, for Method 1, BMDL); such large (or infinite) estimates are set to 9999 times the maximum dose. Limiting attention to datasets for which there was a significant dose-response relationship would tend to eliminate such extreme values.

The true BMDs for these Real datasets are not known, thus, this approach cannot be used to evaluate the accuracy of the methods. That is not the case for the simulated data, for which the true BMD is known. Issues of accuracy and coverage are discussed in relation to those datasets in the next section.

3.2.2. Simulated data

For the Simulated data, the true BMD is known. Therefore, the performance of the various methods and submethods can be evaluated with respect to two metrics.

First, the medians and inter-quartile ranges for the BMD estimates are presented for the two main categories of methods, BMD-averaging methods (Methods 1, 2a-2c, and 3a-3c) and model-averaging methods (Methods 4b-4c, 5b-5c). It may be more typical to present expected values (means) and variances of the BMDs (corresponding to bias and precision metrics), but EPA hesitates to do so in this analysis because of the arbitrary decision to set "large" BMD estimates (greater than 1000 and possibly infinite) equal to 9999. Percentiles (including the median) will be predominantly unaffected by that decision; means and variances may be greatly affected.

Second, methods are presented and evaluated according to "coverage" of the BMDLs. The estimated BMDLs can be compared to the known BMD value. Because all the BMDLs calculated are intended to correspond to a 95% one-sided confidence limit, the ideal distribution of BMDLs for each method would have 95% of that distribution less than or equal to the true BMD (i.e., to have the "advertised" 95% coverage). Because each submethod evaluated here differs from the others in some respect (weights used, bootstrap approach, or whether it is a BMD-averaging or model-averaging method) plots displaying coverage (distributions of BMDLs across the 10,000 simulated datasets per template) show the performance of each submethod as a separate curve.

The median and inter-quartile range values discussed above are presented with the corresponding plot of the BMDL distributions for each template.

Case 1: Response Distribution Assumptions All Correct; Data Generating Model Included

The results of the runs on the Simulated data are organized by first examining behavior for those templates expected to have the best performance: those with a data-generating model included in the averaged models (Power and Hill, or "w" and "h," templates) having response data distributed normally around the median values. These templates have a constant variance, so models fit assuming constant variance are shown. Performance for those templates is illustrated in Figures 17 – 32. In all but one case (Figure 26, Template h1_normal_subchronic) the coverage for

each submethod is at or near the advertised level (95%) and in some cases somewhat exceeds the advertised level. These results do not strongly favor any method over another, since they all are fairly good (as expected). In the one exceptional case (Figure 26), the bias for the two main approaches was notable; the true BMD was just about at the 25th percentile of the distribution of BMDs estimated by the BMD-averaging methods, and only slightly better for the model-averaging methods. Interestingly, that degree of bias and insufficient coverage was not in evidence for the corresponding chronic design template (Figure 25).

Case 2: Response Distribution Assumptions All Correct; Data Generating Model Not Included

When the data-generating model is *not* in the set of models being averaged, the results are somewhat different (Figures 33 – 40). In fact, the performance of each averaging method is determined by the bias associated with its BMD estimates (here represented by the difference between the median BMD and the true BMD).

Thus, for the "p" templates (Figures 33 – 40), when the BMD is higher (around 0.5) the biases are negative and the coverage tends to be adequate, at the cost of having some extremely low BMDL estimates possible. Conversely, when the BMD is lower (around 0.14, less than the lowest chronic dose and close the lowest subchronic dose) the biases are uniformly positive, greatly so in some cases. This makes the coverage very poor.

Case 3: Response Distribution Assumptions All Correct; Data Generating Model Bounds an Included Model

For the "e" templates (Figures 41 – 48), all methods resulted in positive biases, regardless of the relative magnitude of the BMD. Therefore, BMDL coverages tended to be very poor (less than advertised). The Methods 4b, 2b, 5b, and 3b (roughly in that order) tended to do better with coverage despite the bias. These are methods that redefine the model weights at every bootstrap iteration. Methods 4b and 2b use a semi-parametric bootstrapping technique (data-driven); 3b and 5b use a parametric bootstrapping technique (model-driven).

The Exp4 model generated the data for these templates; it is a nested submodel of the Exp5 model (nested because the power in Exp4 is fixed at 1) that included in the set of averaged models. In fact, it bounds the set of Exp5 models since the latter are constrained to have power \geq 1. Nevertheless, the coverage of the model averaging methods under consideration was still poor, due to biases in the estimates, as noted above.

With respect to including Exp5 (and Exp3) in the set of averaged models, note the following. Previous runs were performed without the Exp models. For those runs, the coverage for Method 4b (representing the best achieved by the methods under consideration) are tabulated here:

Tomplete (comerceding Figure	Coverage for	e Templates
Number	Without Exp	With Exp
Namber	models	models
e1_normal_chronic (41)	0.731	0.76
e1_normal_subchronic (42)	0.678	0.713
e2_normal_chronic (43)	0.632	0.665
e2_normal_subchronic (44)	0.806	0.823
e3_normal_chronic (45)	0.873	0.873
e3_normal_subchronic (46)	0.752	0.766
e4_normal_chronic (47)	0.663	0.702
e4_normal_subchronic (48)	0.792	0.827

The addition of the Exp models did improve coverage of averaging Method 4b (and the others) slightly. The Exp5 models itself did have excellent coverage, as, quite often, did the Hill model (see Figures 41 – 48). But enough weight was still given to the other models to "degrade" the performance of the averaging.

Case 4: All Response Distribution Assumptions Incorrect; Data Generating Model Included

In this case, the underlying response distribution is lognormal. Thus, the assumptions made during the course of model fitting are wrong on two counts. First, the response data are truly lognormally distributed, but the models assume normality. Second, the fitting is done assuming constant variance whereas the true variances differ across dose levels (as a consequence of assuming a constant log-scale variance for the data generation).

However, the models do include the data generating model in the sense that the doserelated median values are known to be described by either a Power or a Hill model.

Figures 49-64 display the behavior of the various methods under these conditions. It appears that the incorrect specification of the underlying response distribution and variance structure had little impact on the performance of the methods. Here, as in the Case 1 where everything was specified correctly (Figures 17 – 32), the biases are not great and the coverage is generally close to the desired 95%. If there is a slight difference between the sets of figures, it is that with the lognormal data the separation between BMDL distributions for Methods 2 and 4, on the one hand, and 3 and 5, on the other hand, is even more distinct, for templates in which the separation was not great in the normal-data case (e.g., compare Figures 17 and 49). Methods 2 and 4 (semi-parametric bootstrap) appear to be a bit less conservative than Methods 3 and 5 (parametric bootstrap).

Case 5: Response Distribution Assumption Incorrect, but Variance Model Correct; Data Generating Model Included

If the previous case is "corrected" slightly (Figures 65 – 80), where the variance of the underlying data could be modeled correctly (but the type of response distribution is still misspecified), results look even more like the original case (where all assumptions were correct, Figures 17-32), in the sense that when results are good, all the methods perform similarly well (e.g., Figures 65 – 72). When the methods differ (as for most of the templates with a Hill data-generating model) the pattern observed for Case 4 is maintained; Methods 3 and 5 tend to be a bit more conservative than Methods 2 and 4. Submethod 'b' within Methods 2 and 4 appears to be more conservative than submethod 'c;' sometimes this leads to better coverage (e.g., Figures 70, 74, 76, 78, and 80 – i.e., for the subchronic designs, regardless of the magnitude of the BMD).

Case 6: Response Distribution Assumption Incorrect, but Variance Model Correct; Data Generating Model Not Included or Is a Bounding Model

Finally (Figures 81 – 96), one can consider the case analogous to Case 2, where the datagenerating model is *not* included in the set of models being averaged or is a bounding case for one of the averaged models. In this case, however, the incorrect type of response distribution is assumed, although the variance structure could be estimated (non-constant variance is allowed). As was true of Case 2, the biases were often substantial and coverage was consequently adversely affected. Bias was worse when the BMD was low (near or below the lowest dose, even in the subchronic design). Overall, when bias and coverage tended to be particularly poor, Models 2b and 4b provided better coverage (though still coverage that was too low) than the other methods (Figures 85 – 86, 89 – 96).

4. **DISCUSSION**

The primary purpose of this document and associated software is to facilitate discussions at the EPA model averaging workshop to be held December 10-11, 2015. This workshop support package allows for the evaluation of prevailing model averaging methods and options. Within the constraints of the options that are included to date (see below), the software has been successfully run on a variety of datasets, both real and simulated, and the model average methods have been satisfactorily implemented.

It should be noted that all individual steps in the Model Averaging methods (fitting, weighting, and bootstrap simulation) have been examined separately and determined to be returning correct values. That is, EPA employed a separate and independent investigator to

implement each component (unit) of the process that yields the BMD and BMDL estimates for each method. The results of the independent unit tests matched those obtained from the developed Model Averaging software for the various test data sets.

At this point, the Model Averaging software is deemed ready for follow-up investigations by the workshop peer consultants. Additional considerations for these follow-up investigations are discussed in Section 4.4.

4.1. **Overall Observations**

The main conclusions of the testing completed to date are the following:

• By far the biggest impact on bias and coverage is due to whether or not the data-generating dose-response model is included in the set of models being averaged. For the cases investigated so far, this factor dominated any other consideration. From that perspective, one of the priorities for developing a model averaging procedure to apply in health assessments should be the inclusion of as many reasonable dose-response relationships as possible. While more computationally involved, the inclusion of additional model shapes should add no "interpretation burden." This is because the evidence so far suggests that there is no onus on selecting a model from the set of models that have been fit to a dataset; it appears the averaged value can be used without worrying about which model(s) did or did not fit the data well. In other words, it appears that if one is fairly certain that the true dose-response is among the models being averaged, then just using the averaged BMD and BMDL values should suffice.

This conclusion may appear to be at odds with recent analyses that have reported on the adequacy of the Hill and/or Exponential models [14]. However, it should be noted that in that investigation, it was not simply the full Hill model (as used here) or the Exp5 model alone that were evaluated. Rather an entire family of "Hill" and Exponential models were considered, stepping up to the more complex versions only if needed (via a series of likelihood ratio tests). That investigation did not consider coverage probabilities or bias of the BMD and BMDL estimates for the selected Hill or Exponential models. Note also that there has been extensive discussion in the literature about the inability to correctly estimate confidence intervals for estimators once model selection (as was done by Slob and Setzer [14]) has occurred (see Leeb and Pötscher [15] for a relatively recent discussion). That has been one of the driving factors for development of model averaging approaches.

Note also that having an array of possible models for averaging may enhance the role of biological/toxicological considerations in dose-response analyses. Suppose prior information is available that suggests that certain curve shapes (e.g., low-dose linear) are more biologically plausible than others. If a subset of the models included in the set of models to be averaged reflects the biologically based assumptions, greater *a priori* weight can be assigned to that subset of models. The software developed for this workshop has the capability to assign such prior weights and to therefore transparently reflect assumptions that are made in any dose-response modeling exercise.

• The comments in the immediately preceding bullet should be tempered to some degree, perhaps based on the results for the "e" templates. Those templates are generated from a

model that is nested within, and is a bounding case for, ¹² one of the averaged models. Even with the more general model included in the averaging set, the coverage for all the averaging methods was not close to the advertised level of 0.95. This points up a need to consider bounding cases when determining which models to average. Aside from the addition of the Exp2 and Exp4 models, one might consider the addition of a Michaelis-Menten model, even though its more general form (the Hill model) is already included. Wheeler and Bailer [11] noted similar difficulties for model averaging of dichotomous response models when the true model is a bounding case.

Considered in relation to the first bullet item above, the proposed approach may be characterized as one that expands the model space, especially inclusion of edge cases (bounding models) rather than selecting from a smaller set of nested models and then making inferences from the selected model(s) as in [14].

That approach is consistent with another decision made in the current implementation. That is, for three models (Power, Hill and Exp5) there are corresponding nested models (Linear, Power, and Exp3) that impute their values (log-likelihood and BMD estimates) when the more complicated models "fail to perform." This is not a selection process, but rather reflects the known difficulty of fitting models (particularly those with a response asymptote) to certain data sets. Moreover, it is based on the known, logical relationship within each pair of models, i.e., that the log-likelihood for the more complex model must be at least as great as that for the simpler model. It is worth remembering that when the Exp5 or Hill model results (e.g., with respect to coverage or bias) are good, some of that may be attributable to the fact that those models can default to the simpler forms automatically (in the current software).

- Surprisingly, if the distribution of the underlying response data is misrepresented (as in the cases where a normal distribution is assumed but the response data are lognormally distributed), the effect on BMDL estimation was relatively small. This remained the case even if the variance was constrained to be constant even when the variance actually changed as a function of dose (through the change in the median). This may be largely due to the fact that the BMR for these test cases is based on relative change in the median response (BMR_{10%}). Had the BMR been examined based on change relative to the standard deviation, or a "hybrid" definition for the BMD [4, Section 2.3.3.1], then this misspecification may have been of greater importance.
- There were no large and over-riding differences among the methods that have been investigated. There was a suggestion that Methods 2b and 4b might perform better (though not all that well) than other methods should the data-generating model not be among those averaged. This was true even in preliminary runs that did not include the Exp models, suggesting that merely widening the set of models included in the averaging set does not appear to reduce or eliminate the performance margin for Methods 2b and 4b.
- A minor conclusion is that one probably ought to fit nonconstant variance models as a matter of course for model averaging. The effect of the variance assumption on the model-averaging results was minor. Therefore, at the cost of somewhat longer run times (but still with run times on the order of 10 seconds or less per 1000 bootstrap samples) one can

¹² By "bounding case" we mean a model that is nested within another, "larger" model and is obtained when a parameter value for the larger model is on the boundary of the parameter space allowed for that parameter.

cover all possible variance models (constant variance being a special case of the nonconstant variance models considered in BMDS). It may actually be desirable to run, together, both constant and nonconstant variance versions of each model included in the averaging set. If that was done, one would be averaging both over the possible median dose-response curve *and* over the variance model options.

- The biggest effect associated with experimental design (chronic vs. subchronic) was the greater spread in BMD estimates obtained from the subchronic design (compare the IQR values between corresponding plots that differ only with respect to experimental design). The total sample size for the subchronic design was 50 units (spread equally over 5 dose groups) whereas the chronic design included 200 units (50 in each of four dose groups). Peer-reviewers may be interested in other designs.
- Within the limitations of the designs considered here, there was a tendency for there to be greater (positive) bias in BMD estimates when the BMD was lower. That bias adversely affected coverage and was in the direction that leads to less health-protective estimates. Compare, for example the biases and coverage differences between Figures 26 and 28; between 34 and 36, between 37 and 39, and between 42 and 44. In all these cases the positive bias was greater for the low-BMD case than for the corresponding high-BMD case.¹³ The low-BMD templates considered here had BMDs that were about half the lowest positive dose for the chronic design and close to the lowest positive dose in the subchronic design. Cautions about extrapolating far below tested doses and their responses appear to be applicable also to model averaged results. The degree to which averaging assists in that respect needs further investigation. The same applies to the individual models, except when the underlying dose-response pattern was one of the averaged models, in which case that model showed better coverage for the low-BMD cases. Sometimes this also resulted in improved model-averaging coverage.

4.2. Extensions to Continuous Data Model Averaging Software/Methods

There were no issues associated with implementation of the computational aspects of the software. However, there are several items that may be addressed as the software is developed in the next round. These include the following:

- Inclusion of additional models: Workshop peer consultants may be able to offer recommendations on whether other dose-response patterns should be included. The results presented here suggest that the Exp4 and Exp2 models, as well as a Michaelis-Menten model, could be added because they are bounding cases for models already considered.
- Additional BMR values (e.g., 1% and 5% relative risk) and types (e.g., absolute deviation, standard deviation, and point estimate) could be investigated. Such an investigation could help clarify the extent to which adding capabilities to fit non-normal models will add to the accuracy and coverage of the model-averaging predictions. Of particular importance would

¹³ Note, however, that these "corresponding figures" were obtained with different underlying dose-response relationships; that is why the BMD values are different. In these cases, however, the same dose-response function is common to each pair (e.g., a low-BMD power model is compared to a high-BMD power model) and the experimental design is the same within the compared pairs.

be BMRs defined in terms of standard deviation changes or via a hybrid (risk-like) designation.

- Model runs which return a large BMD estimate (greater than 1000 times the highest dose) have been flagged by setting the BMD estimate to 9999 times the highest dose. While this is partial "protection" against infinite values or nonconvergence, a user-friendly addition might be added that provides an explicit warning when this has occurred. Safeguards or warnings against the use of unsuitable data should also be incorporated.
- The Windows-based graphical user interface (GUI) might be re-envisioned so that both constant and nonconstant variance models can be included in the set of models to be averaged.
- Addition of computational capabilities to allow the assumption of a lognormal distribution for the response observations. Currently all models assume the response data are normally distributed. As noted above, the priority for this may depend on further investigation related to different BMR types.
- It has been suggested that it might be useful to have an averaging method that would be applied to obtain values of 1/BMDL rather than BMDL itself. This might be useful in a context of deriving a cancer slope factor, for example, where one of the terms in that calculation could be viewed as 1/BMDL (the slope factor being BMR *(1/BMDL). Modifications to the existing code should be relatively straight-forward, requiring only the computation of the model-specific 1/BMDL values and then application of any (or all) of the averaging methods.
- Similarly, a possible extension would be to apply these methods to estimates of risk at a specified dose. Currently, we are specifying the risk of interest (the BMR) and determining the doses corresponding to that risk. Particularly in cancer assessments, one sometimes wants to estimate the "risk at a dose." For Methods 2 and 4, the observed data are used to generate the bootstrap samples; for Methods 3 and 5, a randomly chosen model (based on the model weights) is chosen as the basis for generating a bootstrap sample for each iteration. Given the patterns seen in the test runs to date, and the similarity of the Method 2/4 and Method 3/5 results (e.g., in terms of bias and coverage for the simulated datasets) it may be desirable to combine them to define a "unified" approach to bootstrap sample generation. That would be done by treating the saturated model (basically the observed means and variances, i.e., the basis for Methods 2 and 4) as another model that gets a weight (in relation to the fitted models) for model selection when generation of a bootstrap sample is required, as in Methods 3 and 5. This may prove particularly beneficial when none of the models fits particularly well. In that case, the random selection would favor the observed data, so the bootstrapping would predominantly look like Methods 2 and 4. On the other hand, if the models fit well, because they have fewer parameters than the saturated model their BICs would be less than that of the saturated model, and they would tend to be selected for bootstrapping. In that case, the method would be more like Methods 3 and 5. It appears that the proposed method could reap the benefits of both Methods 2/4 and 3/5 and perhaps even out the differences in coverage, minimal as they appear to be. This suggestion for alternative bootstrapping assumptions might be considered during the peer consultation workshop.

- On a related note, one might consider fitting models that relax the assumptions on the variance. Currently, one has to assume either constant variance or a variance model that is parametrically constrained by the estimates of the means. Neither needs to be the case. The alternative would be to fit models with a saturated variance model, allowing each variance (across dose groups) to be estimated independently of the other variances. This is the model that allows greatest flexibility for fitting models of the mean (or median) dose-response relationship. It is, however, not one of the options currently available in the BMDS models and would require modifications to those models for inclusion in the Model Averaging software.
- Some recent work has focused on situations where the true model was "on the edge of" or outside the range of averaged models [10, 11]. These are cases that were problematic for the averaging methods investigated to date and reported above. See, especially, the results for the "e" templates. Wheeler and Bailer [16] have proposed semi-parametric approaches to address these concerns; it may be desirable to investigate such approaches as part of follow-on analyses.
- For templates where a more complex model (Hill or Exp4) was the data-generating model (the "h" and "e" templates) the averaging appeared to be adversely affected by the BMDs estimated by the simpler models (e.g., linear or power models). It appears that too much weight is being given to those simpler models. One might consider using, as the basis for defining model weights, an alternative to the BIC. The AIC is a natural candidate since it would have just the desired effect. Its penalty for additional parameters is less than that for the BIC; it has been noted that model selection based on AIC tends to accept more highly parameterized models that does selection based on BIC. Investigation of such alternatives to the BIC-based weights may be desirable.
- Decisions need to be made about what to do in relation to data sets with 3 dose groups. One option is to run only those models with 3 or fewer parameters. Another option would be to define parameters constraints (equality constraints) for one or more of the parameters in more-highly parameterized models. Choices for which parameters to constrain need to be evaluated.
- In the runs performed to date, parameters subject to constraints (e.g., power parameters) have been constrained. It is not apparent if, or how, imposition of those constraints has affected the results shown above. It is possible that removing some of the constraints might affect performance for the "edge case" templates discussed above. This may be something that is explored further by the workshop consultants recruited to evaluate the proposed model averaging methods and options.

4.3. Applicability to Dichotomous Data

The analyses described here are for continuous endpoints and continuous dose-response models. A logical extension would be to apply the lessons learned here to, or to do additional testing on, dichotomous endpoints. Model averaging has been investigated extensively for dichotomous models by Drs. Wheeler and Bailer. Any extension of model averaging to dichotomous doseresponse should borrow heavily from their investigations and, to the extent possible, their software. Nevertheless, one may need to consider issues like the relationships between the models (simpler models nested within more complex models that are known to have certain log-likelihood relationships) as has been done for the continuous model software. Extensions of the software that EPA has developed for continuous endpoints may need to reflect any averaging issues specific to dichotomous responses, if any. The input of the workshop consultants and beta-testers will be helpful in identifying potential difficulties associated with a transition to dichotomous endpoints.

4.4. Further Examination and Selection of Model Averaging Methods

This round of testing suggests that, once the possible additions to the software have been agreed upon and successfully implemented, it will be ready to use as the basis for a more complete and thorough examination of the Model Averaging methods described above. It is anticipated that that process will involve a number of expert workshop consultants (and beta-testers) who can use the software to apply the methods in an automated manner. That automation will allow a much wider set of test datasets to be examined. Those datasets can differ with respect to experimental design as well as dose-response. It would be ideal if the datasets varied as widely as possible to get a complete picture of the performance of the Model Averaging methods.

Another aspect of model averaging that has not been exercised in the test runs to date concerns the prior model weights. All runs to date have been completed assuming equal model prior weights. Prior weighting schemes that reflected beliefs about biological plausibility might be considered. The translation of prior knowledge about underlying biology and toxicology into model weights is an important and potentially highly influential aspect that can be explored by the workshop consultants. From an implementation standpoint (i.e., regardless of biological considerations) the workshop consultants might want to explore the impact of alternative prior weightings on the BMD estimates. A particularly attractive option would be to run the datasets generated from the templates used in this report, ones with known underlying dose-response relationships and BMD values. While initial examinations of the effect of prior weighting for such datasets can be done using the GUI (i.e., for an individual dataset or two) a fuller exploration of differences in BMD estimates as a function of prior weighting could be obtained via a batch run over the sets of 1000 realizations for selected templates. Procedures for batch running the model averaging software are described in Section 2.4. The results presented in this document (i.e., all the Figures from 17 onward) were generated via such batch running. The results of altering prior weights could be summarized in the same manner and compared to the figures included here.¹⁴

¹⁴ When comparing results for different prior weights, consider using the same number of bootstrap iterations and a fixed random number seed value. A different number of iterations and random seed values, with input settings otherwise identical, can produce differing results.

Some potential model averaging methods and areas of exploration have been discussed in this workshop support document. There are likely to be other alternative and complementary options worth exploring. EPA anticipates that the options and approaches discussed here will spark additional suggestions from expert analysts at the planned December 10-11, 2015 peer consultation workshop.

5. REFERENCES

- 1) H. Moon, H.-J. Kim, J. J. Chen, and R. L. Kodell. Model Averaging Using the Kullback Information Criterion in Estimating Effective Doses for Microbial Infection and Illness. *Risk Analysis* **25**, 1147-1159 (2005).
- 2) G. Claeskens and N. L. Hjort. *Model Selection and Model Averaging*. Cambridge University Press, 2008.
- J.A. Davis, J.S. Gift, Q.J. Zhao. Introduction to benchmark dose methods and U.S. EPA's Benchmark Dose Software (BMDS) version 2.1. *Toxicol Applied Pharmacol*. 254: 181-191 (2010).
- 4) U.S. EPA. Benchmark dose technical guidance document. Risk Assessment Forum, Washington, DC; EPA/630/R-00/001F. (available at <u>http://www2.epa.gov/risk/benchmark-dose-technical-guidance</u>). (2012).
- 5) K. Shao and M. J. Small. Potential Uncertainty Reduction in Model-Averaged Benchmark Dose Estimates Informed by an Additional Dose Study. *Risk Analysis* **31**, 1561-1575 (2011).
- 6) K. P. Burnham and D. R. Anderson. Multimodel Inference: Understanding AIC and BIC in Model Selection. *Sociol. Methods Res.* **33**, 261-304 (2004).
- 7) S-H. Kang, R.L. Kodell, and J.J. Chen. Incorporating model uncertainties along with data uncertainties in microbial risk assessment. *Reg Tox Pharm.* 32, 68-72 (2000).
- 8) H. de-G. Acquah. Comparison of Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) in Selection of an Asymmetric Price Relationship. *J. Develop. Agricult. Econom.* **2**, 1-6 (2010).
- 9) R.E. Kass and A.E. Rafftery. Bayes Factors. J. Am Stat Assoc. 90, 773-795 (1995).
- 10) M. W. Wheeler and A. J. Bailer. Comparing Model Averaging With Other Model Selection Strategies for Benchmark Dose Estimation. *Environ. Ecol. Stat.* **16**, 37-51 (2009).
- 11) M. W. Wheeler and A. J. Bailer. Properties of Model-Averaged BMDLs: A Study of Model Averaging in Dichotomous Response Risk Estimation. *Risk Analysis* **27**, 659–670 (2007).

- 12) M. Moerbeek, A. H. Piersma, and W. Slob. A Comparison of Three Methods for Calculating Confidence Intervals for the Benchmark Dose. *Risk Analysis* **24**, 31-40 (2004).
- 13) B Efron. Better Bootstrap Confidence Intervals. *Journal of the American statistical Association*, **82**(397), 171-185 (1987).
- 14) W. Slob & R. W. Setzer. Shape and steepness of toxicological dose-response relationships of continuous endpoints. *Crit Rev in Toxicol.* **44**(3), 270-297 (2014).
- 15) M. Wheeler and A. J. Bailer. Monotonic Bayesian Semiparametric Benchmark Dose Analysis. *Risk Analysis* **32**, 1207-1218 (2012).

6. TABLES

		Во	otstrap Technic	lue
Weighting		None (use profile likelihood methods)	Semi- parametric (use original means and variances)	Parametric (use model- predicted means and variances)
	Average model- specific BMDLs	Method 1	Method 2a	Method 3a
From original model fits	Average iteration- specific BMDs ¹		Method 2c	Method 3c
From original model its	Compute iteration- specific dose where average response = BMR ²		Method 4c	Method 5c
	Average iteration- specific BMDs ¹		Method 2b	Method 3b
From iteration-specific model weights	Compute iteration- specific dose where average response = BMR ²		Method 4b	Method 5b

Table 1: Definition of Model Averaging Approaches

¹ BMDLs are derived from percentiles of resulting iteration-specific averaged BMDs.
 ² BMDLs are derived from percentiles of resulting iteration-specific doses for which average response = BMR.

D B Model Type	Template		Para	ameter Va	lues		BMD
D-K Wodel Type	Label	а	b	С	g	е	
Polynomial	p1	80	66	-55	51	-11	.1345
	p2	80	26	-55	88	-28	.4775
	р3	100	-70	40	-50	35	.1541
	p4	100	-20	20	-40	5	.5112
Exponential M4	e1	80	4.5	1.2			.1540
	e2	80	2.1	1.17			.4225
	e3	120	3.05	0.75			.1675
	e4	120	1.68	0.8			.4126
Power	w1	80	167		1.9		.2021
	w2	80	111		3.1		.4281
	w3	135	-100		1.4		.2392
	w4	120	-86		2.9		.5071
Hill	h1	80	30	0.2	3.1		.1443
	h2	80	40	0.65	4.5		.4777
	h3	120	-40	0.2	5		.1688
	h4	120	-40	0.55	4.5		.4556

Table 2: Models Used to Generate Simulated Data for the Templates andAssociated BMD Values

Model equations: m(d) is the dose-dependent median of the distribution of responses.

Polynomial: $m(d) = a + b^*d + c^*d^2 + g^*d^3 + e^*d^4$

Exponential M4: m(d) = a *(c + (1-c)*exp(-b*d)))

Power: $m(d) = a + b^* d^g$

Hill: $m(d) = a + b^* dg/(cg + dg)$

When the response distribution was assumed to be normal, then mean = median and std = 14When the response distribution was assumed to be lognormal, then log-scale std = 0.14

Percentiles		ſ					
for Run Time (ms)	1	2	3	4	5	Mean	CV
minimum	7	6	6	6	6	6.2	0.000
5 th	7	7	7	8	7	7.54	0.000
10 th	7	8	8	8	8	7.8	0.000
25 th	10	10	10	10	10	9.8	0.025
50 th	13	15	14.5	14.5	14	14.5	0.051
75 th	22	24.75	24	24	24	23.95	0.071
90 th	63.6	75.5	76.1	75.2	75.5	72.76	0.091
95 th	138.55	144.2	144.35	143.35	143.5	142.79	0.112
maximum	5020	6058	6048	6053	6071	5850	0.167

Table 3a: Summary Distribution of Method 1 Run Times (milliseconds); Across 76 Real Datasets; Models Fit Assuming Constant Variance

¹Runs 1-5 are exactly the same (except for the bootstrap sampled values). Percentiles for 'Mean' and 'CV' values are for the within-dataset means and CVs (i.e., means and CVs across replicates).

Acros	s 76 Real	Datasets;	Models Fit	Assuming	Non-Const	ant Varian	ice	
Percentiles		F						
for Run Time (ms)	1	2	3	4	5	Mean	CV	
minimum	9	9	9	9	10	9.6	0.000	
5th	11	11	11	11	11.85	11	0.000	
10th	13	12	12	12.7	12	12.34	0.000	
25th	17	17	17	17	17	17	0.000	
50th	30	30	30	30	30	30	0.003	
75th	75.5	77	74.5	74.5	74.5	75.2	0.012	
90th	2674.9	2670.8	2675.5	2678.6	2677.3	2675.42	0.026	

5059.85

9934

4967.9

9944

5004.95

10016

95th

maximum

Table 3b: Summary Distribution of Method 1 Run Times (milliseconds);Across 76 Real Datasets; Models Fit Assuming Non-Constant Variance

¹Runs 1-5 are exactly the same (except for the bootstrap sampled values). Percentiles for 'Mean' and 'CV' values are for the within-dataset means and CVs.

5013.05

9948

4977.5

9990

5004.65

9966.4

0.040

0.140

Table 4a: Summary Distribution of Relative Run Times (Method x Divided by Method 1, unitless); Across 76 Real Datasets; Models Fit Assuming Constant Variance

Percentiles for Relative Run Time		Method Run Time Divided by Corresponding Method 1 Run Time								
	2a	2b	2c	3a	3b	3c	4b	4c	5b	5c
minimum	25.5	25.5	25.5	17.9	17.9	17.9	25.6	25.6	18.0	18.0
5th	1190	1190	1190	943	943	943	1193	1192	946	945
10th	3000	2999	2999	3187	3187	3187	3011	3009	3192	3191
25th	4991	4991	4991	4964	4964	4963	5000	4999	4982	4979
50th	7447	7447	7446	8202	8202	8201	7472	7465	8229	8221
75th	10378	10378	10376	12756	12756	12755	10388	10385	12800	12780
90th	12328	12328	12326	17319	17319	17317	12366	12351	17371	17362
95th	14334	14334	14332	20249	20250	20248	14366	14360	20269	20265
maximum	34246	34246	34244	23233	23233	23232	34259	34257	23247	23243

Percentiles are of average run time for the Method in question (five runs per dataset) divided by the average run time for Method 1, for 10,000 iterations

Table 4b: Summary Distribution of Relative Run Times (Method x Divided by Method 1, unitless); Across 76 Real Datasets; Models Fit Assuming Non-Constant Variance

Percentiles for Relative Run Time		Method Run Time Divided by Corresponding Method 1 Run Time									
	2a	2b	2c	3a	3b	3c	4b	4c	5b	5c	
minimum	11.7	11.7	11.7	11.3	11.3	11.3	11.7	11.7	11.3	11.3	
5th	32	32	32	34	34	34	32	32	34	34	
10th	108	108	108	79	79	79	108	108	79	79	
25th	3895	3895	3895	3628	3628	3627	3900	3899	3632	3631	
50th	8111	8111	8110	8112	8112	8112	8122	8120	8120	8119	
75th	11837	11837	11837	11845	11845	11845	11846	11844	11860	11857	
90th	15624	15624	15623	15742	15742	15741	15650	15643	15796	15785	
95th	17850	17850	17849	18911	18911	18910	17859	17857	18922	18920	
maximum	19903	19903	19903	22281	22281	22281	19909	19908	22296	22291	

Percentiles are of average run time for the Method in question (five runs per dataset) divided by the average run time for Method 1, for 10,000 iterations

Table 5: Summary Distribution of Relative Run Times (Method 3x Divided by Method 2x, unitless); Across Real Datasets

	Method 3 S	Method 3 Submethod Time Divided by Corresponding Method 2 Submethod Time										
Percentiles for Relative Run Time	Assum	ning Constant V	ariance	Assuming Non-Constant Variance								
	3a/2a	3b/2b	3c/2c	3a/2a	3b/2b	3c/2c						
minimum	0.517	0.517	0.517	0.511	0.511	0.511						
5th	0.630	0.630	0.630	0.721	0.721	0.721						
10th	0.771	0.771	0.771	0.757	0.757	0.757						
25th	0.924	0.924	0.924	0.883	0.883	0.883						
50th	1.041	1.041	1.041	0.965	0.965	0.965						
75th	1.351	1.351	1.351	1.103	1.103	1.103						
90th	1.611	1.611	1.611	1.328	1.328	1.328						
95th	1.776	1.776	1.776	1.422	1.422	1.422						
maximum	2.219	2.219	2.220	2.066	2.067	2.067						

Percentiles are of average run time for the Method 3 submethod (five runs per dataset) divided by the average run time for the corresponding Method 2 submethod.

Table 6a: Summary Distribution of Coefficient of Variation (CV) Values of BMDLs (unitless); Across 5 Replicates of the Real Datasets; Fit with Constant Variance Models

Percentiles for CV Values		Averaging Method									
- Taldes	2a	2b	2c	3a	3b	3c	4b	4c	5b	5c	
minimum	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.000	
5th	0.000	0.002	0.000	0.001	0.002	0.001	0.001	0.000	0.002	0.001	
10th	0.001	0.003	0.001	0.001	0.002	0.001	0.001	0.001	0.003	0.001	
25th	0.002	0.004	0.002	0.002	0.004	0.003	0.003	0.002	0.004	0.003	
50th	0.003	0.008	0.004	0.004	0.007	0.005	0.008	0.004	0.007	0.005	
75th	0.006	0.024	0.006	0.006	0.016	0.008	0.014	0.007	0.017	0.008	
90th	0.011	0.053	0.010	0.012	0.043	0.036	0.034	0.012	0.047	0.017	
95th	0.029	0.082	0.012	0.559	0.665	0.562	0.069	0.021	0.070	0.034	
maximum	0.559	0.559	0.031	1.369	1.495	0.921	0.303	0.032	1.267	2.236	

Percentiles for CV Values	Averaging Method									
	2a	2b	2c	3a	3b	3c	4b	4c	5b	5c
minimum	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.001	0.000
5th	0.000	0.002	0.001	0.000	0.002	0.001	0.001	0.001	0.002	0.001
10th	0.001	0.002	0.001	0.001	0.003	0.001	0.002	0.001	0.002	0.001
25th	0.002	0.004	0.002	0.002	0.004	0.002	0.003	0.002	0.003	0.002
50th	0.003	0.007	0.004	0.004	0.007	0.004	0.007	0.004	0.007	0.004
75th	0.006	0.024	0.007	0.005	0.012	0.007	0.017	0.007	0.015	0.007
90th	0.012	0.049	0.013	0.008	0.037	0.011	0.033	0.018	0.036	0.021
95th	0.015	0.072	0.016	0.018	0.057	0.020	0.073	0.020	0.052	0.043
maximum	0.559	0.561	0.038	0.913	0.191	0.559	1.970	0.460	0.672	0.073

Table 6b: Summary Distribution of Coefficient of Variation (CV) Values of BMDLs (unitless); Across 5 Replicates of the Real Datasets; Fit with Non-Constant Variance Models

Table 7a: Summary Distribution of Relative BMDLs (Method x Divided by Method 1, unitless); Across Real Datasets; Models Fit Assuming Constant Variance Models

Percentiles for Relative BMDL Values	Averaging Method									
	2a	2b	2c	3a	3b	3c	4b	4c	5b	5c
minimum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5th	0.0004	0.0001	0.0004	0.0003	0.0003	0.0003	0.0000	0.0001	0.0001	0.0000
10th	0.0022	0.0020	0.0023	0.0023	0.0023	0.0024	0.0009	0.0011	0.0008	0.0006
25th	0.9419	0.3107	1.0091	0.7397	0.4358	0.9225	0.0501	0.5298	0.2213	0.2636
50th	1.0084	0.8998	1.0515	0.9991	0.9735	1.0331	0.7185	1.0124	0.8768	0.9779
75th	1.0856	1.0395	1.1612	1.0323	1.0152	1.1068	1.0081	1.0549	0.9954	1.0363
90th	1.2420	1.1989	1.3907	1.0503	1.0580	1.2282	1.0897	1.1154	1.0198	1.0719
95th	1.8525	1.5165	1.9888	1.1015	1.3160	1.4403	1.3282	1.3410	1.0533	1.1451
maximum	20.9798	39.7791	42.5290	3.6645	7.6062	8.2557	23.6203	15.8380	7.8012	7.3527

Values for relative BMDL are (BMDL for Method in question) / (BMDL for Method 1).
Percentiles for Relative BMDL Values					Averagin	g Methoo	I			
	2a	2b	2c	3a	3b	3c	4b	4c	5b	5c
minimum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5th	0.0002	0.0001	0.0002	0.0002	0.0001	0.0003	0.0000	0.0003	0.0000	0.0004
10th	0.0033	0.0031	0.0034	0.0034	0.0035	0.0035	0.0002	0.0034	0.0021	0.0034
25th	0.9755	0.2231	1.0040	0.8361	0.4025	0.9298	0.0645	0.4819	0.2013	0.4904
50th	0.9985	0.8699	1.0412	0.9944	0.9356	1.0238	0.7716	0.9960	0.8342	0.9695
75th	1.0292	1.0200	1.1070	1.0287	0.9972	1.1027	1.0033	1.0400	0.9783	1.0334
90th	1.1202	1.1643	1.4829	1.0710	1.0288	1.3225	1.0876	1.1523	1.0097	1.0968
95th	1.9730	1.9951	2.0901	1.1359	1.2944	2.0255	1.8612	1.9597	1.2120	1.3236
maximum	5.0722	5.4429	5.6469	5.2681	6.5563	6.6870	3.9667	4.0137	4.0927	4.1096

Table 7b: Summary Distribution of Relative BMDLs (Method x Divided by Method 1, unitless); Across Real Datasets; Models Fit Assuming Non-Constant Variance Models

Values for relative BMDL are (BMDL for Method in question) / (BMDL for Method 1).

7. DIAGRAMS

Diagram 1a: Flow Diagram for Methods 1 - 3

Diagram 1b: Flow Diagram for Methods 4 - 5

Diagram Abbreviations:

 BMD_{mi}^{j} : BMD for model i from the jth bootstrap-generated data set. $BMDL_{mi}^{0}$: BMDL estimate for model i, model fit to original data. W_{mi}^{0} : Weight for model i, based on fit (BIC) of that model to original data. W_{mi}^{j} : Weight for model i, based on fit (BIC) of that model to jth bootstrap-generated data set.

 $R^{0}(d)_{mi}$: Fitted dose-response function for model i, fit to original data. $R^{j}(d)_{mi}$: Fitted dose-response function for model i, fit to jth bootstrap-generated data set.

k models are included in the averaging.

8. FIGURES

Figure 2: Dose-response for p2 Templates

Figure 3: Dose-response for p3 Templates

Figure 7: Dose-response for e3 Templates

Figure 8: Dose-response for e4 Templates

Figure 9: Dose-response for w1 Templates

Figure 11: Dose-response for w3

Figure 13: Dose-response for h1 Templates

Figure 15: Dose-response for h3 Templates

Percentiles and Inter-	-				
quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.176	844	0.177393		
50	0.191	976	0.192116	0.2021	
75	0.205	432	0.205638		
IQR	0.0285	882	0.0282453		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.972		
Poly3	0.955	2a	0.969	3a	0.983
Power	0.937	2b	0.984	3b	0.996
Hill	0.899	2c	0.961	3c	0.976
Exp3	1	4b	0.984	5b	0.996

4c

Exp5

0.912

0.961

5c

Percentiles and Inter quartile Range for BMD Estimates	- BMD-Ave Meth	eraging ods	Model-Averaging Methods	True BMD	
25	0.1603	301	0.161422		
50	0.187	973	0.188754	0.2021	
75	0.221	049	0.221267		
IQR	0.0607	481	0.0598444		
	•				
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.957		
Poly3	0.91	2a	0.959	3 a	0.982
Power	0.936	2b	0.96	3b	0.987

Poly3	0.91	2a	0.959	3a	0.982
Power	0.936	2b	0.96	3b	0.987
Hill	0.873	2c	0.949	3c	0.972
Exp3	0.998	4b	0.961	5b	0.987
Exp5	0.905	4c	0.952	5c	0.975

Percentiles and Inter- quartile Range for BMD Estimates	BMD-Averaging Methods	Model-Averaging Methods	True BMD
25	0.400244	0.40391	
50	0.425902	0.429576	0.4281
75	0.451866	0.456503	
IQR	0.0516214	0.0525931	
Model	Coverage Meth	od Coverage	Method

Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.952		
Poly3	1	2a	0.952	3a	0.954
Power	0.938	2b	0.943	3b	0.949
Hill	0.922	2c	0.952	3c	0.951
Exp3	0.965	4b	0.926	5b	0.944
Exp5	0.947	4c	0.937	5c	0.947

Percentiles and Inter quartile Range for BMD Estimates	- BMD-Avera Methoo	aging ds	Model-Averaging Methods	True BMD	
25	0.37869	95	0.38203		
50	0.42509	97	0.432969	0.4281	
75	0.48193	35	0.484141		
IQR	0.1032	4	0.102111		
Model	Coverage	Method	Coverage	Method	С
Linear	1	1	0.955		

Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.955		
Poly3	1	2a	0.944	3a	0.949
Power	0.944	2b	0.941	3b	0.948
Hill	0.944	2c	0.943	3c	0.948
Exp3	0.959	4b	0.934	5b	0.946
Exp5	0.957	4c	0.937	5c	0.947

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	-				
quartile Range for	BMD-Av	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.233	413	0.234039		
50	0.249	751	0.250529	0.2392	
75	0.267	721	0.268477		
IQR	0.0343	3073	0.0344378		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.816		
Poly3	0.997	2a	0.819	3a	0.805
Power	0.936	2b	0.863	3b	0.861
Hill	0.887	2c	0.823	Зc	0.805

4b

4c

Exp3

Exp5

0.339

0.338

0.858

0.814

0.854

0.798

5b

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-					
quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.1964	491	0.192879		
50	0.2454	456	0.24402	0.2392	
75	0.2883	386	0.289079		
IQR	0.0918	952	0.0961996		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.876		
Poly3	0.983	2a	0.893	3a	0.892
Power	0.947	2b	0.929	3b	0.922
Hill	0.905	2c	0.892	3c	0.895
Exp3	0.715	4b	0.932	5b	0.927
Exp5	0.694	4c	0.89	5c	0.886

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	-				
quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.485	532	0.48711		
50	0.506	508	0.506008	0.5071	
75	0.531	691	0.528259		
IQR	0.0461	584	0.0411496		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.948		
Poly3	0.969	2a	0.958	3a	0.958
Power	0.949	2b	0.951	3b	0.952
Hill	0.967	2c	0.964	3c	0.964
Exp3	0.944	4b	0.954	5b	0.952
Exp5	0.959	4c	0.967	5c	0.965

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	-				
quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.460	557	0.465478		
50	0.504	909	0.503688	0.5071	
75	0.551	827	0.544815		
IQR	0.091	27	0.0793372		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.954		
Poly3	0.977	2a	0.965	3a	0.963
Power	0.951	2b	0.955	3b	0.957
Hill	0.966	2c	0.968	3c	0.965
Exp3	0.954	4b	0.961	5b	0.96

4c

Exp5

0.955

0.971

0.974

Figure 25: Template h1_normal_chronic; Models fit assuming constant variance

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for	- BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.0863	3961	0.0866751		
50	0.133	543	0.135916	0.1443	
75	0.194	188	0.201558		
IQR	0.108	484	0.114883		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0	1	0.997		
Poly3	0	2a	0.96	3a	0.997

Hill

Power 0 2b 0.961 3b 0.979 2c 0.961 3c Exp3 0 4b 0.956 5b Exp5 0.999 0.957 5c 4c

0.997

0.996

0.996

Figure 26: Template h1_normal_subchronic; Models fit assuming constant variance

Percentiles and Inter-	-				
quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.141	553	0.126939		
50	0.199	694	0.172439	0.1443	
75	0.239	72	0.227303		
IQR	0.0981	.671	0.100364		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0.008	1	0.707		
Poly3	0.008	2a	0.668	3a	0.691
Power	0.008	2b	0.818	3b	0.793
Hill	0.946	2c	0.61	3c	0.622
Exp3	0	4b	0.876	5b	0.85
Exp5	0.957	4c	0.775	5c	0.775

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-					
quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.415	388	0.419346		
50	0.463	034	0.473736	0.4777	
75	0.509	649	0.505302		
IQR	0.0942	2606	0.0859558		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.971		
Poly3	0.968	2a	0.963	3a	0.976
Power	0.971	2b	0.964	3b	0.98
Hill	0.967	2c	0.963	3c	0.976
Exp3	0.971	4b	0.947	5b	0.979

4c

Exp5

0.967

0.959

5c

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	-				
quartile Range for BMD-Averaging		Model-Averaging			
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.271	126	0.264344		
50	0.378	363	0.381363	0.4777	
75	0.507	871	0.506784		
IQR	0.236	745	0.24244		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.988		
Poly3	0.952	2a	0.952	3a	0.991
Power	0.952	2b	0.982	3b	0.999
Hill	0.956	2c	0.952	3c	0.99
Exp3	0.986	4b	0.982	5b	0.999
Exp5	0.986	4c	0.951	5c	0.99

Figure 29: Template h3_normal_chronic; Models fit assuming constant variance

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for	- BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.097	332	0.0991703		
50	0.151	619	0.156612	0.1688	
75	0.198	402	0.206705		
IQR	0.101	107	0.107535		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0	1	1		
Poly3	0	2a	0.962	3a	1

2b

2c

4b

4c

0.961

0.961

0.959

0.959

Power

Hill

Exp3

Exp5

0

1

0.001

1

1

1

1

1

3b

3c

5b

Figure 30: Template h3_normal_subchronic; Models fit assuming constant variance

Percentiles and Inter- quartile Range for	- BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.149	477	0.148269		
50	0.179	932	0.177922	0.1688	
75	0.220)87	0.221705		
IQR	0.0713	3935	0.073436		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0	1	0.966		
Poly3	0	2a	0.92	3a	0.987

Power

Hill

Exp3

Exp5

0

2b 0.907 3b 0.982 2c 0.911 3с 0.488 4b 0.918 5b 0.92 5c 0.971 4c

0.99

0.98

0.995

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for	- BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.384	164	0.389975		
50	0.450	407	0.456269	0.4556	
75	0.481	698	0.487047		
IQR	0.0970)574	0.0970718		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.985		
Poly3	0.973	2a	0.948	3a	0.99
Power	0.985	2b	0.964	3b	0.996
		-		-	

	_		_		
Linear	1	1	0.985		
Poly3	0.973	2a	0.948	3a	0.99
Power	0.985	2b	0.964	3b	0.996
Hill	0.979	2c	0.941	3c	0.99
ЕхрЗ	0.984	4b	0.958	5b	0.996
Exp5	0.974	4c	0.929	5c	0.989
-					

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for BMD Estimates	BMD-Averaging Methods		Model-Averaging Methods	True BMD	
25	0.333	805	0.339512		
50	0.389	566	0.406619	0.4556	
75	0.455	084	0.473136		
IQR	0.121	L28	0.133624		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.985		
Poly3	0.901	2a	0.972	3a	0.995
Power	0.98	2b	0.991	3b	1
Hill	0.975	2c	0.967	3c	0.995
Exp3	0.979	4b	0.975	5b	0.999

4c

Exp5

0.975

0.954

5c

Figure 33: Template p1_normal_chronic; Models fit assuming constant variance

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for	- BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.154	708	0.154453		
50	0.162	718	0.162461	0.1345	
75	0.172	119	0.171801		
IQR	0.0174	106	0.0173476		
Model	Coverage	Method	Coverage	Method	(
Linear	0.186	1	0.159		
Delu 2	0 1 5 1	2-	0 1 5 5	2-	

Model	Coverage	Method	Coverage	Method	Coverage
Linear	0.186	1	0.159		
Poly3	0.151	2a	0.155	3 a	0.142
Power	0.156	2b	0.211	3b	0.14
Hill	0.57	2c	0.127	3c	0.113
Exp3	0	4b	0.239	5b	0.149
Exp5	0.684	4c	0.135	5c	0.122

Figure 34: Template p1_normal_subchronic; Models fit assuming constant variance

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-					
quartile Range for	BMD-Averaging		Model-Averaging		
BMD Estimates	Metho	ods	Methods	True BMD	
25	0.1542	113	0.152289		
50	0.172	775	0.171382	0.1345	
75	0.2007	738	0.197847		
IQR	0.0466	525	0.045557		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0.597	1	0.519		
Poly3	0.531	2a	0.493	3a	0.518
Power	0.538	2b	0.548	3b	0.506
Hill	0.714	2c	0.411	3c	0.418
Exp3	0.002	4b	0.589	5b	0.562
Exp5	0.655	4c	0.444	5c	0.454

Figure 35: Template p2_normal_chronic; Models fit assuming constant variance

Model	Coverage	Method Coverage	Method
IQR	0.191422	0.194516	
75	0.542072	0.539971	
50	0.445874	0.444634	0.4775
25	0.35065	0.345455	
Percentiles and Inter quartile Range for BMD Estimates	BMD-Averagi Methods	ng Model-Averaging Methods	True BMD

0.4

0.5

BMDL

0.6

0.7

0.8

0.9

1.0

0.3

0.3

0.2

0.1

0.0

0.0

0.1

N	1odel	Coverage	Method	Coverage	Method	Coverage
Li	inear	1	1	0.945		
P	Poly3	0.935	2a	0.953	3a	0.937
Р	ower	0.935	2b	0.963	3b	0.949
	Hill	0.933	2c	0.952	3c	0.936
E	Exp3	0.944	4b	0.962	5b	0.948
E	Exp5	0.943	4c	0.951	5c	0.935

Percentiles and Inter-	-				
quartile Range for	or BMD-Averaging Methods		Model-Averaging		
BMD Estimates			Methods	True BMD	
25	0.28451		0.280504		
50	0.374354		0.369563	0.4775	
75	0.537319		0.534884		
IQR	IQR 0.252809		0.25438		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.989		
Poly3	0.937	2a	0.968	3a	0.996
Power	0.928	2b	0.981	3b	0.999
Hill	0.932	2c	0.962	3c	0.996
Ехр3	0.978	4b	0.983	5b	0.999
Exp5	0.981	4c	0.962	5c	0.996

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for	Percentiles and Inter- quartile Range forBMD-AveragingBMD EstimatesMethods250.168565500.190933750.206943		Model-Averaging		
BMD Estimates			Methods		
25			0.166723		
50			0.188814	0.1541	
75			0.205893		
IQR	0.0383	3781	0.0391697		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0	1	0.405		
Poly3	0	2a	0.39	3a	0.356
Power	0	2b	0.65	3b	0.41
Hill	0.879	2c	0.344	3c	0.318

4b

4c

Exp3

Exp5

0.455

0.874

0.682

0.393

5b

5c

0.432

Figure 38: Template p3_normal_subchronic; Models fit assuming constant variance

Percentiles and Inter- quartile Range for BMD Estimates	ercentiles and Inter- quartile Range for BMD-Averaging BMD Estimates Methods		Model-Averaging Methods	True BMD	
25	0.186569		0.180091		
50	0.207125		0.20448	0.1541	
75	0.229969		0.227928		
IQR	IQR 0.0433999		0.0478363		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0.007	1	0.305		
Poly3	0.007	2a	0.291	3a	0.244
Power	0.007	2b	0.582	3b	0.296
Hill	0.85	2c	0.214	3c	0.176
Exp3	0.739	4b	0.646	5b	0.341

4c

Exp5

0.888

0.304

0.234

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	•				
quartile Range for	BMD-Averaging		Model-Averaging		
BMD Estimates	Methods		Methods	True BMD	
25	0.41406		0.413191		
50	0.493123		0.493853	0.5112	
75	0.557354		0.555246		
IQR	0.143294		0.142055		
Model	Coverage	Method	Coverage	Method	Coverage
Model Linear	Coverage 1	Method 1	Coverage 0.946	Method	Coverage
Model Linear Poly3	Coverage 1 0.937	Method 1 2a	Coverage 0.946 0.951	Method 3a	Coverage 0.944
<u>Model</u> Linear Poly3 Power	Coverage 1 0.937 0.946	Method 1 2a 2b	Coverage 0.946 0.951 0.964	Method 3a 3b	Coverage 0.944 0.952
<u>Model</u> Linear Poly3 Power Hill	Coverage 1 0.937 0.946 0.957	Method 1 2a 2b 2c	Coverage 0.946 0.951 0.964 0.949	Method 3a 3b 3c	Coverage 0.944 0.952 0.944
Model Linear Poly3 Power Hill Exp3	Coverage 1 0.937 0.946 0.957 0.945	Method 1 2a 2b 2c 4b	Coverage 0.946 0.951 0.964 0.949 0.968	Method 3a 3b 3c 5b	Coverage 0.944 0.952 0.944 0.955
Model Linear Poly3 Power Hill Exp3 Exp5	Coverage 1 0.937 0.946 0.957 0.945 0.956	Method 1 2a 2b 2c 4b 4c	Coverage 0.946 0.951 0.964 0.949 0.968 0.956	Method 3a 3b 3c 5b 5c	Coverage 0.944 0.952 0.944 0.955 0.944

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	r- BMD-Averaging Methods		Model Averaging		
BMD Estimates			Methods	True BMD	
25	0.33768		0.337994		
50	0.42041		0.424875	0.5112	
75	0.556208		0.54714		
IQR	0.218528		0.209145		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.941		
Poly3	0.937	2a	0.963	3a	0.981
Power	0.933	2b	0.987	3b	0.995
Hill	0.941	2c	0.961	3c	0.981
Exp3	0.931	4b	0.988	5b	0.996

4c

Exp5

0.936

0.964

0.982

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for BMD Estimates	s and Inter- Range for BMD-Averaging stimates Methods		Model-Averaging Methods	True BMD	
25	0.209	167	0.197894		
50	0.297	258	0.246475	0.154	
75	0.480379		0.454505		
IQR	0.271	212	0.256611		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0	1	0.477		
Poly3	0	2a	0.432	3a	0.444
Power	0	2b	0.71	3b	0.57
Hill	0.917	2c	0.385	3c	0.396

4b

4c

Exp3

Exp5

0

0.905

0.76

0.513

5b

5c

0.606

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for	BMD-Averaging	Model-Averaging	True
BMD Estimates	Methods	Methods	BMD
25	0.366967	0.270363	
50	0.511295	0.474799	0.154
75	0.707826	0.708172	
IQR	0.340859	0.437809	
Madal	Coverage Met	and Coverage	Mathad

Model	Coverage	Method	Coverage	Method	Coverage
Linear	0	1	0.134		
Poly3	0	2a	0.122	3a	0.123
Power	0.002	2b	0.472	3b	0.247
Hill	0.857	2c	0.096	3c	0.097
Exp3	0.009	4b	0.713	5b	0.369
Exp5	0.912	4c	0.27	5c	0.227

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and inter-					
quartile Range for	BMD-Averaging		Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.569	655	0.567714		
50	0.683	129	0.689622	0.4225	
75	0.813	988	0.835391		
IQR	0.244	333	0.267678		
Model	Coverage	Method	Coverage	Method	Coverage
		method	coverage	Method	corcluge
Linear	0.146	1	0.301	method	coverage
Linear Poly3	0.146 0.145	1 2a	0.301 0.294	3a	0.268
Linear Poly3 Power	0.146 0.145 0.146	1 2a 2b	0.301 0.294 0.623	3a 3b	0.268 0.302
Linear Poly3 Power Hill	0.146 0.145 0.146 0.891	1 2a 2b 2c	0.301 0.294 0.623 0.243	3a 3b 3c	0.268 0.302 0.201
Linear Poly3 Power Hill Exp3	0.146 0.145 0.146 0.891 0.065	1 2a 2b 2c 4b	0.301 0.294 0.623 0.243 0.665	3a 3b 3c 5b	0.268 0.302 0.201 0.328
Linear Poly3 Power Hill Exp3 Exp5	0.146 0.145 0.146 0.891 0.065 0.947	1 2a 2b 2c 4b 4c	0.301 0.294 0.623 0.243 0.665 0.297	3a 3b 3c 5b 5c	0.268 0.302 0.201 0.328 0.234

Percentiles and Inter- quartile Range for BMD-Averaging BMD Estimates Methods		eraging ods	Model-Averaging Methods	True BMD	
25	0.486	051	0.468908	-	
50	0.693	794	0.704292	0.4225	
75	1.10935		1.06368		
IQR	0.623	302	0.594777		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0.635	1	0.693		
Poly3	0.586	2a	0.669	3a	0.68
Power	0.619	2b	0.775	3b	0.672
Hill	0.78	2c	0.611	3c	0.591
Exp3	0.548	4b	0.823	5b	0.729

Exp5

0.931

0.65

5c

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	-				
quartile Range for BMD-Averaging		Model-Averaging			
BMD Estimates	Method	ls	Methods	True BMD	
25	0.15666	69	0.155976		
50	0.19349	9	0.191916	0.1675	
75	0.23865	5	0.233416		
IQR	0.08198	86	0.0774399		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0	1	0.752		
Poly3	0	2a	0.722	3a	0.707
Power	0	2b	0.865	3b	0.802
Hill	0.925	2c	0.709	3c	0.696
Exp3	0	4b	0.873	5b	0.804
FF				_	

Percentiles and Inter- quartile Range for	BMD-Averaging		Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.248	589	0.193359		
50	0.343	584	0.309303	0.1675	
75	0.419891		0.402938		
IQR	0.171	302	0.20958		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0	1	0.267		
Poly3	0	2a	0.257	3a	0.241
Power	0	2b	0.668	3b	0.438
Hill	0.899	2c	0.219	3c	0.206

4b

4c

Exp3

Exp5

0

0.889

0.766

0.388

5b

5c

0.511

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	-				
quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Metho	ods	Methods	True BMD	
25	0.522	717	0.517259		
50	0.5852	215	0.585866	0.4126	
75	0.651	.28	0.654846		
IQR	0.128563		0.137587		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0.004	1	0.203		
Poly3	0.004	2a	0.201	3a	0.176
Power	0.004	2b	0.677	3b	0.279
Hill	0.949	2c	0.17	Зc	0.144
Exp3	0.08	4b	0.702	5b	0.296
Exp5	0.943	4c	0.206	5c	0.179

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	-				
quartile Range for	BMD-Averaging		Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.496	564	0.489506		
50	0.59	96	0.599969	0.4126	
75	0.74221		0.766374		
IQR	0.245647		0.276868		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0.39	1	0.555		
Poly3	0.372	2a	0.564	3a	0.521
Power	0.372	2b	0.781	3b	0.559
Hill	0.856	2c	0.47	3c	0.419
Exp3	0.521	4b	0.827	5b	0.624
Exp3 Exp5	0.521 0.935	4b 4c	0.827 0.523	5b 5c	0.624 0.445

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	-				
quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.174	468	0.17472		
50	0.186	791	0.186988	0.2021	
75	0.19833		0.198651		
IQR	0.0238	8619	0.0239311		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.999		
Poly3	0.982	2a	0.995	3a	1
Power	0.988	2b	0.992	3b	1
Hill	0.985	2c	0.993	3c	0.999
Exp3	1	4b	0.992	5b	1
Exp5	0.989	4c	0.993	5c	0.999

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-					
quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.161	364	0.16167		
50	0.186	344	0.187965	0.2021	
75	0.212	934	0.213913		
IQR	0.0515	5702	0.0522433		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.998		
Poly3	0.953	2a	0.975	3a	0.998
Power	0.971	2b	0.969	3b	0.997
Hill	0.962	2c	0.968	3c	0.996
Exp3	1	4b	0.969	5b	0.997
Exp5	0.979	4c	0.971	5c	0.998

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.399	056	0.401075		
50	0.423594		0.42567	0.4281	
75	0.445144		0.448073		
IQR	0.0460)885	0.0469979		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.993		
Poly3	1	2a	0.96	За	0.992

50	0.425	594	0.42507	0.4281
75	0.445	0.445144		
IQR	0.0460	0885	0.0469979	
Model	Coverage	Method	Coverage	Method
Model Linear	Coverage 1	Method 1	Coverage 0.993	Method
Model Linear Poly3	Coverage 1 1	Method 1 2a	Coverage 0.993 0.96	Method 3a

4b

4c

0.959

0.95

0.954

Hill

Exp3

Exp5

0.986

0.996

0.994

0.991

0.992

0.991

0.991

3с

5b

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter quartile Range for	- BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.380	818	0.384356		
50	0.424	401	0.427869	0.4281	
75	0.470	464	0.473598		
IQR	0.0896	6464	0.0892417		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.979		
Poly3	0.998	2a	0.935	3a	0.978
Power	0.976	2b	0.935	3b	0.978

Hill

Exp3 Exp5

	0107.0	-	-
3a	0.935	2a	0.998
3b	0.935	2b	0.976
3c	0.934	2c	0.975
5b	0.926	4b	0.98
5c	0.931	4c	0.979

0.978 0.978

Percentiles and Inter-					
quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.226	424	0.226995		
50	0.249	991	0.250801	0.2392	
75	0.271	589	0.272134		
IQR	0.0451654		0.0451389		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.781		
Poly3	0.988	2a	0.833	3a	0.78
Power	0.931	2b	0.892	3b	0.846
Hill	0.867	2c	0.839	3c	0.785
Exp3	0.386	4b	0.888	5b	0.841
Exp5	0.386	4c	0.832	5c	0.772

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	-				
quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Metho	ods	Methods	True BMD	
25	0.182	798	0.178882		
50	0.2430	011	0.239842	0.2392	
75	0.293	527	0.294127		
IQR	0.110	729	0.115245		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.858		
Poly3	0.975	2a	0.88	3a	0.885
Power	0.937	2b	0.924	3b	0.93
Hill	0.859	2c	0.877	3c	0.885
ЕхрЗ	0.736	4b	0.927	5b	0.937
Exp5	0.705	4c	0.874	5c	0.885
•					

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	-				
quartile Range for	BMD-Ave	raging	Model-Averaging		
BMD Estimates	Metho	ds	Methods	True BMD	
25	0.4839	78	0.485105		
50	0.5087	46	0.508204	0.5071	
75	0.5323	66	0.528799		
IQR	0.04838	877	0.0436942		
Model	Coverage	Method	Coverage	Method	Coverage
Model Linear	Coverage 1	Method 1	Coverage 0.919	Method	Coverage
<u>Model</u> Linear Poly3	Coverage 1 0.971	Method 1 2a	Coverage 0.919 0.951	Method 3a	Coverage 0.936
<u>Model</u> Linear Poly3 Power	Coverage 1 0.971 0.922	Method 1 2a 2b	Coverage 0.919 0.951 0.947	Method 3a 3b	Coverage 0.936 0.924
<u>Model</u> Linear Poly3 Power Hill	Coverage 1 0.971 0.922 0.951	Method 1 2a 2b 2c	Coverage 0.919 0.951 0.947 0.958	Method 3a 3b 3c	Coverage 0.936 0.924 0.945
Model Linear Poly3 Power Hill Exp3	Coverage 1 0.971 0.922 0.951 0.913	Method 1 2a 2b 2c 4b	Coverage 0.919 0.951 0.947 0.958 0.949	Method 3a 3b 3c 5b	Coverage 0.936 0.924 0.945 0.928
Model Linear Poly3 Power Hill Exp3 Exp5	Coverage 1 0.971 0.922 0.951 0.913 0.942	Method 1 2a 2b 2c 4b 4c	Coverage 0.919 0.951 0.947 0.958 0.949 0.96	Method 3a 3b 3c 5b 5c	Coverage 0.936 0.924 0.945 0.928 0.928

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for	- BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.457	513	0.461786		
50	0.499	192	0.499209	0.5071	
75	0.555677		0.547561		
IQR	0.0981	.637	0.0857753		
Model	Coverage	Method	Coverage	Method	Соч
Linear	1	1	0.95		
Poly3	0.996	2a	0.964	3a	0
Power	0.948	2b	0.957	3b	0
	0.004	2.	0.007	2-	0

verage .964 .957 0.965 Hill 0.964 0.967 3c 2c Exp3 0.946 4b 0.965 5b 0.959 Exp5 0.979 0.977 0.947 4c 5c

Figure 57: Template h1_lognormal_chronic; Models fit assuming constant variance

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for	- BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.085	576	0.0857399		
50	0.135	251	0.137	0.1443	
75	0.198	188	0.205155		
IQR	0.112	428	0.119415		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0	1	0.996		
Poly3	0	2a	0.966	3a	0.999
Power	0	2b	0.965	3b	0.998

2c

4b

4c

Hill

Exp3

Exp5

0.974

0

0.999

86

0.968

0.962

0.962

3c

5b

5c

0.999

0.996

Figure 58: Template h1_lognormal_subchronic; Models fit assuming constant variance

Percentiles and Inter-					
quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.139	391	0.128069		
50	0.187	716	0.168573	0.1443	
75	0.236	928	0.22583		
IQR	0.0975	5368	0.0977607		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0.005	1	0.739		
Poly3	0.005	2a	0.7	3a	0.731
Power	0.005	2b	0.816	3b	0.796
Hill	0.955	2c	0.645	3c	0.667
Exp3	0	4b	0.879	5b	0.838
Exp5	0.973	4c	0.77	5c	0.8

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.419	646	0.424498		
50	0.463	087	0.473294	0.4777	
75	0.502	162	0.500561		
IQR	0.0825	5155	0.076063		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.984		
Poly3	0.974	2a	0.973	3a	0.988
Power	0.984	2b	0.97	3b	0.989
Hill	0.981	2c	0.973	3c	0.988

4b

4c

Exp3

Exp5

0.983

0.981

0.96

0.968

0.987

0.987

5b

Percentiles and Inter-	-				
quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.300	778	0.294058		
50	0.397	386	0.397799	0.4777	
75	0.504	696	0.502542		
IQR	0.203	918	0.208483		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.986		
Poly3	0.965	2a	0.964	3a	0.992
Power	0.977	2b	0.985	3b	0.997
Hill	0.976	2c	0.963	3c	0.992
Exp3	0.986	4b	0.985	5b	0.997
Exp5	0.986	4c	0.963	5c	0.992

Figure 61: Template h3_lognormal_chronic; Models fit assuming constant variance

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for BMD Estimates	BMD-Ave Meth	eraging ods	Model-Averaging Methods	True BMD	
25	0.101	294	0.103851		
50	0.149	082	0.154329	0.1688	
75	0.197	756	0.206451		
IQR	0.0964	4614	0.1026		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0	1	1		
Poly3	0	2a	0.971	3a	1
Power	0	2b	0.97	3b	1
Hill	1	2c	0.97	3c	1

Exp3

Exp5

1 0.97 3с 2c 0 4b 0.966 5b 1 0.966 5c 4c

1

1

Figure 62: Template h3_lognormal_subchronic; Models fit assuming constant variance

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for	BMD-Ave	eraging	Model-Averaging		
BIVID Estimates	Ivieth	ods	Iviethods	I rue Bivid	
25	0.145	091	0.144347		
50	0.178	532	0.176081	0.1688	
75	0.223	341	0.223368		
IQR	0.0783	3191	0.0790213		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0	1	0.948		
Del: 2	0	•	0.025	2-	0.001

Linear	0	1	0.948		
Poly3	0	2a	0.925	3a	0.991
Power	0	2b	0.919	3b	0.993
Hill	0.968	2c	0.922	3c	0.988
Exp3	0.483	4b	0.923	5b	0.997
Exp5	0.948	4c	0.93	5c	0.995

Percentiles and Inter- quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.361	197	0.366285		
50	0.429	187	0.437941	0.4556	
75	0.477	78	0.484914		
IQR	0.116	584	0.118629		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.98		
Poly3	0.961	2a	0.941	3a	0.991
Power	0.982	2b	0.965	3b	0.996
Hill	0.973	2c	0.938	3c	0.991
Exp3	0.984	4b	0.957	5b	0.996

Exp5

0.966

0.928

5c

Percentiles and Inter-	-				
quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.321	858	0.326538		
50	0.379	188	0.393375	0.4556	
75	0.453	001	0.470005		
IQR	0.131	143	0.143466		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.976		
Poly3	0.886	2a	0.97	3a	0.997
Power	0.968	2b	0.984	3b	0.999
Hill	0.971	2c	0.969	3c	0.997
Exp3	0.969	4b	0.974	5b	0.999
Exp5	0.969	4c	0.956	5c	0.996

Figure 65: Template w1_lognormal_chronic; Models fit assuming non-constant variance

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.176	174	0.177007		
50	0.191	68	0.19213	0.2021	
75	0.206	559	0.2066		
IQR	0.0303	858	0.0295928		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.974		
Poly3	0.955	2a	0.973	3a	0.984
Power	0.956	2b	0.984	3b	0.996
Hill	0.912	2c	0.967	Зc	0.981
Exp3	1	4b	0.984	5b	0.996

4c

Exp5

0.927

0.967

5c

Figure 66: Template w1_lognormal_subchronic; Models fit assuming nonconstant variance

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	-	_			
quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.165	195	0.166403		
50	0.191	071	0.192183	0.2021	
75	0.223	884	0.225151		
IQR	0.058	645	0.0587472		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.937		
Poly3	0.919	2a	0.937	3a	0.967
Power	0.934	2b	0.948	3b	0.974

2c

4b

4c

Hill

Exp3

Exp5

0.877

0.992

0.9

0.927

0.947

0.928

3с

5b

5c

0.962 0.974

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.398	398	0.400564		
50	0.424	713	0.42754	0.4281	
75	0.448	081	0.450625		
IQR	0.0491	.019	0.0500615		
Model	Coverage	Method	Coverage	Method	C
Linear	1	1	0.957		
		-		-	

Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.957		
Poly3	1	2a	0.95	3a	0.956
Power	0.938	2b	0.946	3b	0.956
Hill	0.921	2c	0.947	Зc	0.956
Exp3	0.97	4b	0.936	5b	0.951
Exp5	0.947	4c	0.94	5c	0.951

Percentiles and Inter- quartile Range for BMD Estimates	- BMD-Ave Meth	eraging ods	Model-Averaging Methods	True BMD	
25	0.381	787	0.385298		
50	0.426	162	0.430857	0.4281	
75	0.472	272	0.476176		
IQR	0.0909	328	0.0908777		
Model	Coverage	Method	Coverage	Method	Со
Linear	1	1	0.941		
Doly?	0.000	20	0.020	3-2	(

Iviodel	Coverage	iviethod	Coverage	Iviethod	Coverage
Linear	1	1	0.941		
Poly3	0.999	2a	0.929	3a	0.941
Power	0.934	2b	0.921	3b	0.939
Hill	0.93	2c	0.926	3c	0.939
Exp3	0.953	4b	0.91	5b	0.937
Exp5	0.941	4c	0.921	5c	0.937

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	•				
quartile Range for	BMD-Ave	raging	Model-Averaging		
BMD Estimates	Metho	ds	Methods	True BMD	
25	0.2274	19	0.22775		
50	0.2478	14	0.24835	0.2392	
75	0.2694	.99	0.270257		
IQR	0.04207	794	0.0425071		
Model	Coverage	Method	Coverage	Method	Coverage
Model Linear	Coverage 1	Method 1	Coverage 0.826	Method	Coverage
Model Linear Poly3	Coverage 1 0.995	Method 1 2a	Coverage 0.826 0.827	Method 3a	Coverage
<u> Model</u> Linear Poly3 Power	Coverage 1 0.995 0.939	Method 1 2a 2b	Coverage 0.826 0.827 0.838	Method 3a 3b	Coverage 0.824 0.85
Model Linear Poly3 Power Hill	Coverage 1 0.995 0.939 0.876	Method 1 2a 2b 2c	Coverage 0.826 0.827 0.838 0.826	Method 3a 3b 3c	Coverage 0.824 0.85 0.823
Model Linear Poly3 Power Hill Exp3	Coverage 1 0.995 0.939 0.876 0.108	Method 1 2a 2b 2c 4b	Coverage 0.826 0.827 0.838 0.826 0.834	Method 3a 3b 3c 5b	Coverage 0.824 0.85 0.823 0.844
Model Linear Poly3 Power Hill Exp3 Exp5	Coverage 1 0.995 0.939 0.876 0.108 0.237	Method 1 2a 2b 2c 4b 4c	Coverage 0.826 0.827 0.838 0.826 0.834 0.813	Method 3a 3b 3c 5b 5c	Coverage 0.824 0.85 0.823 0.844 0.81

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	-				
quartile Range for	BMD-Ave	raging	Model-Averaging		
BMD Estimates	Metho	ods	Methods	True BMD	
25	0.1855	504	0.179291		
50	0.2453	332	0.241669	0.2392	
75	0.2972	298	0.297072		
IQR	0.1117	794	0.117781		
Model	Coverage	Method	Coverage	Method	Coverage
Model Linear	Coverage 1	Method 1	Coverage 0.859	Method	Coverage
Model Linear Poly3	Coverage 1 0.98	Method 1 2a	Coverage 0.859 0.864	Method 3a	Coverage 0.881
Model Linear Poly3 Power	Coverage 1 0.98 0.929	Method 1 2a 2b	Coverage 0.859 0.864 0.903	Method 3a 3b	Coverage 0.881 0.909
Model Linear Poly3 Power Hill	Coverage 1 0.98 0.929 0.846	Method 1 2a 2b 2c	Coverage 0.859 0.864 0.903 0.858	Method 3a 3b 3c	Coverage 0.881 0.909 0.876
Model Linear Poly3 Power Hill Exp3	Coverage 1 0.98 0.929 0.846 0.313	Method 1 2a 2b 2c 4b	Coverage 0.859 0.864 0.903 0.858 0.905	Method 3a 3b 3c 5b	Coverage 0.881 0.909 0.876 0.915
Model Linear Poly3 Power Hill Exp3 Exp5	Coverage 1 0.98 0.929 0.846 0.313 0.584	Method 1 2a 2b 2c 4b 4c	Coverage 0.859 0.864 0.903 0.858 0.905 0.854	Method 3a 3b 3c 5b 5c	Coverage 0.881 0.909 0.876 0.915 0.866

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-					
quartile Range for	BMD-Averaging		Model-Averaging		
BMD Estimates	Metho	ods	Methods	True BMD	
25	0.4815	65	0.483403		
50	0.508955 0.534072		0.508025 0.52863	0.5071	
75					
IQR	0.052507		0.0452269		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.93		
Poly3	0.977	2a	0.937	3a	0.943
Power	0.929	2b	0.934	3b	0.94
Hill	0.955	2c	0.94	3c	0.945
Exp3	0.446	4b	0.937	5b	0.942
Exp5	0.955	4c	0.94	5c	0.945

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for BMD Estimates	BMD-Averaging Methods		Model-Averaging Methods	True BMD	
25	0.453	489	0.461124		
50	0.499	101	0.498702	0.5071	
75	0.559228 0.10574		0.544795 0.0836716		
IQR					
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.954		
Poly3	0.959	2a	0.967	3a	0.978
Power	0.952	2b	0.964	3b	0.972
Hill	0.966	2c	0.968	3c	0.978
Exp3	0.556	4b	0.968	5b	0.973

Exp5

0.957

0.972

0.979

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	BMD-Averaging Methods				
quartile Range for			Model-Averaging Methods	True BMD	
BMD Estimates					
25	0.0833812		0.0838261		
50	0.137823 0.197964 0.114583		0.141109	0.1443	
75			0.205351 0.121525		
IQR					
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0	1	0.992		
Poly3	0	2a	0.96	3a	0.998
Power	0	2b	0.96	3b	0.998
Hill	0.973	2c	0.96	3c	0.997
Exp3	0	4b	0.957	5b	0.995

Exp5

0.999

0.957

5c

Figure 74: Template h1_lognormal_subchronic; Models fit assuming nonconstant variance

Percentiles and Inter-	•				
quartile Range for	BMD-Averaging		Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.131	.63	0.124518		
50	0.176	081	0.160355	0.1443	
75	0.229	743	0.224512		
IQR	0.0981	.124	0.0999938		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0.196	1	0.772		
Linear Poly3	0.196 0.196	1 2a	0.772 0.764	3a	0.769
Linear Poly3 Power	0.196 0.196 0.196	1 2a 2b	0.772 0.764 0.866	3a 3b	0.769 0.812
Linear Poly3 Power Hill	0.196 0.196 0.196 0.922	1 2a 2b 2c	0.772 0.764 0.866 0.709	3a 3b 3c	0.769 0.812 0.716
Linear Poly3 Power Hill Exp3	0.196 0.196 0.196 0.922 0.011	1 2a 2b 2c 4b	0.772 0.764 0.866 0.709 0.9	3a 3b 3c 5b	0.769 0.812 0.716 0.845
Linear Poly3 Power Hill Exp3 Exp5	0.196 0.196 0.922 0.011 0.94	1 2a 2b 2c 4b 4c	0.772 0.764 0.866 0.709 0.9 0.809	3a 3b 3c 5b 5c	0.769 0.812 0.716 0.845 0.803

Percentiles and Inter-	-				
quartile Range for	BMD-Averaging		Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.424	172	0.426072		
50	0.468	375	0.478108	0.4777	
75	0.505995		0.501588		
IQR	0.081	823	0.0755159		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.971		
Poly3	0.965	2a	0.966	3a	0.98
Power	0.972	2b	0.96	3b	0.98

Poly3	0.965	2a	0.966	3a	0.98
ower	0.972	2b	0.96	3b	0.98
Hill	0.966	2c	0.966	3c	0.98
Exp3	0.971	4b	0.938	5b	0.98
Exp5	0.965	4c	0.953	5c	0.98

Percentiles and Inter- quartile Range for BMD Estimates	BMD-Averaging Methods		Model-Averaging Methods	True BMD	
25	0.308	684	0.305247		
50	0.413	429	0.41995	0.4777	
75	75 0.51256 IQR 0.203875		0.50846		
IQR			0.203213		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.971		
Poly3	0.955	2a	0.962	3a	0.982
Power	0.965	2b	0.986	3b	0.994
Hill	0.965	2c	0.96	Зc	0.981
Exp3	0.97	4b	0.986	5b	0.994

Exp5

0.97

0.956

0.98
Figure 77: Template h3_lognormal_chronic; Models fit assuming non-constant variance

Percentiles and Inter- quartile Range for	BMD-Averaging		Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.100	372	0.10284		
50	0.149	778	0.154509	0.1688	
75	0.198	306	0.206278		
IQR	0.0976	5883	0.103438		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0	1	1		
Poly3	0	2a	0.969	3a	1
Power	0	2b	0.968	3b	1
Hill	0.999	2c	0.968	3c	1
Exp3	0.064	4b	0.964	5b	1
Exp5	1	4c	0.964	5c	1

Figure 78: Template h3_lognormal_subchronic; Models fit assuming nonconstant variance

Percentiles and Inter- quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.144	591	0.143486		
50	0.177	564	0.176425	0.1688	
75	0.224	162	0.224681		
IQR	0.0795	5715	0.0811951		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0.016	1	0.96		
Poly3	0.016	2a	0.918	3a	0.989
Power	0.016	2b	0.906	3b	0.992
Hill	0.978	2c	0.909	3c	0.987

4b

4c

Exp3

Exp5

0.365

0.97

0.913

0.916

5b

5c

0.997

0.994

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-					
quartile Range for	BMD-Averaging		Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.346	389	0.35019		
50	0.415	115	0.424361	0.4556	
75	0.472	987	0.482987		
IQR	0.126	598	0.132797		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.986		
Poly3	0.969	2a	0.941	3a	0.992
Power	0.987	2b	0.968	3b	0.995
Hill	0.979	2c	0.938	3c	0.992
Exp3	0.981	4b	0.956	5b	0.995

4c

Exp5

0.971

0.918

0.992

5c

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-					
quartile Range for BMD-Averaging		Model-Averaging			
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.322	756	0.325515		
50	0.372	426	0.388331	0.4556	
75	0.449	126	0.463604		
IQR	0.126	537	0.13809		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.974		
Poly3	0.887	2a	0.968	3a	0.993
Power	0.97	2b	0.987	3b	0.998
Hill	0.964	2c	0.967	3c	0.992
Exp3	0.969	4b	0.978	5b	0.998
Exp5	0.968	4c	0.956	5c	0.991

Figure 81: Template p1_lognormal_chronic; Models fit assuming non-constant variance

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	•				
quartile Range for BMD-Averaging		eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.153	559	0.153268		
50	0.161	469	0.161303	0.1345	
75	0.169	948	0.169612		
IQR	0.0163	889	0.0163438		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0.194	1	0.176		
Poly3	0.156	2a	0.166	3a	0.164
Power	0.164	2b	0.246	3b	0.156
Hill	0.604	2c	0.141	3c	0.13
Exp3	0	4b	0.26	5b	0.161
Exp5	0.694	4c	0.146	5c	0.14

Figure 82: Template p1_lognormal_subchronic; Models fit assuming nonconstant variance

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	-				
quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.152	987	0.151599		
50	0.171	29	0.170004	0.1345	
75	0.198	557	0.196814		
IQR	0.0455	5704	0.045215		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0.645	1	0.561		
Poly3	0.548	2a	0.549	3a	0.562
Power	0.566	2b	0.606	3b	0.555
Hill	0.749	2c	0.462	3c	0.458
Exp3	0.014	4b	0.655	5b	0.59
Exp5	0.667	4c	0.501	5c	0.503

Percentiles and Inter- quartile Range for BMD Estimates	BMD-Ave Metho	raging	Model-Averaging Methods	True BMD	
25	0.3704	132	0.368339		
50	0.4622	292	0.462792	0.4775	
75	0.5376	535	0.537827		
IQR	0.1672	203	0.169488		
Model	Coverage	Method	Coverage	Method	Co
Linear	1	1	0.925		

Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.925		
Poly3	0.929	2a	0.94	3a	0.911
Power	0.919	2b	0.961	3b	0.927
Hill	0.916	2c	0.941	3c	0.911
Exp3	0.925	4b	0.96	5b	0.926
Exp5	0.923	4c	0.94	5c	0.911

Figure 84: Template p2_lognormal_subchronic; Models fit assuming nonconstant variance

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	-				
quartile Range for BMD-Averaging		Model-Averaging			
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.303	709	0.300626		
50	0.408	924	0.410344	0.4775	
75	0.570)92	0.570033		
IQR	0.267	211	0.269406		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.936		
Poly3	0.912	2a	0.943	3a	0.96
Power	0.896	2b	0.966	3b	0.984
Hill	0.897	2c	0.934	3c	0.959
Exp3	0.924	4b	0.965	5b	0.984

4c

Exp5

0.926

0.936

0.959

5c

Figure 85: Template p3_lognormal_chronic; Models fit assuming non-constant variance

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for BMD Estimates	- BMD-Ave Meth	eraging	Model-Averaging Methods	True BMD	
25	0.159	689	0.158098		
50	0.181	911	0.180631	0.1541	
75	0.202	974	0.200859		
IQR	0.0432	2851	0.0427616		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0	1	0.543		
	•	-	~	-	~

Linear	0	1	0.543		
Poly3	0	2a	0.527	3a	0.49
Power	0	2b	0.715	3b	0.553
Hill	0.879	2c	0.481	3c	0.451
Exp3	0.042	4b	0.735	5b	0.577
Exp5	0.885	4c	0.539	5c	0.489
-					

Figure 86: Template p3_lognormal_subchronic; Models fit assuming nonconstant variance

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for	BMD-Averaging		Model-Averaging		
BIVID Estimates	weth	ous	wiethous		
25	0.187	706	0.179529		
50	0.210	786	0.207417	0.1541	
75	0.229	675	0.228489		
IQR	0.0426	5157	0.0489601		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0	1	0.276		
Poly3	0	2a	0.27	3a	0.222
Power	0	2b	0.579	3b	0.321
Hill	0.848	2c	0.217	3c	0.186

Exp3

Exp5

0.848 0.217 3с 2c 0.56 4b 0.629 5b 0.85 0.317 4c 5c

0.355

0.256

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	-				
quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Metho	ods	Methods	True BMD	
25	0.4508	839	0.450706		
50	0.5094	469	0.509173	0.5112	
75	0.5656	534	0.559834		
IQR	0.114	795	0.109128		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.925		
Poly3	0.915	2a	0.946	3a	0.919
Power	0.926	2b	0.949	3b	0.923
Hill	0.935	2c	0.949	3c	0.92
Exp3	0.91	4b	0.952	5b	0.926
Exp5	0.934	4c	0.945	5c	0.919

Figure 88: Template p4_lognormal_subchronic; Models fit assuming nonconstant variance

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for BMD Estimates	- BMD-Ave Meth	eraging ods	Model-Averaging Methods	True BMD	
25	0.342	916	0.341238		
50	0.440	979	0.445106	0.5112	
75	0.583	854	0.576371		
IQR	0.240	937	0.235134		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	1	1	0.921		
Poly3	0.908	2a	0.937	3a	0.958
Power	0.911	2b	0.972	3b	0.989
Hill	0.932	2c	0.935	3c	0.956
Exp3	0.909	4b	0.976	5b	0.989

4c

Exp3

Exp5

0.916

0.938

5c

0.959

Figure 89: Template e1_lognormal_chronic; Models fit assuming non-constant variance

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-				
quartile Range for	BMD-Ave	eraging	Model-Averaging	True
BMD Estimates	Meth	ods	Methods	BMD
25	0.171	188	0.160622	
50	0.236	01	0.234485	0.154
75	0.3663	385	0.317186	
IQR	0.195	198	0.156564	
Model	Coverage	Method	Coverage	Method
Linear	0	1	0.601	

Model	Coverage	Method	Coverage	Method	Coverage
Linear	0	1	0.601		
Poly3	0	2a	0.557	3a	0.569
Power	0	2b	0.754	3b	0.675
Hill	0.905	2c	0.528	Зc	0.545
Exp3	0	4b	0.777	5b	0.687
Exp5	0.901	4c	0.596	5c	0.6
-					

Figure 90: Template e1_lognormal_subchronic; Models fit assuming nonconstant variance

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for	BMD-Averagi	ng l	Model-Averaging	True
BMD Estimates	Methods		Methods	BMD
25	0.289409		0.194234	
50	0.452251		0.411534	0.154
75	0.64184		0.647884	
IQR	0.352431		0.453649	
Model	Coverage	Method	Coverage	Method

Model	Coverage	Method	Coverage	Method	Coverage
Linear	0.004	1	0.234		
Poly3	0.005	2a	0.221	3a	0.206
Power	0.002	2b	0.625	3b	0.372
Hill	0.847	2c	0.171	3c	0.168
Exp3	0.01	4b	0.795	5b	0.479
Exp5	0.896	4c	0.361	5c	0.313
-					

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	-				
quartile Range for	BMD-Ave	raging	Model-Averaging		
BMD Estimates	Metho	ods	Methods	True BMD	
25	0.5400	35	0.537044		
50	0.6452	26	0.65591	0.4225	
75	0.7719	52	0.789654		
IQR	0.2319	17	0.25261		
Model	Coverage	Method	Coverage	Method	Coverage
Model Linear	Coverage 0.119	Method 1	Coverage 0.318	Method	Coverage
Model Linear Poly3	Coverage 0.119 0.116	Method 1 2a	Coverage 0.318 0.308	Method 3a	Coverage 0.277
<u>Model</u> Linear Poly3 Power	Coverage 0.119 0.116 0.117	Method 1 2a 2b	Coverage 0.318 0.308 0.704	Method 3a 3b	Coverage 0.277 0.351
Model Linear Poly3 Power Hill	Coverage 0.119 0.116 0.117 0.898	Method 1 2a 2b 2c	Coverage 0.318 0.308 0.704 0.271	Method 3a 3b 3c	Coverage 0.277 0.351 0.229
Model Linear Poly3 Power Hill Exp3	Coverage 0.119 0.116 0.117 0.898 0.036	Method 1 2a 2b 2c 4b	Coverage 0.318 0.308 0.704 0.271 0.732	Method 3a 3b 3c 5b	Coverage 0.277 0.351 0.229 0.365
Model Linear Poly3 Power Hill Exp3 Exp5	Coverage 0.119 0.116 0.117 0.898 0.036 0.941	Method 1 2a 2b 2c 4b 4c	Coverage 0.318 0.308 0.704 0.271 0.732 0.304	Method 3a 3b 3c 5b 5c	Coverage 0.277 0.351 0.229 0.365 0.258

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and inter-					
quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.486	407	0.482779		
50	0.680	443	0.700083	0.4225	
75	1.077	79	1.0326		
IQR	0.591	138	0.549819		
Model	Coverage	Method	Coverage	Method	Coverage
	0				
Linear	0.571	1	0.651		
Linear Poly3	0.571 0.535	1 2a	0.651 0.653	За	0.634
Linear Poly3 Power	0.571 0.535 0.546	1 2a 2b	0.651 0.653 0.797	3a 3b	0.634 0.67
Linear Poly3 Power Hill	0.571 0.535 0.546 0.737	1 2a 2b 2c	0.651 0.653 0.797 0.581	3a 3b 3c	0.634 0.67 0.548
Linear Poly3 Power Hill Exp3	0.571 0.535 0.546 0.737 0.468	1 2a 2b 2c 4b	0.651 0.653 0.797 0.581 0.836	3a 3b 3c 5b	0.634 0.67 0.548 0.702
Linear Poly3 Power Hill Exp3 Exp5	0.571 0.535 0.546 0.737 0.468 0.899	1 2a 2b 2c 4b 4c	0.651 0.653 0.797 0.581 0.836 0.609	3a 3b 3c 5b 5c	0.634 0.67 0.548 0.702 0.573

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for	- BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.155	965	0.15494		
50	0.202	898	0.199268	0.1675	
75	0.261	512	0.24923		
IQR	0.105	547	0.0942898		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0	1	0.694		
Poly3	0	2a	0.668	3a	0.654
Power	0	2b	0.824	3b	0.751
Hill	0.88	2c	0.65	3c	0.641

4b

4c

Exp3

Exp5

0.004

0.882

0.832

0.698

0.759

0.68

5b

5c

Figure 94: Template e3_lognormal_subchronic; Models fit assuming nonconstant variance

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter- quartile Range for	- BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.264	619	0.209358		
50	0.368	416	0.340183	0.1675	
75	0.454	675	0.436225		
IQR	0.190	055	0.226867		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0	1	0.254		
Poly3	0	2a	0.244	3a	0.225

2b

2c

4b

4c

Power

Hill

Exp3

Exp5

0

0.862

0.008

0.875

0.665

0.209

0.76

0.369

3b

3c

5b

5c

0.405

0.189

0.466

0.329

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	-				
quartile Range for	BMD-Ave	eraging	Model-Averaging		
BMD Estimates	Meth	ods	Methods	True BMD	
25	0.533	157	0.526414		
50	0.601	137	0.60161	0.4126	
75	0.680	067	0.681783		
IQR	0.146	591	0.155369		
Model	Coverage	Method	Coverage	Method	Coverage
Linear	0.011	1	0.198		
Poly3	0.011	2a	0.198	3a	0.167
Power	0.011	2b	0.669	3b	0.268
Hill	0.938	2c	0.164	Зc	0.135
Exp3	0.093	4b	0.704	5b	0.278
Exp5	0.939	4c	0.213	5c	0.165

Cumulative Distribution of BMDLs by Method True BMD as Orange Vertical Line

Percentiles and Inter-	-				
quartile Range for	BMD-Ave	raging	Model-Averaging		
BMD Estimates	Metho	ods	Methods	True BMD	
25	0.4867	769	0.473158		
50	0.600	89	0.60175	0.4126	
75	0.7807	708	0.81835		
IQR	0.2939	939	0.345191		
Model	Coverage	Method	Coverage	Method	Coverage
Model Linear	Coverage 0.41	Method 1	Coverage 0.572	Method	Coverage
Model Linear Poly3	Coverage 0.41 0.382	Method 1 2a	Coverage 0.572 0.572	Method 3a	Coverage 0.551
Model Linear Poly3 Power	Coverage 0.41 0.382 0.384	Method 1 2a 2b	Coverage 0.572 0.572 0.787	Method 3a 3b	Coverage 0.551 0.599
Model Linear Poly3 Power Hill	Coverage 0.41 0.382 0.384 0.798	Method 1 2a 2b 2c	Coverage 0.572 0.572 0.787 0.498	Method 3a 3b 3c	Coverage 0.551 0.599 0.433
Model Linear Poly3 Power Hill Exp3	Coverage 0.41 0.382 0.384 0.798 0.548	Method 1 2a 2b 2c 4b	Coverage 0.572 0.572 0.787 0.498 0.811	Method 3a 3b 3c 5b	Coverage 0.551 0.599 0.433 0.643
Model Linear Poly3 Power Hill Exp3 Exp5	Coverage 0.41 0.382 0.384 0.798 0.548 0.899	Method 1 2a 2b 2c 4b 4c	Coverage 0.572 0.572 0.787 0.498 0.811 0.537	Method 3a 3b 3c 5b 5c	Coverage 0.551 0.599 0.433 0.643 0.471

APPENDIX A. BIBLIOGRAPHY OF LITERATURE ON MODEL AVERAGING

Bailer, A. J., Noble, R. B., & Wheeler, M. W. (2005). Model uncertainty and risk estimation for experimental studies of quantal responses. *Risk Analysis*, *25*(2), 291-299.

Barbieri, M. M., & Berger, J. O. (2004). Optimal predictive model selection. *Annals of Statistics*, 870-897.

Brown, P. J., Vannucci, M., & Fearn, T. (2002). Bayes model averaging with selection of regressors. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 64(3), 519-536.

Buchholz, A., Holländer, N., & Sauerbrei, W. (2008). On properties of predictors derived with a twostep bootstrap model averaging approach—a simulation study in the linear regression model. *Computational Statistics & Data Analysis, 52*(5), 2778-2793.

Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference understanding AIC and BIC in model selection. *Sociological methods & research*, *33*(2), 261-304.

Claeskens, G., & Hjort, N. L. (2008). *Model selection and model averaging* (Vol. 330). Cambridge: Cambridge University Press.

Clyde, M. A. (1999). Bayesian model averaging and model search strategies. *Bayesian statistics*, *6*, 157.

Clyde, M. A., Ghosh, J., & Littman, M. L. (2011). Bayesian adaptive sampling for variable selection and model averaging. *Journal of Computational and Graphical Statistics*, 20(1).

de-G. Acquah, H. (2010). Comparison of Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) in Selection of an Asymmetric Price Relationship. *J. Develop. Agricult. Econom.* **2**, 1-6.

Domingos, P. (1997). Why Does Bagging Work? A Bayesian Account and its Implications. In *KDD* (pp. 155-158).

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.1298&rep=rep1&type=pdf

Domingos, P. (2000). Bayesian averaging of classifiers and the overfitting problem. In *ICML* (pp. 223-230). <u>http://homes.cs.washington.edu/~pedrod/papers/mlc00b.pdf</u>

Faes, C., Aerts, M., Geys, H., & Molenberghs, G. (2007). Model averaging using fractional polynomials to estimate a safe level of exposure. *Risk Analysis*, *27*(1), 111-123.

Fraley, C., Raftery, A. E., & Gneiting, T. (2010). Calibrating multimodel forecast ensembles with exchangeable and missing members using Bayesian model averaging. *Monthly Weather Review*, *138*(1), 190-202.

George, E. (1999). Discussion of "Model averaging and model search strategies" by M. Clyde. In *Bayesian Statistics 6–Proceedings of the Sixth Valencia International Meeting*.

Greenland, S. (1999). Multilevel modeling and model averaging. *Scandinavian journal of work, environment & health*, 43-48.

Hansen, B. E. (2007). Least Squares Model Averaging. *Econometrica*, 1175-1189.

Hansen, B. E., & Racine, J. S. (2012). Jackknife model averaging. *Journal of Econometrics*, 167(1), 38-46.

Hjort, N. L., & Claeskens, G. (2003). Frequentist model average estimators. *Journal of the American Statistical Association*, *98*(464), 879-899.

Hjort, N. L., & Claeskens, G. (2006). Focused information criteria and model averaging for the Cox hazard regression model. *Journal of the American Statistical Association*, *101*(476), 1449-1464.

Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: a tutorial. *Statistical science*, 382-401.

Kang, S. H., Kodell, R. L., & Chen, J. J. (2000). Incorporating model uncertainties along with data uncertainties in microbial risk assessment. *Regulatory Toxicology and Pharmacology*, *32*(1), 68-72.

Kapetanios, G., Labhard, V., & Price, S. (2008). Forecasting using Bayesian and information-theoretic model averaging: An application to UK inflation. *Journal of Business & Economic Statistics*, 26(1), 33-41.

Kim, S. B., Kodell, R. L., & Moon, H. (2014). A diversity index for model space selection in the estimation of benchmark and infectious doses via model averaging. *Risk Analysis*, *34*(3), 453-464.

Leeb, H., & Pötscher, B. M. (2006). Can one estimate the conditional distribution of post-model-selection estimators? *The Annals of Statistics*, 2554-2591.

Ley, E., & Steel, M. F. (2009). On the effect of prior assumptions in Bayesian model averaging with applications to growth regression. *Journal of applied econometrics*, *24*(4), 651-674.

Liang, H., Zou, G., Wan, A. T., & Zhang, X. (2011). Optimal weight choice for frequentist model average estimators. *Journal of the American Statistical Association*, *106*(495).

Magnus, J. R., Powell, O., & Prüfer, P. (2010). A comparison of two model averaging techniques with an application to growth empirics. *Journal of Econometrics*, *154*(2), 139-153.

Minka, T. P. (2000). Bayesian model averaging is not model combination. *Available electronically at http://www.stat.cmu.edu/minka/papers/bma.html*, 1-2.

Montgomery, J. M., Hollenbach, F. M., & Ward, M. D. (2012). Improving predictions using ensemble Bayesian model averaging. *Political Analysis*, *20*(3), 271-291.

Montgomery, J. M., & Nyhan, B. (2010). Bayesian model averaging: Theoretical developments and practical applications. *Political Analysis*, *18*(2), 245-270.

Moon, H., Kim, H. J., Chen, J. J., & Kodell, R. L. (2005). Model averaging using the Kullback information criterion in estimating effective doses for microbial infection and illness. *Risk Analysis*, *25*(5), 1147-1159.

Moon, H., Kim, S. B., Chen, J. J., George, N. I., & Kodell, R. L. (2013). Model uncertainty and model averaging in the estimation of infectious doses for microbial pathogens. *Risk Analysis*, *33*(2), 220-231.

Morales, K. H., Ibrahim, J. G., Chen, C. J., & Ryan, L. M. (2006). Bayesian model averaging with applications to benchmark dose estimation for arsenic in drinking water. *Journal of the American Statistical Association*, *101*(473), 9-17.

Namata, H., Aerts, M., Faes, C., & Teunis, P. (2008). Model averaging in microbial risk assessment using fractional polynomials. *Risk Analysis*, *28*(4), 891-905.

Neuman, S. P. (2003). Maximum likelihood Bayesian averaging of uncertain model predictions. *Stochastic Environmental Research and Risk Assessment*, *17*(5), 291-305.

Parrish, M. A., Moradkhani, H., & DeChant, C. M. (2012). Toward reduction of model uncertainty: Integration of Bayesian model averaging and data assimilation. *Water Resources Research*, 48(3).

Piegorsch, W. W. (2014). Model Uncertainty in Environmental Dose–Response Risk Analysis. *Statistics and Public Policy*, *1*(1), 78-85.

Posada, D., & Buckley, T. R. (2004). Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. *Systematic Biology*, *53*(5), 793-808.

Raftery, A. E., Madigan, D., & Hoeting, J. A. (1997). Bayesian model averaging for linear regression models. *Journal of the American Statistical Association*, *92*(437), 179-191.

Rajagopal, R., & Del Castillo, E. (2005). Model-robust process optimization using Bayesian model averaging. *Technometrics*, *47*(2), 152-163.

Rao, J. S., & Tibshirani, R. (1997). The out-of-bootstrap method for model averaging and selection. *University of Toronto*. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.7953&rep=rep1&type=pdf

Richards, S. A., Whittingham, M. J., & Stephens, P. A. (2011). Model selection and model averaging in behavioral ecology: the utility of the IT-AIC framework. *Behavioral Ecology and Sociobiology*, 65(1), 77-89.

Ritz, C., Gerhard, D., & Hothorn, L. A. (2013). A unified framework for benchmark dose estimation applied to mixed models and model averaging. *Statistics in Biopharmaceutical Research*, *5*(1), 79-90.

Schomaker, M., Wan, A. T., & Heumann, C. (2010). Frequentist model averaging with missing observations. *Computational Statistics & Data Analysis*, *54*(12), 3336-3347.

Singh, A., Mishra, S., & Ruskauff, G. (2010). Model averaging techniques for quantifying conceptual model uncertainty. *Groundwater*, *48*(5), 701-715.

Shao, K. (2012). A comparison of three methods for integrating historical information for Bayesian model averaged benchmark dose estimation. *Environmental toxicology and pharmacology*, *34*(2), 288-296.

Shao, K., & Gift, J. S. (2014). Model uncertainty and Bayesian model averaged benchmark dose estimation for continuous data. *Risk Analysis*, *34*(1), 101-120.

Shao, K. & Small. M. J. (2011). Potential Uncertainty Reduction in Model-Averaged Benchmark Dose Estimates Informed by an Additional Dose Study. *Risk Analysis* **31**, 1561-1575.

Shao, K., & Small, M. J. (2012). Statistical evaluation of toxicological experimental design for Bayesian model averaged benchmark dose estimation with dichotomous data. *Human and Ecological Risk Assessment: An International Journal*, *18*(5), 1096-1119.

Symonds, M. R., & Moussalli, A. (2011). A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion. *Behavioral Ecology and Sociobiology*, *65*(1), 13-21.

Volinsky, C. T., Madigan, D., Raftery, A. E., & Kronmal, R. A. (1997). Bayesian model averaging in proportional hazard models: assessing the risk of a stroke. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, *46*(4), 433-448.

Vrugt, J. A., Diks, C. G., & Clark, M. P. (2008). Ensemble Bayesian model averaging using Markov chain Monte Carlo sampling. *Environmental fluid mechanics*, *8*(5-6), 579-595.

Vrugt, J. A., & Robinson, B. A. (2007). Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging. *Water Resources Research*, *43*(1).

Wan, A. T., Zhang, X., & Zou, G. (2010). Least squares model averaging by Mallows criterion. *Journal of Econometrics*, 156(2), 277-283.

Wang, D., Zhang, W., & Bakhai, A. (2004). Comparison of Bayesian model averaging and stepwise methods for model selection in logistic regression. *Statistics in medicine*, *23*(22), 3451-3467.

Wang, H., Zhang, X., & Zou, G. (2009). Frequentist model averaging estimation: a review. *Journal of Systems Science and Complexity*, *22*(4), 732-748.

Wasserman, L. (2000). Bayesian model selection and model averaging. *Journal of mathematical psychology*, 44(1), 92-107.

West, R. W., Piegorsch, W. W., Peña, E. A., An, L., Wu, W., Wickens, A. A., ... & Chen, W. (2012). The impact of model uncertainty on benchmark dose estimation. *Environmetrics*, *23*(8), 706-716.

Wheeler, M. W., & Bailer, A. J. (2007). Properties of Model-Averaged BMDLs: A Study of Model Averaging in Dichotomous Response Risk Estimation. *Risk Analysis* **27**, 659–670.

Wheeler, M. W., & Bailer, A. J. (2009). Comparing Model Averaging With Other Model Selection Strategies for Benchmark Dose Estimation. *Environ. Ecol. Stat.* **16**, 37-51.

Wheeler, M., & Bailer, A. J. (2012). Monotonic Bayesian semiparametric benchmark dose analysis. *Risk Analysis*, *32*(7), 1207-1218.

Wheeler, M. W., & Bailer, A. J. (2013). An empirical comparison of low-dose extrapolation from points of departure (PoD) compared to extrapolations based upon methods that account for model uncertainty. *Regulatory Toxicology and Pharmacology*, *67*(1), 75-82.

White, R. H., Cote, I., Zeise, L., Fox, M., Dominici, F., Burke, T. A., ... & Samet, J. M. (2009). State-of-thescience workshop report: issues and approaches in low-dose–response extrapolation for environmental health risk assessment. *Environ Health Perspect*, *117*(2), 283-7.

Wintle, B. A., McCarthy, M. A., Volinsky, C. T., & Kavanagh, R. P. (2003). The use of Bayesian model averaging to better represent uncertainty in ecological models. *Conservation Biology*, *17*(6), 1579-1590.

Zhang, X., & Liang, H. (2011). Focused information criterion and model averaging for generalized additive partial linear models. *The Annals of Statistics*, *39*(1), 174-200.

APPENDIX B. FORMAT OF AN AVG FILE FOR INPUT INTO CMODELAVG.EXE

```
> Line 1: Model Names
Linear Polynomial3 Power Hill Exponential3 Exponential5
                                                             [list models available]
       > Line 2: Model Weights: 0 \le wt(i) \le 1; \Sigma wt(i) = 1
0.5 0.5 0 0 0 0
                                                              [in this example, linear and Poly3
                                                              models would be run with equal prior
                                                              wt]
       > Line 3: Restricted: 0=No, 1=Yes
011111
                                                              [same number of flags as in Line 2, in
                                                              same order]
       > Line 4: Options: a b c d e f g h
               > 4a: Number bootstrap iterations
               > 4b: Confidence limit
               > 4c: BMR Type:
                                      0=Absolute Deviation, 1=Standard Deviation
                                      2=Relative Deviation, 3=Point Estimate (currently only relative deviation, "2," is available)
               > 4d: BMRF
               > 4e: Distribution: 0=Normal, 1=Lognormal
                                                             (currently only "0," Normal, is
       available)
               > 4f: Constant Variance: 0=No, 1=Yes
               > 4g: Random Seed: 16 hex bytes, or "0" for automatic selection of seed)
               > 4h: Adverse Direction: -1=Down, 1=Up
1000 0.95 2 0.1 0 1 0 1
                                                              [in this example, a 95% lower bound on
                                                              a relative risk of 0.01 is computed
                                                              using 1000 bootstrap iterations;
models assume constant variance;
                                                              random seed is picked automatically,
                                                              and the adverse direction is "up"]
       > Line 5: File name, path, or other identifier(s)
D:\Projects\ModelAvg\ModelAvg\Data\Continuous4.dax
       > Line 6: Data Column Headers
Dose N Mean Std
       > Line 7+: Data (in order given by Headers; 1 line per dose group)
       10
               1.61
                       0.12
0
35
       10
               1.62
                       0.13
105
       10
               1.71
                       0.11
316
       10
               1.91
                       0.15
625
       10
               2.5
                      0.13
```

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

APPENDIX C. EXAMPLE CSV FILE (REAL_DATA_UP.CSV) FOR RUNNING WITH MATEST2.SH

real data i	Jp																									
unknown BMD																										
1																										
		1									1											1	1			
										1	1											1				
		ĺ			ĺ		ĺ						ĺ													
		dose	N	mean	std	dose	N	mean	std	dose	N	mean	std	dose	N	mean	std	d	lose	N	mean	std	dose	N	mean	std
20	unknown	0	10	1.037	0.015	1	10	1.05	0.01	3	10	1.052	0.01		9	10 1.	066	0.01								
21	unknown	0	20	0.92	0.09	10	20	1.05	0.2	33	20	1.01	0.09	10	0	20	.07	0.2								
22	unknown	0	20	0.9	0.2	10	20	0.99	0.09	33	20	1.08	0.2	2 10	0	20	.08	0.1								
27	unknown	0	10	87	/ 9	0.1	10	88	28	1	10	92	6	5 1	.0	LO	87	6								
30	unknown	0	6	3.5	1.7	0.1	6	4.5	3.8	1	5	3.7	3.7	/ 1	.0	5	2.9	2								
74	unknown	0	14	11	1	50	14	11.8	1	250	14	11.7	0.9	100	0	14	2.4	1								
75	unknown	0	10	1.74	0.37	50	10	2.14	0.57	250	10	2.38	0.65	100	0	LO	2.7	0.78								
76	unknown	0	14	6.43	0.39	50	14	6.49	0.48	250	14	6.74	0.37	100	0	14 (5.86	0.58				1				
77	unknown	0	10	1.27	0.14	50	10	1.4	0.25	250	10	1.45	0.21	100	0	LO	1.6	0.31								
78	unknown	0	14	1.5	0.11	50	14	1.57	0.14	250	14	1.62	0.1	100	0	14	.66	0.17								
82	unknown	0	10	1.2	0.4	5	10	3	1	16	10	4.4	1.3	5	0	10	0.1	1.2								
83	unknown	0	10	1.6	0.8	5	10	3.2	0.9	16	10	3.9	1.3	5	0	10	0.5	1.5								
84	unknown	0	10	0.6	0.2	5	10	0.9	0.6	16	10	3.2	0.7	/ 5	0	10	0.1	2								
85	unknown	0	10	2.1	1.2	5	10	2.3	0.6	16	10	3.7	0.2	9 5	0	10	9.6	2.5								
86	unknown	0	10	0.7	0.6	5	10	1.6	0.4	16	10	2.1	1.3	5	0	10	5.8	1.7								
87	unknown	0	10	1.3	0.9	5	10	0.8	0.5	16	10	2	0.6	; 5	0	10	5.1	0.8								
92	unknown	0	10	11.615	0.363	125	10	11.99	0.268	250	10	11.747	0.253	50	0	10 12	332	0.292	1000	10	13,289	0.52	1500	10	12.941	0.417
93	unknown	0	10	6.079	0.172	125	10	6.134	0.225	250	10	6	0.158	50	0	10	6	0.269	1000	10	6.841	0,162	1500	10	7,402	0.208
95	unknown	0	10	45.08	2.8	62.5	10	44.2	2.7	125	10	44.24	2.1	25	0	10 4	.28	4.08	500	10	51.43	3.16			71102	
97	unknown	0	10	48.49	3.54	62.5	10	46.65	2.12	125	10	48.57	2.12	25	0	10 5	5.03	2.8	500	10	59.61	3 26				
			10	10.13		02.0	1 10	10.05		1 123	10	10.57			-			2.0	500	10	55.01	5.20	1	1		<u></u>

Note: File name MUST be the same as the name in cell A1 (though the name in A1 need not have the underscores).