Development of a Quantitative Accounting Framework for Black Carbon and Brown Carbon from Emissions Inventory to Impacts

Jamie Schauer, UW-Madison (PI)
Mike Bergin, Georgia Teach (Co-PI)
Collaborator: Jerry Liu, Cummins

This research is funded by U.S. EPA - Science To Achieve Results (STAR) Program
Grant # [blank]

Framework for Black Carbon and Brown Carbon from Emissions to Impacts
EPA STAR Grant R83503901
Motivation

• Emissions inventories and air quality models of light adsorbing carbon require parameterization of the radiative properties of emissions
• Current parameterizations of light absorbing carbon emissions do not address the range of variability within sources or control technologies
• Elemental carbon is not a good surrogate for light absorbing carbon for control strategy development nor assessment of control strategy implementation
 – May be OK if limited to absorption at 880 nm
• The light absorbing capacity of carbonaceous aerosol is not a conservative property from the point of emissions to atmosphere

Framework for Black Carbon and Brown Carbon from Emissions to Impacts
EPA STAR Grant R83503901
Project Goals

• **Overall Goal**
 – Development of a quantitative framework for source-receptor relationships for light absorbing carbon and their associated wavelength dependent light absorptivity

• **Key Objectives**
 – Deconstruct emissions from sources of light absorbing carbon to elucidate the contribution of different emissions components to wavelength dependent absorption
 – Elucidate how the evolution of emissions in plumes impact wavelength dependent absorption
 – Integrate source apportionment models for aerosol components impacting light adsorption with wavelength dependent light absorption closure calculations
Project Strategy

• Source Testing
• Mie theory calculations for source emissions and deconstructed emissions
• Atmospheric measurements
• Mie theory calculations for atmospheric aerosols and deconstructed aerosols
• Develop a source apportionment framework that can address the optical evolution of aerosols and precursors
Source Testing

- Examine key sources of light absorbing carbon:
 - Mobile sources
 - Conventional CI and SI and Emerging Technologies
 - Biomass burning
 - Lab and Field Studies
 - Coal combustion
- Examine for each source
 - Role of process variables on emissions
 - Optical properties of the organic carbon
 - Optical properties of the elemental carbon
 - Impact of dilution
 - Impact of thermal stripping of organics
- Develop source specific light absorption closure models for measurement conditions and high dilution conditions

Framework for Black Carbon and Brown Carbon from Emissions to Impacts
EPA STAR Grant R83503901
Atmospheric Measurements

• Use sites where we have conducted source apportionment studies in the past and where historical record and optical measurements
 – Atlanta, Georgia
 • Near Roadway
 – Rural Alabama
 • SOA
 – India
 • Biomass and Trash Burning
 • Low Temperature Coal Combustion
Approach

– Measure the optical properties under controlled conditions
 • Scattering and Absorption (multiple wavelengths)
– Measure physical-chemical properties
 • Size distribution, particle shape, chemical composition
– Segregate components of aerosols
 • Thermal Denuder, WS and Organic solvent atomization
– Correct absorption artifacts and compare optical properties of aerosol components
Methods

Radiance Research Nephelometer

Magee Scientific AE31 7-channel Aethalometer

TSI Scanning Mobility Particle Sizer/ Electrostatic classifier

DMT PAX 532: Photoacoustic Extinctionometer

Framework for Black Carbon and Brown Carbon from Emissions to Impacts
EPA STAR Grant R83503901
Methods

Framework for Black Carbon and Brown Carbon from Emissions to Impacts
EPA STAR Grant R83503901
Attenuation by Non-Absorbing Aerosols

Absorption vs Scattering: Scattering Artifact correction

<table>
<thead>
<tr>
<th>Wavelengths</th>
<th>slope (m)</th>
<th>Intercept (b)</th>
<th>R^2</th>
<th>slope forced through zero (m')</th>
</tr>
</thead>
<tbody>
<tr>
<td>370</td>
<td>0.064</td>
<td>3.977</td>
<td>0.801747</td>
<td>0.066</td>
</tr>
<tr>
<td>470</td>
<td>0.049</td>
<td>-0.909</td>
<td>0.816126</td>
<td>0.048</td>
</tr>
<tr>
<td>520</td>
<td>0.038</td>
<td>1.983</td>
<td>0.835205</td>
<td>0.039</td>
</tr>
<tr>
<td>590</td>
<td>0.030</td>
<td>2.919</td>
<td>0.801001</td>
<td>0.032</td>
</tr>
<tr>
<td>660</td>
<td>0.027</td>
<td>3.207</td>
<td>0.84751</td>
<td>0.028</td>
</tr>
<tr>
<td>880</td>
<td>0.016</td>
<td>7.607</td>
<td>0.685092</td>
<td>0.019</td>
</tr>
<tr>
<td>950</td>
<td>0.013</td>
<td>7.410</td>
<td>0.651662</td>
<td>0.016</td>
</tr>
</tbody>
</table>

Framework for Black Carbon and Brown Carbon from Emissions to Impacts
EPA STAR Grant R83503901
Multiple Wavelength Absorption Correction

- Test run at steady-state
- Scattering correction is not significant for engine out emissions
- Loading correction is wavelength specific

Framework for Black Carbon and Brown Carbon from Emissions to Impacts
EPA STAR Grant R83503901
Example of Wood Pellets

Pellet Absorption Coefficient

Wood Pellet Extract Atomization

Framework for Black Carbon and Brown Carbon from Emissions to Impacts
EPA STAR Grant R83503901
Experimental Setup

Model: 2010, Cummins ISX15 – 500
Emission Certification: EPA 2010, CARB 2010
Type: 4-stroke cycle
Cylinder Configuration: In-line 6
Bore and Stroke: 137 mm x 169 mm
Compression Ratio: 17.2:1
Aspiration: Turbocharged & Charge Air Cooled
Displacement: 14.9 L
Rated Power & Rated Speed: 373 kW & 1800 RPM
Peak Torque: 2508 N-m at 1200 RPM
Fuel System: Cummins XPI
EGR System: Cooled High Pressure

Framework for Black Carbon and Brown Carbon from Emissions to Impacts
EPA STAR Grant R83503901
Emissions Testing Lab

Framework for Black Carbon and Brown Carbon from Emissions to Impacts
EPA STAR Grant R83503901
BrC Plots

Effect of TD

Effect of TD

Framework for Black Carbon and Brown Carbon from Emissions to Impacts
EPA STAR Grant R83503901
Atmospheric Sampling: Objectives

- Conduct field measurements at a variety of sites dominated by various sources of Black Carbon (BC) and Brown Carbon (BrC)
- Determine relative fraction of light absorption by BC and BrC
- Determine sources of BC and BrC
- Develop simple parameterizations for influence of aging on the light absorbing properties of aerosols
Approach: Specifics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Instrument</th>
<th>Dates</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Real-Time Continuous</td>
</tr>
<tr>
<td>$\sigma_{ap} (\lambda)$</td>
<td>Magee Aethalometer, PAX</td>
<td>4-1 Month Periods</td>
<td>Compare with Mie Theory Light Absorption Estimates from MOUDI 1</td>
</tr>
<tr>
<td>$\sigma_{sp} (\lambda)$</td>
<td>Radiance Research Nephelometer</td>
<td>--</td>
<td>Compare with Mie Theory Estimates from MOUDI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time-Integrated Sampling</td>
</tr>
<tr>
<td>EC/OC, Trace Organics, WSOC, $\text{Abs}(\lambda){\text{solvent}}$, $\text{Abs}(\lambda){\text{water}}$</td>
<td>HiVol Filter sampler</td>
<td>4-1 Month Periods</td>
<td>Source apportionment, RI Estimates for Mie Theory, Solvents Extracts for Aerosolization Experiments</td>
</tr>
<tr>
<td>EC/OC, WSOC, $\text{Abs}(\lambda){\text{solvent}}$, $\text{Abs}(\lambda){\text{water}}$</td>
<td>MOUDI 1</td>
<td>4-1 Month Periods</td>
<td>Estimation of $\sigma_{ap} (\lambda)$ as function of size for both water and solvent extracts and BC</td>
</tr>
<tr>
<td>Mass, Ions</td>
<td>MOUDI 2</td>
<td>4-1 Month Periods</td>
<td>Estimation of $\sigma_{sp} (\lambda)$ as a function of size</td>
</tr>
</tbody>
</table>

Framework for Black Carbon and Brown Carbon from Emissions to Impacts
EPA STAR Grant R83503901
Black Carbon (BC) and Angstrom Absorption Exponent (AAE) in rural US and India

Centerville, Al

Kanpur, India

Framework for Black Carbon and Brown Carbon from Emissions to Impacts
EPA STAR Grant R83503901
Trash/Refuse Burning: A Source of Brown Carbon

Framework for Black Carbon and Brown Carbon from Emissions to Impacts
EPA STAR Grant R83503901
Ratio of light absorption for denuder (200°C) to ambient air

Centerville, Al

Framework for Black Carbon and Brown Carbon from Emissions to Impacts
EPA STAR Grant R83503901
Ratio of light absorption for denuder (200°C) to ambient air

Denuder at 200°C

Atlanta, Ga
Low Cost Sensor Networks

- microAet h-Black Carbon
- Arduino microcontroller
- PM sensor
- CO2 Sensor
- T, RH

Framework for Black Carbon

EPA STAR Grant R83503901
Rough Emissions Factor = $\frac{\Delta \text{PM}}{\Delta \text{CO}_2}$

- $0.079 \mu g \ m^{-3} \ \text{PM/ppmCO}_2$
- $0.39 \ g \ \text{PM/kg fuel}$
Atlanta Freeway BC Emission Factor Estimate

Rough Emissions Factor = ΔBC/ΔCO2

= 0.044 μg m$^{-3}$ BC/ppmCO2

= 75 mg BC/kg fuel

Framework for Black Carbon and Brown Carbon from Emissions to Impacts
EPA STAR Grant R83503901
Ongoing Efforts

• Source Testing
 – Applying methodology to other source of concern: real world biomass, residential coal

• Atmospheric Sampling
 – Water and methanol extractions of size-resolved BC and BrC samples
 – Extraction of hivol samples to determine optical properties and sources of light absorption

• Publications

Framework for Black Carbon and Brown Carbon from Emissions to Impacts
EPA STAR Grant R83503901