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Executive Summary 
The U.S. Environmental Protection Agency (EPA) is in the process of developing new or revised 
recreational water quality criteria as required in the Beaches Environmental Assessment and 
Coastal Health Act (BEACH Act) of 2000. As part of that process, EPA is investigating a faster 
method of analysis of fecal indicator bacteria (FIB) in a series of epidemiology studies. Such a 
rapid method would provide analytical results in 4–6 hours, which does not include 
transportation time to the laboratory or laboratory preparation time. Even with the rapid method, 
results might not be available on the same morning samples are collected or even on the same 
day. One means to supplement, not replace, analytical results and to make same-day public 
health decisions is to use predictive tools such as statistical models, rainfall threshold levels, and 
notification protocols. 

This document is Volume I of a two-volume report. Volume I summarizes current uses of 
predictive tools to provide model developers with the basic concepts for developing predictive 
tools for same-day beach notifications at coastal marine, Great Lakes, and inland waters. 

Volume II provides results of research conducted by EPA on developing statistical models at 
research sites. It also presents Virtual Beach—a software package designed to build statistical 
multivariable linear regression predictive models. 

 

The types of predictive tools that can be used to make beach notification decisions fall into the 
following categories—statistical regression models, rainfall-based notifications, decision trees or 
notification protocol, deterministic models, and combinations of tools. 

• A statistical model (also called a statistically based model or a predictive model) is a 
general term for any type of statistical modeling approach to predicting beach water 
quality. A statistical correlation is observed between FIB and environmental and water 
quality variables that are easier to measure than FIB. Typical variables include 
meteorological conditions (solar radiation, air temperature, precipitation, wind speed and 
direction, and dew point); water quality (turbidity, pH, conductivity/salinity, and 
ultraviolet (UV)/visible spectra); and hydrodynamic conditions (flows of nearby 
tributaries, magnitude and direction of water currents, wave height, and tidal stage). 

• A rain threshold level is another predictive tool used in many locations as the basis for a 
beach notification. Many beach managers have noticed a connection between the 
concentration of FIB at a beach and the amount of rain received in nearby areas. That 
relationship can be quantified as an amount or intensity of rainfall (a threshold level) that 
is likely to cause exceedances of water quality standards at a beach, and the length of 
time over which the standards will be exceeded. 

• Beach managers can also develop a series of questions or a decision tree, considering 
factors such as rainfall, to guide beach notifications. Such evaluations use water quality 
sampling, rainfall data, and other environmental factors that could influence the FIB 
levels (such as proximity to pollution sources, wind direction, visual observations, or 
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other information specific to the region or beach). In this document, that process is 
referred to as developing a notification protocol. 

Developing a basic understanding of the regional hydrology can be an important part of 
developing and using a predictive tool. This report addresses the influence of different 
hydrologic settings and how they affect the development of a predictive tool. 

This document presents predictive tools that health departments and other responsible agencies 
are using for predicting water quality conditions and making timely decisions on beach 
notifications. An overview and a short description are presented for each predictive tool for 
which information was available. The document presents details on the elements required for 
developing a statistical model, according to a review of available literature. It discusses 
techniques for refining models and advanced statistical methodologies. The document also 
outlines general procedures for developing rainfall threshold levels and notification protocols. 

A review of predictive tools for beach notifications reveals different challenges for each beach. 
Developing a predictive tool requires a commitment of resources (data collection, computer 
software, expertise), but there is no guarantee that a useful predictive tool will be produced. The 
applicability and challenges of predictive tools are discussed. 

Finally, the document discusses future directions that EPA considers likely for predictive tools 
for beach notifications. Reliably forecasting beach water quality conditions a day or more in the 
future, related to weather forecasting, is a next step. Attempts are being made to develop models 
that apply to more than one beach or to a region of shoreline. 
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1 Document Overview and Background 
Document Overview 
This document is Volume I of a two-volume report. The goal of this document is to provide 
beach managers and developers of predictive tools with technical protocol for developing 
predictive tools for same-day beach notifications at coastal marine, Great Lakes, and inland 
waters. The technical protocol, or specific directions for developing predictive tools for beach 
advisories, is in Chapters 5 and 6. The background section below provides background 
information on the BEACH Act, beach monitoring, water quality criteria, analytical methods, 
and previously used beach predictive tools. Chapter 2 describes basic types of predictive tools 
used for making timely beach advisory decisions. Chapter 3 discusses the influence that different 
hydrologic environments have on beaches and how they affect model development. Chapter 4 
summarizes current uses of predictive tools in predicting water quality exceedances at beaches. 
Chapter 5 provides technical protocol for developing statistical models, and Chapter 6 provides 
technical protocol for developing rain threshold levels for beach advisory decisions. Chapter 7 
reviews the applicability of predictive tools, and Chapter 8 discusses trends that EPA sees in 
predictive tools for beach notifications. 

Volume II of this report describes site-specific applications of statistical models to several beach 
environments and analyses of results. Volume II also presents Virtual Beach, a software tool 
designed to build statistical multivariable linear regression predictive models at beaches. 

Background 
Coastal, Great Lakes, and inland beaches are treasured natural resources that provide significant 
value, including recreational benefits. Those benefits are challenged by regular input of 
pollutants from point and nonpoint sources. Recreational activities are especially affected if fecal 
matter, treated or untreated, originating from human and animal sources is in the water. Ingesting 
polluted waters or other exposure, resulting from recreational uses, can lead to illnesses such as 
gastroenteritis, fever, hepatitis, and cryptosporidiosis, as well as infections of the skin, ears, and 
respiratory system (USEPA 2002). 

The BEACH Act was passed in October 2000 to reduce the human health risks associated with 
water contact at coastal and Great Lakes beaches. The act requires EPA to coordinate and 
provide grant funds to support water quality monitoring and beach notification programs in 
states, territories, and eligible tribes with coastal or Great Lakes recreational waters. The 
program goals consist of informing the public of water quality problems at beaches (through 
notices that either provide advice about beach usage or close beaches), identifying sources of 
pollution, investing in analytical methods development, and improving water quality at beaches. 

The terms indicator bacteria, bacteria, and indicators all refer to FIB whose presence in 
recreational water signal the presence of fecal material and any pathogens it might contain. 

FIB are associated with disease-causing pathogens and are detected through sample collection 
and laboratory analysis. Culture-based, analytical methods for quantifying FIB included in 
EPA’s 1986 recreational water quality criteria commonly take 24–48 hours to provide results. 
Those culture methods have been improved to 18–48 hours (depending on the method and the 
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bacteria being detected). In the time between sampling and public notification of the sampling 
results, swimmers can be exposed to pathogens through activity in the water. Information used to 
issue closure notification today is often based on yesterday’s sample data. Conversely, elevated 
indicator densities detected in today’s sample might no longer be present when the analytical 
results are received, resulting in unnecessary closure and an unjustified adverse economic effect. 

EPA is in the process of revising the Recreational Ambient Water Quality Criteria as required in 
the BEACH Act of 2000. As part of that process, the quantitative polymerase chain reaction 
(qPCR), a more rapid analytical method for detecting and quantifying the presence of specific 
deoxyribonucleic acid (DNA) sequences—in this case, DNA sequences contained in FIB—is 
being evaluated. FIB and associated methods are being linked to health effects in beach users 
through a series of epidemiology studies. The rapid method has been defined variously as one 
that provides analytical results in 4–6 hours, which does not include transportation time to the 
laboratory, or laboratory preparation time. While laboratory methods are improving, results still 
might not be available on the same day samples are collected. 

In 1999 before the BEACH Act of 2000 was enacted and EPA’s grant-based monitoring and 
notification program began at coastal and Great Lakes beaches, EPA published a report, Review 
of Potential Modeling Tools and Approaches to Support the BEACH Program (USEPA 1999b). 
That report concentrates on rain threshold levels and the potential use of deterministic mixing 
zone, fate and transport, and hydrodynamic models and only briefly mentions statistically based 
models. This report includes statistical models, which have greatly increased in use since 1999. 

Even with the advent of rapid methods, real-time or even same-day water quality data collected 
to inform the public of the risks of using a waterbody will not always be available. One means to 
supplement analytical results is to use statistical models and other predictive tools (such as 
rainfall threshold levels and notification protocols). Significant development and implementation 
of statistically based models has occurred, especially in the Great Lakes (Lake Erie and Lake 
Michigan) (Francy 2009; Nevers and Whitman 2005). All those predictive tools have proven to 
be reliable and cost-effective. EPA believes such predictive tools could be applicable in many 
other settings as well, including marine and inland beaches. Those tools develop statistical 
relationships or models between FIB densities (dependent variables) and various observations 
that describe the environmental conditions at the beach (independent variables). The models use 
recent and historical FIB densities and independent variables that include other water quality, 
hydrodynamic, and meteorological data to predict current levels of FIB and to forecast near-
future levels of FIB or the likelihood of exceeding a water quality standard. Statistical models 
and other predictive tools can be run as frequently as data are available for measured 
independent variables and as long as models are shown to be producing reliable predictions that 
protect public health. 

Rainfall-based notifications and closures have been widely used at marine and freshwater 
beaches for decades. Rainfall threshold levels are issued at some beaches on the basis of an 
analysis of historical data. At such beaches, it has been shown that after a certain amount of 
rainfall, a beach is likely to have high FIB densities (USEPA 1999). Other similar notification 
protocols could be developed in which a certain combination of conditions has been shown to 
result in high levels of FIB. For purposes of this document, rainfall threshold levels and other 
notification protocols are not considered as models, but as predictive tools. 
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2 Tools for Beach Notification Decisions 
Statistically based models are being used to estimate water quality at many beaches in the United 
States, especially at beaches on the Great Lakes (Francy 2009). Rainfall threshold levels and 
other notification protocols are being used throughout the country. The primary reason for 
developing a predictive tool for beach notifications is to improve timeliness and accuracy of 
notification decisions and public notification in comparison to the current practice of waiting 18–
48 hours for sample results before making a decision (Francy et al. 2006). Predictive tools might 
also be useful in developing or adapting routine monitoring programs to focus efforts when 
conditions favoring high FIB levels exist. The predictive tools examined in this report include 
statistical models, rain threshold levels, notification protocols, and deterministic models. 

2.1 STATISTICAL MODELS 
A statistical model (also called a statistically based model or a predictive model) is a general 
term for any type of statistical modeling approach to predicting beach water quality. Linear 
regression models assume a linear relationship between factors, or combinations of factors, and 
FIB (Boehm et al. 2007; USEPA 2007; Nevers and Whitman 2005; Olyphant and Whitman 
2004). The most highly developed statistical model approach is a multivariable linear regression 
relationship between FIB and several independent variables. Typical, easy-to-measure 
environmental and water-quality variables include the following: meteorological conditions 
(solar radiation, air temperature, precipitation, wind speed and direction, dew point); water 
quality (turbidity, pH, conductivity/salinity, UV/visible spectra); hydrodynamic conditions 
(flows of nearby tributaries, magnitude and direction of water currents, wave height, tidal stage); 
and other factors such as presence/number of birds or bathers. The most common model outputs 
are estimated levels of FIB or probability of exceedance of the state water quality standard for 
FIB. The process of developing a statistical model for beach advisories is explained in more 
detail in Chapter 5. 

Statistical models are especially useful at some beaches and less useful at others. According to 
Francy (2006), statistically based modeling can also effectively predict water quality in situations 
where nonpoint or unidentified sources dominate, as well as in settings where discrete sources 
have been identified (Nevers and Whitman 2005). If a beach rarely has high bacteria densities or, 
conversely, almost always exceeds a bacterial water quality standard, it is unlikely that a 
statistical predictive model would significantly improve practices for timely decision making and 
notification. If a beach occasionally exceeds the water quality standard or if bacteria levels are 
frequently near the water quality standard level, statistical models can help by providing a timely 
prediction of whether FIB are likely to exceed the water quality standard according to parameters 
that are easier and faster to measure than FIB densities. 

Modeling tools are used to supplement, not replace, monitoring, and their primary purpose is to 
make predictions because of the lag time between sampling and obtaining microbial indicator 
results. Developing and using a statistical predictive model is a dynamic process based on data 
collected via existing beach-monitoring programs. Statistical modeling employs a retrospective 
correlation of measured water quality (FIB levels) with conditions observed at the time of sample 
collection to produce an estimate of water quality that is time-relevant for recreational water 
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management and use by the public. Model developers can create Internet-based systems that 
provide model predictions (similar to weather forecasts) to the public for the current period, not 
for a day or two in the past once exposure has already occurred. However, models need to be 
periodically validated and refined to improve predictions and better protect public health. More 
information on that topic is provided in Volume II of this report. 

2.2 RAIN THRESHOLD LEVELS 
When significant rainfall occurs in a short period, runoff is generally produced, which can carry 
harmful pollutants. Stormwater runoff and other surface water runoff (streams and rivers) are 
widespread primary pathways by which FIB and pathogens reach beaches (Lipp et al. 2001; 
Boehm et al. 2002; Schiff et al. 2003; Ackerman and Weisberg 2003). Runoff can contain animal 
feces and other bacterial sources that were deposited on land between storm events (Ackerman 
and Weisberg 2003). Runoff can also carry human sewage from leaks in the sewage transmission 
infrastructure (Ackerman and Weisberg 2003). Stormwater volume and pollutant loads generated 
depend on the characteristics of the drainage area, conditions of wastewater and stormwater 
infrastructure, and the volume and intensity of rainfall. The process of developing a rain 
threshold level, and other notification protocols, is explained in Chapter 6. 

For some beaches, a defined intensity or duration of rainfall is frequently associated with 
observations of poor water quality. With that information, many beach managers and public 
health officials commonly issue a rain threshold notification after a rain event of a predefined 
intensity or duration. Beachgoers are familiar with routine, wet-weather closures in locations 
where they are implemented. 

The objective of a rain threshold level is to identify a threshold level of rainfall at which FIB 
levels are likely to exceed the water quality standard. That is achieved if a statistical relationship 
between rainfall events and FIB densities can be observed or if a level of rainfall and rainfall 
conditions is consistently shown to be associated with increased FIB densities. The threshold can 
then serve as a management tool for developing notification protocols or predicting water quality 
standard exceedances requiring a beach notification. Several agencies have developed beach 
operating rules by studying site-specific relationships between rainfall and water quality 
monitoring data. Chapter 3 provides examples of such tools. Those types of tools are based on a 
simple regression or a frequency of exceedance analysis of simultaneous observations of FIB 
levels at representative monitoring stations near the beach and rainfall events at one or more 
locations at the beach or in the upstream watershed. 

2.3 NOTIFICATION PROTOCOLS 
Notification protocols are based on a set of decision criteria and questions that trigger 
notifications in anticipation of poor water quality or other potentially hazardous conditions 
(rough waves, strong rip currents, red tide). This document focuses on only the water quality 
aspect of notification protocol. Notification protocol is a general term used to describe a protocol 
or a set of questions or decision points a beach manager routinely uses to determine whether to 
close a beach or issue a notification. The protocol can rely on sampling results, other 
information, or beach characteristics either alone or in addition to sampling results. A decision 
tree can be used as a type of notification protocol. Several states (see Section 4.3) use a series of 
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questions or decision trees to guide their decisions for beach notifications. Such evaluations are 
designed to supplement bacteria data with characteristics of the beach that can influence the 
related bacteria levels (i.e., proximity to pollution sources, stormwater runoff, and current or 
wind direction). 

Decision Trees and Binary Models 
A decision tree classifies data from general to specific. It can be a simple tree that beach 
managers use to assess recent sampling results with other current conditions (such as rainfall 
amount and information on sewage bypasses) to decide whether to issue an advisory notification 
or to close a beach, and if so, for how long. If FIB are influenced by only one or two binary 
factors, a decision tree can be a simple and accurate predictive tool. 

If the underlying correlation in a statistical model is being driven by critical environmental 
factors that change daily, the empirical relationship will always be somewhat unclear. The 
strength of statistical regression models is also their weakness. Regression analysis requires 
sufficient data to both establish the relationship between the predictive variables and observed 
water quality and define the confidence that can be placed in model predictions. The weakness of 
the prediction is that it is based on data, some of which cements the correlation, and some of 
which interferes with it. It is difficult to identify a particular set of circumstances that applies on 
a given day unless beach managers are fully aware of the relationship between FIB sources and 
their beach, and apply a discriminator to the observed data that incorporates that understanding. 

An example of that would be a situation in which a stream outlet (a major source of FIB) was 
west of beach with an east-west oriented shoreline. A stiff breeze from either the west or east 
creates choppy water that causes turbidity to increase. Historic data indicate that turbidity is a 
fairly strong predictor of elevated FIB densities. When the wind is from the west, turbidity is 
high and FIB are being transported from the stream outlet to the beach. When the wind is from 
the east, turbidity is just as high, but the stream is no longer a source. Without wind information 
and knowledge of the stream source, a model prediction derived from only increased turbidity 
does not accurately inform the beach manager concerning the presence of pollution at the beach. 

A decision tree modeling approach can handle such a situation as a set of decision points or 
yes/no junctions: IF turbidity is elevated AND the wind is from the west, THEN indicator 
densities will likely be elevated. Those decisions would likely be combined with other decision 
points stemming from a statistical analysis of historic beach data. Using the same scenario 
described above, a binary regression model would propose two different empirical relationships, 
one used when wind comes from the west and one for wind from the east. 

Another binary model might use different sets of independent variables for early- and late-season 
observations, e.g., Ohio Nowcast (Francy and Darner 2007). Such an approach acknowledges 
that some variables might be more relevant in the early part of a season, but it might not be 
useful for prediction later in the season. The model developer analyzes both early and late season 
data, over a number of years. If the data set had not been segregated, its predictive power would 
be reduced by dilution because of changing circumstances. That approach is closely aligned to 
Hierarchical Bayesian Modeling, which has become more popular in the past decade. 

An example of using a single, readily measured parameter is the use of turbidity. A strong 
correlation between turbidity and elevated FIB densities makes turbidity a strong predictive 
variable in a regression model. However, that univariate simplicity would not be desired in the 
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situation where wind is the primary transport mechanism from the source to the beach or in the 
case where rainfall-driven turbidity is important but wind and wave-induced turbidity is 
irrelevant. 

An interesting approach to decision tree modeling of bacterial indicator prediction is described in 
Bae et al. (2010). The commercial classification and regression tree (CART) software they used 
can perform tradition linear regression, but it can also classify data using a decision node 
approach. Each node is based on a response threshold with the strongest decision nodes 
occurring higher in the decision tree with less significant thresholds/variables having a lower 
place in the decision hierarchy. Each tree node is univariate in nature—a decision is made using 
a single independent variable. It allows for greater flexibility in defining the influence of 
different variables. Contrast that with multilinear regression, whose regression equation demands 
the participation of all independent variables in the model. 

The goal of a classification tree approach is to minimize classification errors (i.e., false positives 
and false negatives). The CART method is more commonly used to address the question of 
whether a water quality standard will be exceeded than to produce a quantitative prediction of 
FIB. A successful CART model was designed for several beaches in South Carolina (Johnson 
2007). 

2.4 DETERMINISTIC MODELS 
Deterministic models use mathematical representations of the processes that affect bacteria 
densities to predict exceedances of water quality standards. They include a range of simple to 
complex modeling techniques. 

The 1999 EPA report Review of Potential Modeling Tools and Approaches to Support the 
BEACH Program (USEPA 1999b), mentioned in Chapter 1, includes various types of 
deterministic models such as mixing zone, fate and transport, and hydrodynamic models, as well 
as simple, predictive tools such as rainfall-curve-based closures. Specific deterministic models 
discussed in the 1999 report include CORMIX, EFDC (Environmental Fluid Dynamics Code), 
HSPF (Hydrological Simulation Program—Fortran), PLUMES, QUAL2E, Regional Bypass 
Model, SMTM (Simple Mixing and Transport Model), STORM, SWMM (Storm Water 
Management Model), and TPM (Tidal Prism Model). Those models were developed for general 
purposes, but they were perceived to have potential use in support of implementing criteria for 
beach notification and advisories. With the exception of the Regional Bypass Model, EPA is 
unaware of any widespread use for any of those models for predicting water quality at beaches. 
Most of the models used for timely beach notifications are statistically based models. 

EPA believes there is potential for applying deterministic models to support the Beach 
monitoring and notification program. Using statistical models in combination with existing 
deterministic models, or stacking models, has been shown to have potential for increasing the 
quality of the results produced by using statistical models alone. That and other potential 
applications of deterministic or process models are described in detail in Chapter 8. 
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3 Hydrologic Environments and Their Effects on 
Modeling for Beach Notifications 

3.1 INTRODUCTION 
FIB are used to indicate the presence and extent of fecal pollution. FIB originate and thrive in the 
intestinal tracts of warm-blooded animals. Identifying sources of fecal pollution, tracking their 
movement through a watershed, and quantifying attenuation during transport within the aquatic 
environment are very difficult tasks, especially in highly dynamic shoreline environments. 
Having a good understanding of pollution sources and hydrologic setting can greatly improve 
model prediction accuracy, especially if that knowledge can be used to direct data collection 
efforts. 

Fecal pollution sources can be roughly categorized into human sewage and animal sources 
(Schueler 1999). Human sources include publicly owned treatment works (POTW) discharge, 
runoff or seepage from septic systems, leaking wastewater infrastructure, and direct effects from 
bather shedding at the beach (Figure 3-1). The nature of the sources of FIB detected at a beach is 
of primary concern to beach managers and is part of the information that should be documented 
at beaches through the use of sanitary surveys (for more information on sanitary surveys, see 
Section 5.3.1.3). 

 
Figure 3-1. Sources and fate of fecal pollution in watersheds. 
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3.2  SOURCES OF FECAL POLLUTION IN THE WATERSHED 

3.2.1 Animal Sources 
Animal sources can be categorized as domestic animal sources and wildlife. Domestic animal 
sources consist of agricultural animals and pets. Wildlife includes birds, rodents, upland game 
animals, and marine animals, among others. 

3.2.2 Human Sewage 
The potential sources of human sewage vary depending on whether the watershed is sewered. In 
sewered watersheds, sources can be treated sewage, combined sewer overflows (CSOs), sanitary 
sewer overflows (SSOs), leaky wastewater infrastructure, illegal connections, and dumping to 
storm drains. CSO and SSO discharges are generally associated with storm events that cause 
capacity exceedances resulting in raw sewage (CSO) or partially treated sewage (SSO) flowing 
into natural waters. Power failures at pumping stations and line blockages and breaks also can 
result in human sewage reaching receiving waters. Illegal or improper connections to the sewer 
system and illegal dumping in storm drains are problems in some communities. Knowledge of 
outfall locations and the quantity and quality of storm sewer discharges is important for beach 
managers and should be determined by using a sanitary survey. 

In non-sewered watersheds, human sewage is usually processed by septic systems or community 
package plants. If any part of the systems fails, human waste can escape and migrate to 
waterways. The design life of most septic systems is limited, usually in the range of 15 to 30 
years, and proper maintenance of septic systems is widely variable. In watersheds with older 
systems and in heavily developed shore areas near lakes, faulty septic systems can be an 
important source of untreated human sewage. 

By having some knowledge of what sources of fecal pollution are and where they are, data 
collection for predictive tool development can be focused on streams (for example) that are 
considered to be likely inputs of fecal matter. 

3.3 BACTERIA MOVEMENT TO THE WATERBODY 
Although the location and extent of pollution sources vary by the land use and ground cover in a 
watershed, a common characteristic is that loading to the receiving waterbody is usually strongly 
linked with the duration and intensity of storms. That is generally true for sewered areas and 
developed areas with failing septic systems. 

In less developed watersheds, the bacteria in runoff take longer routes in reaching receiving 
waters, such as by detention and infiltration of stormwater in wetlands or in the soil. Such an 
environment reduces the direct flow of fecal pollution to waterways. Some areas have been 
developed to include infiltration ponds where stormwater is routed to the ponds where it 
infiltrates slowly, mimicking a natural system. 
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3.4 BACTERIA MOVEMENT WITHIN THE WATERBODY 
Once in a waterbody, the chances that fecal pollution and associated FIB move into swimming 
areas depend on many variables including the distance of the point of entry from the swimming 
area, effluent mixing and transport by currents, sediment settling and resuspension, and fate and 
transport factors experienced by the bacteria that affect survival. Those processes and factors 
differ greatly according to the receiving waterbody. Lotic (flowing water) environments such as 
rivers and streams present conditions very different from lentic (still water) environments such as 
lakes. Oceans and estuaries are influenced by tides (affecting bacteria movement), longshore 
currents, waves, and saltwater (affecting survivability). Geography, climate, rainfall, drainage, 
and other conditions also play important roles in determining the final occurrence of fecal 
pollution in a waterbody. 

3.5 HYDRODYNAMIC FACTORS AFFECTING POLLUTION MOVEMENT 

3.5.1 Hydrodynamic Dispersal in Lakes and Other Lentic 
Environments 

When an effluent stream enters a standing body of water, the incoming water flows into the 
density layer in the receiving waterbody that is most similar to its density. Density is governed 
primarily by temperature and dissolved and suspended material. 

Three types of inflow water movements can result, depending on density differences between the 
inflowing water and the receiving water: 

1. Overflow—inflow water density is less than the receiving water density 

2. Underflow—inflow water density is greater than the receiving water density 

3. Interflow—inflow water enters the receiving water at an intermediate depth 

The extent of turbulent mixing that occurs depends on the volume and velocity of the influx. 
Once in the open water, the inflow velocity is reduced, and the mixing zone expands. The 
reduction of flow velocity typically enhances deposition of suspended material. 

Unlike lotic environments where water movement in the waterbody is generated primarily by 
downstream flow, the directional movement of bacteria in lentic environments is generated 
primarily by the transfer of wind energy to the water. The frictional movement of wind blowing 
over water sets the water surface into motion, producing traveling surface waves. In deep water 
where wave length is much less than water depth, that motion is confined to surface layers with 
little effect on the displacement of deep waters. In shallower waters, when wavelength becomes 
more than 20 times the water depth, the wave becomes a shallow water wave, and the cycloid 
motions are transformed into a to-and-fro sloshing that can extend to the bottom of the water 
column. Morphometry of the water basin, stratification structure (density layers), and the area 
exposed to wind all contribute to water turbulence, currents, and mixing and transport of bacteria 
cells into and out of a swimming area. 

Settling and resuspension of bacteria are important factors in lentic environments because of 
wind-generated water turbulence. Unlike streams, which transport resuspended sediments 
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downstream, nearshore sediments tend to stay nearshore except in the case of powerful storms. 
Because bacteria cells tend to survive longer in sediment than in open water (Sherer et al. 1992; 
Burton et al. 1987; Thomann and Mueller 1987), the resuspension factor can make sediment an 
important source of bacteria in swimming areas. 

3.5.2 Hydrodynamic Dispersal in Streams and Rivers 
Streams and rivers are lotic environments. Bacteria-laden effluent entering such environments 
moves and disperses in the direction of the flow. In idealized conditions of constant width, depth, 
area, and velocity, the stream will have uniform flow. That condition rarely occurs in natural 
channels, however (FISRWG 1998). Uniform flow is typically disrupted by meander bends, 
changes in cross-section geometry, and channel features and obstructions such as fallen timber, 
boulders, sand bars, riffles, and pools, which cause turbulence, mixing, and the convergence, 
divergence, acceleration, or deceleration of flow. Those conditions, combined with flow volume 
and velocity and the influence of survival factors, such as water clarity, affect the appearance of 
bacteria in a lotic swimming area. 

The nature of a waterbody strongly influences the ability of statistically based regression models 
to effectively predict FIB densities in waters adjacent to swimming beaches. In the following 
paragraphs, the amenability of Great Lakes locations, inland lakes, rivers, and marine settings are 
discussed relative to the modeling process. 

3.6 GREAT LAKES HYDROLOGIC ENVIRONMENT 
The five Great Lakes represent a distinctive hydrologic environment in North America. They are 
the largest freshwater bodies on the continent. The Great Lakes, with the exception of Lake Erie, 
all have maximum depths greater than 200 meters. The Great Lakes experience very little tidal 
effect but, nevertheless, do experience variations in water level due to wind and season. Like the 
oceans, they can be greatly disturbed by storms. Unlike marine settings, the Great Lakes 
represent a relatively confined set of environments and are separated from the global currents 
that characterize the oceans. Discharges to the Great Lakes, therefore, are more likely to have a 
local cumulative effect. 

The hydrologic environment of the Great Lakes has been modeled extensively (Schwab and 
Bedford 1994; Nevers and Whitman 2005) and, as detailed later in Chapter 4, has been the focus 
of most of the successful statistical predictive modeling efforts of FIB at swimming beaches. 
That comparative success stems in part from the fact that turbulent mixing, and thus FIB 
variability, is more dynamic at marine beaches that are strongly affected by tides, surge, and 
wave action. In addition, the lower number of variables associated with Great Lakes hydrologic 
environments has facilitated the implementation of deterministic hydrodynamic and fate and 
transport models as described in Chapter 7. 

3.7 INLAND LAKES 
Inland lakes constitute waters that are amenable to statistical modeling and to using other 
predictive tools such as rainfall threshold levels. Smaller inland lakes are less likely to be 
receiving waters for POTWs but can become more degraded from overdevelopment and high 
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levels of recreational use. Desirable lake locations can be affected by septic systems and can be 
very sensitive to runoff effects if little water exchange occurs through the lake system. Inland 
lakes are also sensitive to effects from nitrogen and phosphorous pollution, which can increase 
water column turbidity, thereby reducing the effects of degradation by sunlight (insolation) on 
FIB and pathogens. 

3.8 RIVERS 
Statistical models for predicting FIB densities for the likelihood of exceedances have been 
successful in at least three rivers, as described in Chapter 4. Rivers lend themselves to statistical 
modeling. They possess a predictable flow direction and easily gauged water level and flow 
velocity. In addition, the locations of permitted discharges are known, and travel times from 
other features, such as tributaries, are readily determined. Accordingly, rivers tend to respond 
predictably to varying conditions and yield good modeling results. 

Because of the good understanding of fluvial processes and well-studied mixing and transport 
characteristics, rivers can be also good systems for developing and using deterministic models. 
Deterministic models in rivers have been used in National Pollutant Discharge Elimination 
System permitting and for other in-stream water quality assessment purposes relating to Clean 
Water Act programs. Some examples of those models are the EPA Hydrological Simulation 
Program—FORTRAN (HSPF) (www.epa.gov/ceampubl/swater/hspf) and the EPA Stormwater 
Management Model (SWMM) (www.epa.gov/ednnrmrl/models/swmm/index.htm

3.9 MARINE WATERS 

). However, 
they are not used for beach notifications. 

Marine waters constitute the most challenging environment for statistical predictive models 
because of the complex hydrodynamic nature of ocean settings and the resulting high number of 
variables associated with them. The effects of large tidal ranges (≥ 9 feet) and resulting tidal 
currents and changes in flow direction have, in the past, made marine models more the focus of 
deterministic modeling efforts (Zhu 2009). Some state beach programs (e.g., South Carolina and 
Maine) are implementing statistically based models. Within the range of ocean beaches, a wide 
variety of site characteristics exists, some of which will be more amenable to use in statistical 
models than others. Beaches in estuaries, harbors, and coastal embayments are less dynamic than 
beaches on the open ocean and, thus, might be good candidates for statistical modeling. As with 
freshwater settings, not all swimming beaches can benefit from the use of statistical predictive 
models. For many settings, however, statistically based models will be effective, and those 
settings will become apparent as beach managers experiment in coming years. 

  

http://www.epa.gov/ceampubl/swater/hspf
http://www.epa.gov/ednnrmrl/models/swmm/index.htm
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4 Current Applications of Predictive Tools 
Various predictive tools (statistical models, rainfall thresholds, and notification protocols) are 
being used as part of beach management programs across the United States. EPA reviewed the 
tools that are in use or almost complete, and this chapter includes a short description of each for 
which information was available. Table 4-1 provides an overview of the predictive tools. EPA 
has successfully used Virtual Beach at several freshwater and marine sites. They are described in 
Volume II of this report. 

Table 4-1. Overview of predictive tools in use 

Location Prediction method Areas of application 
California Rain threshold level Southern California counties 
Connecticut Rain threshold level Cities of Greenwich, Norwalk, and Stamford 
Delaware Rain threshold level Entire state 
Florida Rain threshold level Individual cities 
Hawaii Rain threshold level Entire state 
Georgia Statistical model Chattahoochee River 
Illinois Statistical model Great Lakes beaches 
Indiana Statistical model Great Lakes beaches 
Kansas Statistical model Selected rivers 
Maine Notification protocol Entire state 
Maryland Statistical model and notification protocol Sandy Point State Park (in development) 
Massachusetts Statistical model Charles River 
New Jersey Rain threshold level Six beaches 
New York Regional hydrologic model combined with local 

notification protocol 
New York City 

Ohio Statistical model Great Lakes beaches 
Pennsylvania Statistical model Schuylkill River 
Rhode Island Notification protocol Entire state 
Scotland Rain threshold level Various beaches 
South Carolina Statistical model and notification protocol Georgetown and Horry counties 
Washington Notification protocol All counties 
Wisconsin Statistical model Ozaukee County 

Note: The information provided in this chapter is based on personal communications with state contacts and other responsible 
agency personnel. In some instances, references of published works are available. Those references are listed in Chapter 9. The 
topics discussed with beach contacts are summarized in Appendix A. EPA realizes that new models are continually being 
developed. Table 4-1 is not an exhaustive list of all the tools being used or developed for beach management. EPA welcomes input 
on additional predictive tools in use or being developed for beach programs. 
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4.1 STATISTICAL MODELS 
Statistical models are created on the basis of observed relationships among variables such as 
sunlight, temperature, turbidity, input flows, wind speed (and other variables that can affect 
bacteria loading or survival rate) and indicator bacteria levels. Such models have been found to 
be useful for making timely beach notification decisions. Model outputs can be estimated 
densities of indicator bacteria or probability of exceeding a threshold level such as the state water 
quality standard. That information is used in making a beach notification decision. The models 
are described in more detail in Chapter 5. This chapter provides short descriptions of statistical 
models in use. 

As shown, a number of statistical models are successfully implemented at Great Lakes beaches. 
Local and state agencies managing beaches on the Great Lakes have put an extraordinary effort 
into protecting the health of recreational users by working with the U.S. Geological Survey 
(USGS) and independently to pioneer the method of statistical modeling (and other predictive 
tools) for timely beach notifications. Much of the work has been published in the scientific 
literature by USGS and others. Table 4-2 summarizes the statistical models recently used or in 
development. 

Table 4-2. Beaches assessed using predictive tools 

Name Beach Model inputs Model output 
Leading 
agencies Status 

SwimCast Beaches (four) 
in Lake County, 
Illinois 

Air temperature 
Wind speed 
Wind direction 
Precipitation 
Relative humidity 
Lake stage 
Water temperature 
Water clarity 
Insolation 
Wave heights 

Estimated 
Escherichia 
coli 
concentration 

Lake County 
Health 
Department, 
Lakes 
Management 
Unit 

In use 

SwimCast 63rd Street 
Beach, Chicago 
Park District, 
Illinois 

Flow 
Rainfall 
Sunlight 
Temperature 
Turbidity 
Wave height 
Wind speed 

Estimated E. 
coli 
concentration 

Chicago Park 
District (with 
Remote Data, 
Inc.) 

Applied for 
trial period 

Nowcast Lake Erie 
Beaches, Ohio 

Day of year 
Lake level 
Rainfall 
Temperature 
Turbidity 
Wave height 

Probability that 
water quality 
standard will 
be exceeded 

U.S. Geological 
Survey 

In use 
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Name Beach Model inputs Model output 
Leading 
agencies Status 

Nowcast Upper Lake 
Park, Ozaukee 
County, 
Wisconsin 

Day of year 
Lake level 
Rainfall 
Temperature 
Turbidity 
Wave height 

Probability that 
water quality 
standard will 
be exceeded 

U.S. Geological 
Survey 

In use 

Project 
S.A.F.E. 

Lake Michigan 
Beaches, 
Indiana 

Gauge height 
Rainfall 
Chlorophyll a 
Turbidity 
Wind direction 

Probability that 
water quality 
standard will 
be exceeded 

Indiana 
Department of 
Environmental 
Management 

In use 
previously 
and currently 
under revision 

RainFlow Upper Lake 
Park, Ozaukee 
County, 
Wisconsin 

24-hour rainfall 
48-hour rainfall 
Bacteria composite 
sample 
Lake conditions 
Turbidity 
Stream flow 
Stream velocity 

Yes/No 
advisory based 
on water 
quality 
standard 

Ozaukee County Used before 
switching to 
Nowcast 

South Shore 
Beach Model 

South Shore 
Beach, 
Milwaukee, 
Wisconsin 

Algae 
Chlorophyll a 
Conductivity  
E. coli concentration 
from previous sample 
Temperature 
Wave direction 
Wave vector 

Estimated E. 
coli 
concentration 

City of 
Milwaukee 

Under 
consideration 

Flag 
Program 

Charles River, 
Boston, 
Massachusetts 

Rainfall 
Recent bacteria 
sample 

Predicted 
concentration 
and probability 
of exceeding 
secondary 

standards 

Charles River 
Watershed 
Association 

In use 

PhillyRiver-
Cast 

Schuylkill River, 
Philadelphia, 
Pennsylvania 

Flow 
Rainfall 
Turbidity 

Yes/No 
advisory based 
on water 
quality 
standard 

Philadelphia 
Water 
Department 

In use 

BacteriAlert Chattahoochee 
River near 
Atlanta, Georgia 

Flow 
Turbidity 

Low/High risk 
level 

U.S. Geological 
Survey 

In use 

Stormwater 
Model 

Horry County, 
South Carolina 

Cumulative rainfall 
Current UV level 
Current weather 
Moon phase 
Preceding dry days 
Rainfall intensity  

Estimated E. 
coli 
concentration 

Horry County 
(with the 
University of 
South Carolina) 

In use and 
being 
recalibrated 

Stormwater 
Model 

Fairhaven 
Beach, Lake 
Ontario, New 
York 

Rainfall 
Turbidity 
Current speed 
Current direction 

To be 
determined 

USGS and New 
York State 

Being 
developed 
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Name Beach Model inputs Model output 
Leading 
agencies Status 

Stormwater 
Model 

Sandy Point 
State Park, 
Chesapeake 
Bay, Maryland 

Day 
Moon phase 
Rainfall 
Salinity 
Temperature 
Wind speed 

Yes/No 
advisory based 
on water 
quality 
standard 

National 
Oceanic and 
Atmospheric 
Administration & 
University of 
Maryland 

Being 
developed 

Receiver 
Operating 
Characteristi
c Curve 
Analysis for 
Boston 
Harbor 
Beaches 

Constitution 
Beach in East 
Boston, Carson 
Beach in South 
Boston, Tenean 
Beach in 
Dorchester, and 
Wollaston Beach 
in Quincy 

Antecedent rainfall Yes/No 
advisory based 
on water 
quality 
standard 

Massachusetts 
Department of 
Conservation 
and Recreation 
and 
Massachusetts 
Water 
Resources 
Authority 

In use 

Unnamed Little Arkansas 
River, 
Rattlesnake 
Creek, and 
Kansas River, 
Kansas 

Seasonality 
Turbidity 
Temperature 
Chlorophyll 
Dissolved oxygen 
Other water quality 
parameters 

Estimated fecal 
coliform and 
nutrient 
concentrations 

U.S. Geological 
Survey 

Not in use 

 

4.1.1 SwimCast (Lake Michigan Beaches, Illinois) 
Several Lake Michigan beaches are using a program called SwimCast to predict Escherichia coli 
(E. coli) densities. In Lake County, Illinois, the program is installed at several beaches, including 
Forest Park-Lake Forest, Rosewood-Highland Park, and Waukegan Beach. Meteorological 
equipment is on a station in the lake to measure air temperature, wind speed and direction, 
precipitation, relative humidity, lake stage, water temperature and clarity, insolation (sunlight), 
and wave height. The data are transferred to a data logger and used in an equation to predict the 
E. coli density. Sampling is still performed at the beaches 4 days a week between May and 
September, and, as a result, predictions have been approximately 90 percent accurate. Lake 
County has been using the SwimCast system since 2004 and provides daily data and beach 
notifications on its website. 

Chicago Park District is also testing the SwimCast program. It announced SwimCast for a trial 
period at the 63rd beach in 2008, and the District plans to apply the model once it is calibrated 
efficiently enough to provide 90 percent accuracy. Additional information on SwimCast’s use in 
Lake County, Illinois, is at www.lakecountyil.gov/Health/want/SwimCast.htm. 

4.1.2 Nowcast (Lake Erie Beaches, Ohio) 
The Ohio Nowcast provides advisory information based on predictive models for two Lake Erie 
beaches (Huntington and Edgewater) and one recreational river site (Cuyahoga River at Jaite). 
The models are uniquely fitted to the characteristics of each beach using multivariable linear 
regression (further explanation is in Chapter 5). Water samples are collected daily and analyzed 

http://www.lakecountyil.gov/Health/want/SwimCast.htm�
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for indicator microbes and other parameters to obtain inputs for the model. The inputs are 
turbidity, rainfall, wave height, water temperature, day of the year, and lake level. The model 
produces a probability of exceeding the 235 colony forming units (CFU) per 100 milliliters (mL) 
standard for E. coli. The probability threshold is site-specific, based on historical data, and is set 
by the beach manager for decision making. For example, a beach manager might decide post an 
advisory if there is a 25 percent probability of exceeding the water quality standard. During 
model development, water quality sampling continued so that decision accuracy could be tested. 
The number of false positive and false negative predictions were calculated. The probability 
threshold is reconsidered for maximizing correct decisions (Francy 2006). The use of models at 
other Lake Erie beaches has been investigated, and the beach models are all in different phases. 
Development of models for Villa Angela and Lakeshore were suspended because the model 
results were not more accurate than the use of the persistence model. At Maumee Bay State Park, 
a model was developed with variables for turbidity and wind direction; it was validated during 
2010 and is available to include in the Ohio Nowcast in 2011. During 2010, data were collected 
for model testing at Lakefront Park (Huron, Ohio), Mentor Headlands State Park, and Fairport 
Harbor Lakefront Park. Further information is available at: 
http://www.ohionowcast.info/nowcast_technical.asp. 

4.1.3 Nowcast (Port Washington, Wisconsin) 
In 2009 Ozaukee County Public Health Department partnered with the Wisconsin Department of 
Natural Resources to develop an operational Nowcast model at Upper Lake Park Beach in Port 
Washington, using Virtual Beach software to develop the model. It took approximately 40 hours 
of combined staff time to develop it, using data collected during the 2007 and 2008 beach 
seasons through routine beach monitoring and data collection. Variables used in the model are 
wave height, turbidity, 24- and 48-hour rainfall, stream flow, water and air temperature, and the 
previous day’s lab results on E. coli (when they are available). The model is used to predict E. 
coli densities four days a week. Running the model takes approximately 5 minutes per day as 
part of routine monitoring activities. County staff enter daily data for each of the explanatory 
variables into the model and report the results (swimming advisory or not) on the Wisconsin 
Beach Health website (www.wibeaches.us). 

The model proves to be highly accurate, with a mean absolute error of 15 CFU/100 mL and an 
overall R2 of 62 percent. A visual inspection of the model’s performance confirms that the model 
was highly sensitive to small fluctuations in E. coli concentration during 2009. 

4.1.4 Project S.A.F.E. (Indiana) 
Project S.A.F.E. (Swimming Advisory Forecast Estimate) is a statistical predictive model 
applied to four beaches in Indiana (Lake Street, Marquette Park, Wells Street Beaches of Gary, 
and Ogden Dunes in Portage Township). The model is specifically designed to include the 
pollutant load coming from a significant outfall near the beaches (Burns Ditch). The model uses 
characteristics of the individual beaches, wind direction, rainfall, chlorophyll a, turbidity, and 
Burns Ditch gauge height. The model is run daily to obtain the predicted likelihood that the E. 
coli concentration will exceed safe limits. The beach managers can use the probability to 
determine if a beach should be closed or under advisory. USGS developed the Project S.A.F.E. 
model (Whitman 2008). 

http://www.ohionowcast.info/nowcast_technical.asp�
http://www.wibeaches.us/�
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The model is being applied in combination with a regional Hydrodynamic Model for Lake 
Michigan, which the National Oceanic and Atmospheric Administration (NOAA) developed. 
The NOAA model simulates to a high degree of accuracy frequent changes in direction of long-
shore current in this region of Lake Michigan. The data is combined with the Project S.A.F.E. 
statistical model for more accurate beach water quality predictions than the Project S.A.F.E. 
model alone. 

Project S.A.F.E. has been under revision for several years and is expected to be put back in use 
soon. Additional information on Project S.A.F.E. is at 
www.glsc.usgs.gov/main.php?content=research_projectSAFE_about&title=Project%20S.A.F.E.
0&menu=research_initiatives_projectSAFE

4.1.5 RainFlow (Port Washington, Wisconsin) 

. 

Before using Nowcast at Upper Lake Park in Port Washington, Wisconsin, bacteria levels were 
estimated daily using a model named RainFlow (City of Port Washington 2007). No stormwater 
controls are in Port Washington, and the nearest source of runoff affecting the beach is Valley 
Creek. The model used the velocity and volume of water passing through Valley Creek in 
combination with recent rainfall data and a turbidity reading at the beach to provide a 
notification recommendation. Valley Creek parameters and turbidity were taken by Ozaukee 
staff; daily rainfall was measured at the Port Washington Wastewater Treatment Plant (WWTP) 
just south of the beach. The overall model accuracy according to historical observations and 
predictions was 90 percent. The model was validated with daily composite samples. In the 2008 
season, the model correctly recommended if advisory notification was needed 94 percent of the 
time. Upper Lake Park now uses Nowcast, as described earlier. 

4.1.6 South Shore Beach Model (Milwaukee, Wisconsin) 
In Milwaukee, the city attempted using models for Bradford Beach and South Shore Beach. The 
city aborted the Bradford Beach model because the maximum sensitivity that could be obtained 
for estimating the indicator concentration was only 80 percent. The city is considering the South 
Shore Beach Model. That model would require a weekly calibration and the E. coli concentration 
determined in the previous 24 hours. None of the nearby laboratories are open 7 days a week. 
The city is confronting other issues such as equipment costs, sensitivity, and available staff. 
However, EPA has successfully modeled South Shore Beach, and details about that effort are in 
Volume II of this report. 

4.1.7 Charles River Flag Program, Massachusetts 
The Charles River Watershed Association has been using the Flag Program since 1998 to 
estimate and communicate the potential risks associated with recreational activities in the river 
each day. The association samples bacteria approximately twice each week and uses the data in 
the model estimations along with current rainfall data. Model estimates are based on ordinary 
least squares and logistic regression models (explained further in Chapter 5). The model 
predictions are posted online for nine sites, and four sites along the river have a water quality 
flag to communicate to recreational users. Most of the river is designated for secondary contact 
recreation (boating), and a fecal coliform bacteria target is based on that use. Red flags are raised 

http://www.glsc.usgs.gov/main.php?content=research_projectSAFE_about&title=Project%20S.A.F.E.0&menu=research_initiatives_projectSAFE
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at the four monitored stations if the probability of the river exceeding boating standards is equal 
to or greater than 50 percent. If the probability is less than 50 percent, a blue flag is raised. 
Yellow flags are used when there is uncertainty of the water quality or other factors could be 
affecting boater safety (e.g., Cyanobacteria). Red flags are normally raised only after heavy 
rainfall. 

For more information about and updates to the program, see 
www.crwa.org/water_quality/daily/daily.html. 

4.1.8 PhillyRiverCast (Philadelphia, Pennsylvania) 
The PhillyRiverCast is a Web-based water quality forecasting system developed by the 
Philadelphia Water Department to provide the public with information on the status of the 
Schuylkill River. The model uses real-time turbidity, flow, and rainfall data to predict fecal 
coliform concentration. It runs automatically and updates the ratings every hour on the basis of 
the estimated current fecal coliform concentration. The website also explains what recreational 
activities are considered safe for the estimated bacteria levels (Maimone et al. 2007). For more 
information and updates, see www.phillyrivercast.org/; for information about how the model was 
created, see www.phillyrivercast.org/Nav_howcreated.aspx. 

4.1.9 BacteriALERT (Chattahoochee River, Georgia) 
The Chattahoochee River BacteriALERT program monitors similarly to the PhillyRiverCast 
system, using real-time turbidity readings and flow. Unlike the PhillyRiverCast system, 
BacteriALERT does not use rainfall. Using the current flow as an input captures the influences 
of rain on bacteria levels and most regular operation of the upstream Buford Dam. The model 
also runs automatically and updates recreational users via a website every hour. The ultimate 
posting by BacteriALERT is a risk level for exposure to harmful bacteria and organisms (none, 
low, or high), as suggested from the estimated E. coli concentration. A low risk is an E. coli 
concentration of < 177 CFU/100 mL, and a high risk is posted if E. coli counts are estimated to 
be more than 235 CFU/100 mL. 

The BacteriALERT program is a partnership between state and federal agencies and 
nongovernment organizations. It was first tested on the Chattahoochee River. Additional details 
on the entire Chattahoochee River project are at 
http://ga2.er.usgs.gov/bacteria/SummaryIntroduction.cfm. 

4.1.10 USGS Model (Kansas) 
The USGS used in-stream water quality monitoring results and regression equations to estimate 
real-time bacteria and nutrient concentrations for two stations in the Little Arkansas River and 
one station in the Kansas River and in Rattlesnake Creek. Stream gauges were installed at each 
location. The stations monitor turbidity, water temperature, specific conductance, dissolved 
oxygen (DO), pH, and total chlorophyll. The water quality data were used to develop a 
relationship between fecal coliform and the water quality parameters that could be measured in-
stream. Each regression equation was specific to its stream. The purpose of the model was to 
calculate accurate loads for various parameters, not for public health advisories. Turbidity and 

http://www.crwa.org/water_quality/daily/daily.html�
http://www.phillyrivercast.org/�
http://www.phillyrivercast.org/Nav_howcreated.aspx�
http://ga2.er.usgs.gov/bacteria/SummaryIntroduction.cfm�
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seasonality were significant variables for the bacteria estimations at all locations. No information 
is available to confirm whether the model is applied. It is possible that the model is used at such 
a local scale that it is not well publicized. Christensen et al. (2001) describe their experience with 
the model. 

4.1.11 Stormwater Model (Horry County, South Carolina) 
A model used in South Carolina was developed with assistance from the Public Health 
Department of the University of South Carolina. The model is a combination of two separate 
methods, each of which estimates the bacteria concentration in the water each morning, mainly 
using cumulative rainfall, rain intensity, preceding dry days, current weather conditions, and tide 
information according to moon phase. One model uses a multivariable linear regression to 
predict an estimated bacteria concentration. The other model uses the CART method to estimate 
what range the bacteria concentration will be (high, medium, or low). The estimated bacteria 
concentration range and the estimated bacteria concentration are combined to approximate a 
third possible bacteria concentration, called the Ensemble prediction. The beach manger uses all 
three outputs to determine the necessary notification level. 

The model series is applied to 10 beaches in Horry and Georgetown counties. The model self-
extracts rainfall data from rain gauges at each beach and independently inputs weather and tidal 
information. Data are continuously added to the model, which is constantly recalibrated. A more 
intensive recalibration is underway to adjust to infrastructure changes. Recently, a stormwater 
outfall pipe was extended further into the ocean at one of the beaches. That is expected to 
significantly affect the model’s calibration. The beaches have a standard and constant warning of 
health risks while swimming, meaning there is always some level of notification on the beaches. 

4.1.12 Stormwater Model (Fairhaven Beach, New York) 
New York also attempted modeling at Fairhaven Beach on Lake Ontario, motivated by 
exceedances in 2005 and 2006. The managers were considering statistical predictive models that 
would use rainfall, turbidity, and current speed and direction as dependant variables. Acoustic 
Doppler Current Profiler equipment would be used to measure the currents. The following 
2 years did not have as many bacteria exceedances; therefore, there was less of a demand for the 
effort. 

4.1.13 Stormwater Model (Sandy Point State Park, Maryland) 
In the spring of 2006, Sandy Point State Park in Maryland received several days of heavy 
rainfall, which closed the beach for the first time in recent knowledge. Now, the managers of the 
park, which is on the Chesapeake Bay shoreline, are developing a model to regularly estimate the 
concentration of bacteria in the beach water. The model developers collaborated with South 
Carolina. Similar to the South Carolina models, multivariable linear regression, CART, and 
ensemble methods will be used to develop a trio of results. 

Intensive sampling was performed in 2007 and 2008 but, unfortunately, the sampling protocol 
was recently changed, and sampling will need to be repeated using the new procedure. The 
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earlier sampling and model development demonstrated strong effects on bacteria from 
temperature and salinity. 

The model is expected to be complete in the next 2 to 3 years. The managers carefully chose the 
software (GIS and R) for the model so that the model could be used by other agencies for 
bacteria prediction. The managers intend for the model to be applied at other Chesapeake Bay 
beaches in the future. 

4.1.14 Virtual Beach Manager Toolset (Various Locations) 
Virtual Beach is a set of decision support software tools developed to help local beach managers 
make decisions as to when beaches should be closed because of predicted high levels of FIB. 
EPA’s lab in Athens, Georgia, is developing the tools in support of the BEACH Act. One 
primary function of Virtual Beach is a data exploration and model builder tool that facilitates 
developing a multivariable linear regression equation for predicting FIB densities for a beach on 
the basis of environmental data such as wave height and water temperature. Another function of 
Virtual Beach is to take a best fit multivariable linear regression model for a data set and 
automatically pull in (from Internet sources) distributed data for the significant independent 
variables of the model. The model user can also enter criteria for decision making that will 
maximize correct predictions. Virtual Beach should benefit the beach-going public by helping 
beach managers make more accurate and timely beach notification decisions. Virtual Beach’s 
testing and deployment was done with the collaboration of several Great Lakes states and 
organizations (Wolfe et al. 2008). Virtual Beach is thoroughly documented in Volume II, 
Chapter 1 of this report. 

4.1.15 Receiver Operator Characteristic Curve Modeling in Boston 
Harbor Beaches (Boston, Massachusetts) 

In 1996 the Massachusetts Department of Conservation and Recreation and Massachusetts Water 
Resources Authority began a study to intensively monitor a subset of beaches to better 
understand variability in water quality and to develop predictive tools to make timely beach 
decisions. Beach selection was in part based on the number and variety of urban pollution 
sources including storm drains, CSOs, illicit sewer connections, boats, and animals (e.g., birds, 
dogs). Four urban beaches were selected: Constitution Beach in East Boston, Carson Beach in 
South Boston, Tenean Beach in Dorchester, and Wollaston Beach in Quincy. 

The Department of Conservation and Recreation and Massachusetts Water Resources Authority 
teamed up with a Harvard School of Public Health biostatistician to create multiple linear 
regression models. The models incorporate tide, rainfall, sunlight, temperature, days since last 
rain, wind strength, and direction. However the models were not able to explain 30 percent to 40 
percent of variability in bacteria counts. 

Subsequently, they used a prediction tool, Receiver Operating Characteristic (ROC) Curves, 
which were developed in the 1940s to make sense of radio signals used to analyze radar images 
during World War II. Beginning in the 1970s, they were recognized as useful for interpreting 
medical test results. ROC curves have the advantage of being simple to use: they compare the 
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effectiveness of several swimming advisory triggers, including the previous day’s Enterococcus 
levels and rainfall. However, the analysis requires daily monitoring for a prolonged period. 

The ROC curve analysis will identify two water quality conditions: swimmable and not 
swimmable. ROC curve analysis evaluates the overall ability of an indicator variable to correctly 
classify beach water quality as suitable or unsuitable for swimming, and it allows direct 
comparison of different indicator variables by a common metric. It facilitates the identification of 
a maximum threshold value for the indicator variable that produces a desired true positive rate 
and false positive rate. 

In the Boston Harbor analysis, the researchers concluded that the previous day’s Enterococcus 
levels are an inadequate indicator for determining beach use daily at every beach; antecedent 
rainfall is usually a more accurate indicator and is available in real-time (Morrison et al. 2003). 

4.2 OTHER PREDICTIVE TOOLS 

4.2.1 Rain Threshold Levels 
For many beaches, intensity of rainfall correlates to observations of poor water quality. Agencies 
use historical data to identify the relationship between rainfall amount and bacteria levels and 
then apply a threshold of rainfall beyond which the beach will be under advisement. How rainfall 
thresholds are determined differs among states and localities. 

Stormwater runoff is a primary pathway by which bacteria loads reach waterbodies and beaches. 
The amount of stormwater generated depends on the characteristics of the drainage area and the 
amount and intensity of rainfall. When significant rainfall occurs in a short period, more runoff is 
produced, which can carry harmful pollutants in its course. 

Many beach managers can directly relate the concentration of bacteria to the amount of rain 
received in nearby areas. Using historical data, the localities are able to observe a relationship 
between rainfall and resulting bacteria densities. Managers can then use that relationship to 
identify an intensity of rainfall (or threshold) that is likely to cause exceedances of water quality 
standards and the length of time in which the standards will be exceeded. 

Table 4-3 shows the places that use rainfall measures to directly predict the need for recreational 
waters notifications. Each broader jurisdiction or local beach can apply the determined rainfall 
threshold differently. The sections below discuss how managers are using rain thresholds to 
trigger advisories in anticipation of poor water quality. 
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Table 4-3. Beaches assessed using rainfall thresholds 

Location Rainfall threshold 
Notification 

period Notification 
Area covered by 

threshold 
California 0.25 centimeters 

(cm) 
3 days General advisory Los Angeles County 

beaches 
California 0.5 cm 3 days General advisory Orange County beaches 
California 0.5 cm in 24 hours 3 days General advisory San Diego County 

beaches 
Delaware 7.5 cm in 24 hours Until clean sample No-swimming advisory All beaches 
Hawaii Flash flood warning 3 days Brown water warning Whole island or statea 
New Jersey 2.5 cm in 24 hours 

7.1 cm in 24 hours 
24 hours 
48 hours 

Closed Six beaches 

New York City, 
New York 

0.5 cm in 6 hours 
1.0 cm in 24 hours 
(beach dependent) 

24–48 hours 
(beach dependent) 

Yellow advisory level All city beaches 

Milwaukee, 
Wisconsin 

2.5 cm in 24 hours 48 hours Yellow or red advisory 
level 

All (five beaches) 

Scotland Beach specific Beach specific No-swimming advisory Individual beach 
a. Island-wide or state-wide, depending on weather patterns 

California 
Several counties in California preemptively issue recreational notification at their beaches using 
a rainfall threshold. Little rain falls through most of the year in Southern California. 
Consequently, even a light storm can produce runoff with concentrated amounts of pollutants. 
The rainfall thresholds are set much lower than the rest of the country—normally in the range of 
tenths of an inch. Most counties post beach advisories for 72 hours after the rain threshold has 
been met. 

Connecticut 
Using compiled bacterial analyses to predict water quality when certain conditions are observed 
provides a way to establish a proactive public health policy. In a study by Kuntz and Murray 
(2009) the authors reviewed the use of the geometric mean of various conditions including the 
amount of rain in previous days, wind direction and speed, tides and high tide height, water 
temperature, and drought or flood conditions for the season, different materials coming into the 
swimming areas, and the location and amount of any sewage spills as possible predictors of 
water quality exceedances. Only three events showed statistical significance (Chi-squared 
p < 0.0001): 

• Rain events of one inch or more in a 24-hour period under normal weather conditions 

• Rain events of more than one-half inch in a 24-hour period under drought conditions 

• When floatable material from distant sewage spills (i.e., grease balls) are present at a 
beach 

Such evaluations enable a public health policy to be easily developed that restricts swimming 
when certain identified conditions are present without waiting for sampling results to prove that a 
problem exists. 
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Delaware 
Delaware developed its rainfall threshold levels in 1993 through intensive local sampling at 
several locations and still uses the levels. Marine waters and coastal beaches are not affected by 
rainfall or stormwater as much as the inland lakes and bays; therefore, the rain threshold is 
relatively high compared to other states. The threshold level for Delaware marine waters and 
coastal beaches is 3 inches (in), and a notification lasts for 24 hours. The inland waters of 
Delaware have much lower rain thresholds. For the inland waters, closure length and rain 
threshold are individually determined by lake. 

Hawaii 
Unlike most states using a rainfall threshold, Hawaii does not have a specified rainfall intensity 
for which a notification is automatically issued. A Brown Water Warning is automatically posted 
if a flash flood warning is issued by the National Weather Service (NWS) and is posted for all 
beaches on the island for which the flash flood warning applies. In other times of heavy rain (or 
steady rain over several days), a Brown Water Warning might be posted depending on staff 
assessments of the weather and visual observations. For most Brown Water Warnings, a beach 
advisory is issued for 3 days after the posting. However, notifications can last from a few days to 
more than a week, depending on whether the rain continued, the amount of silt discharged, and 
the water currents. 

New Jersey 
New Jersey has six beaches that close automatically if a rain threshold is reached. Four of the 
beaches are affected by a pond outfall pipe, and the other two beaches are small, river beaches 
affected by stormwater runoff and a marina. Five of the six beaches close for 24 hours if it rains 
2.5 cm (1 in) within a 24-hour period, and 48 hours if it rains 7.1 cm (2.8 in) within a 24-hour 
period. The thresholds of the four beaches affected by the pond outfall pipe are being reevaluated 
because the pond outfall pipe has been extended 300 feet into the ocean. The pipe extension 
could lessen the effect of the stormwater discharge and, consequently, raise the rain threshold. 
The two beaches affected by the small river input are not affected by the lengthening of the 
stormwater pipe. 

Most beaches in New Jersey do not have a rainfall threshold level for notifications and rely on 
traditional sampling to determine levels of potential risk. 

New York City, New York 
In New York City’s complex coastal hydrologic setting, which is affected by tides, river flow, 
stormwater, and sewage treatment outfalls, existing regional models have helped determine the 
times and locations where recreational water quality standard will be exceeded because of 
rainfall and associated stormwater and CSO bypasses. The New York City Department of Health 
and Mental Hygiene uses predetermined rainfall limits and notification durations that are set 
each year for each of its beaches. The department develops the rainfall limits from a multiyear 
analysis of data from the New York/New Jersey Harbor Pathogens Model, combined with 
sampling data. The rainfall limits and notification durations were tested and validated in the 
development phase, and the department reevaluates and updates them each year as needed. The 
Regional Bypass Model provides the department information about the effects of CSOs, sewage 
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pipe breaks or diversions, and consequential closure time needed. The predetermined rainfall 
limits are considered to be conservative, and sampling is conducted weekly during the recreation 
season. The New York/New Jersey Harbor Pathogens Model is also used to develop total 
maximum daily loads in the New York/New Jersey Harbor.  

The 2009 rainfall limits and notification durations are shown in Table 4-4. 

Table 4-4. New York City wet-weather advisory information for 2009 

Beach  
Rainfall limit 

(inches) 
Duration of notification 

(hours) 
South Beach, Midland Beach, Manhattan Beach, 
Kingsborough CC  

1.5–2 12 
> 2.5 24 

Orchard Beach > 2.5 24 
Coney Island > 2.5 12 
Gerritsen Beach, Whitestone Booster 0.3–0.6 18 

> 0.6 40 
All Bronx Private Beaches 0.6–2.5 36 

> 2.5 48 
Douglaston Manor 0.3–0.6 30 

0.6–2.5 60 
> 2.5 72 

 

Milwaukee, Wisconsin 
Five public city beaches in Milwaukee are on Lake Michigan, and each beach varies greatly in 
terms of water quality conditions and characteristics. The water quality near the northern beaches 
fluctuates daily, whereas the water quality at the southern beaches varies less frequently. The 
variations are influenced by a combination of nonpoint source pollution, stormwater outfalls, 
CSO, and the hydrodynamic characteristics of the lake near the beaches. A statistical model of 
bacterial densities was attempted at the southern beaches in Milwaukee, but it is no longer being 
used because of poor sensitivity and inadequate funding. 

After frequent observations of stormwater outfalls, a rainfall threshold level was established for 
all beaches. All beaches operate on a threshold of one inch (2.5 cm) of rainfall within 24 hours 
(data are from the NWS, 7 a.m.–7 a.m. accumulation), which results in a 2-day notification. 
Milwaukee uses standard signs designed by the Wisconsin Department of Natural Resources to 
post notifications at its beaches, which are assessed daily. If a sewage diversion occurs, the 
beaches are closed for 4 days. 

Scotland 
The Scottish Environment Protection Agency has developed and runs a real-time water quality 
prediction tool for 10 beaches throughout Scotland. The tool has been in effect since 2004. It 
uses a set of site-specific criteria for rainfall and river flow to predict water quality on the basis 
of historical data. Real-time predictions against the current European Union Bathing Water 
Directive were correct or precautionary on 99 percent of days and correct for 82 percent of 
compliance samplings during 2007, and 81 percent of compliance samples during the 2008 
season (McPhail and Stidson 2009). The revised 2006 directive sets out more stringent bathing 
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water quality standards that require increased model performance. New predictive tools are being 
developed using decision tree statistical software and are intended to replace the existing 
prediction tool by 2012. The agency plans to extend the system to additional beaches (about 15 
more) by 2012. For more information, visit www.sepa.org.uk/water/bathing_waters.aspx. 

4.2.2 Notification Protocol 
This section discusses the primary types of notification protocol that are used to predict beach 
notifications. 

Maine 
Maine uses sampling and a risk-based assessment matrix (Maine State Planning Office 2004) to 
determine the beach conditions and the probability of infecting swimmers. The Maine Healthy 
Beach Program is in the early stages of training beach managers and community members how 
to assess and monitor beaches. As the program progresses, beach managers and community 
members will develop rain thresholds to apply to their beaches. Notifications are determined 
using the assessment matrix, which is shaped to the needs of each beach. The matrix is similar to 
a sanitary survey, where the assessor looks for certain beach characteristics and pollution sources 
and either adds or removes points according to conditions. The total score puts the beach into a 
category that determines what the action would be. 

Rhode Island 
Rhode Island has implemented notification protocol at two of its highest priority beaches. The 
state used more than 10 years of water quality data as a foundation for protocol development. 
The data focus on significant rain events (0.5 in), bacteria monitoring data (criteria exceedances), 
monitoring frequency, flushing rates, and total closure days. Rhode Island will use the protocols 
to streamline the beach advisory and notification process. 

Washington 
Washington uses a flowchart (see Figure 4-1) in addition to regular sampling to assess the 
conditions of its beaches. Each county develops a process specific to the beaches in its area. 
Factors influencing the managers’ closure decisions include the sampling method, site history, 
visual inspection, consultation with the beach coordinator, and beach characteristics such as 
activity/usage frequency (Tiers 1 through 3). The Washington BEACH program also receives 
information from the state shellfish program, when its model results for shellfish beds indicate 
that nearby beach areas might be affected. 

http://www.sepa.org.uk/water/bathing_waters.aspx�
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Source: Washington Department of Ecology 

Figure 4-1. Flow chart used in Washington as part of its notification protocol. 
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4.3 DETERMINISTIC AND COMBINATION MODELS 
Regional Bypass Model (New York and New Jersey) 
Information from the New York/New Jersey Regional Bypass Model is used in combination with 
monitoring data and historical data to set rain threshold levels and to make beach advisory 
decisions at many New York City beaches. The net result of tidal and current effects, combined 
with stormwater outfall data after a rain event is considered each year to determine a rain 
threshold level for each beach. The model can also be used to determine the effects of a sewage 
pipe break or diversion. The model is considered conservative, and sampling is conducted 
weekly during the recreation season to observe the protectiveness of each rain threshold level. 

120-Hour Forecasting Model (Michigan) 
The beach water quality forecasting model (a decision support system) is being developed to test 
the ability to predict beach water quality 120 hours into the future using available parameters 
from NOAA’s deterministic forecasting models and forecast data sets (Great Lakes 
Environmental Research Laboratory [GLERL]/Great Lakes Coastal Forecasting System and the 
NOAA/NWS National Digital Forecast Database). The model developed for an individual beach 
using deterministic parameters will be run in an operational forecasting setting by the 
NOAA/National Weather Forecast Offices where the beach is geographically located with 
forecast information provided to the Beach County Health Department responsible for beach 
management. Parameters used by the model are all forecasted by NWS and NOAA-GLERL out 
to 120 hours in the future. Some of the parameters, for example, are surface and bottom current 
speed and direction near the beach, wave height, sunlight, wind gustiness, dew point, cloud 
cover, and rainfall. Data needed from the beach manager are the E. coli measurements and time 
of sampling. 

NOAA’s GLERL, in Ann Arbor, Michigan, has been developing deterministic forecasting 
methods that incorporate process modeling (river and lake dynamics) for Grand River, Michigan, 
and Burns Ditch, Indiana, (http://www.glerl.noaa.gov/res/glcfs/gh/ and 
http://www.glerl.noaa.gov/res/glcfs/bd/) and forecast input variables (rainfall, wind velocity and 
direction, and wave height). GLERL is continuing to develop the river and lake model in the 
Clinton River watershed in Michigan and Lake St. Clair. The lake model will include 
unstructured variable grid patterns to allow for effective modeling of a complex shoreline. 
GLERL will advance basic science by modeling the deposition and resuspension of suspended 
solids in the near-shore zone using resuspension potential based on shear stress and the Grant-
Madsen boundary layer model. Resuspension potential can be substituted for turbidity 
measurements, a key parameter in many Nowcast models. 

http://www.glerl.noaa.gov/res/glcfs/bd/�
http://www.glerl.noaa.gov/res/glcfs/bd/�
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5 Developing a Beach Notification Statistical 
Model 

Section 2.1 introduces statistical modeling for beach notification decisions. This chapter provides 
more details on the elements required for developing a statistical model on the basis of a review 
of available literature. Volume II of this report gives a more detailed discussion of information 
on data sources, techniques for refining models, advanced statistical methodologies, and specific 
applications of Virtual Beach software. 

5.1 CONSIDERATIONS FOR DEVELOPING A STATISTICAL MODEL 
To develop a statistical model, the beach manager needs an existing monitoring program, a basic 
knowledge of statistics, and statist l software ica (Francy et al. 2006). Equipment costs for data 
collection and initial model development are typically not much more than are required for a 
beach monitoring program, and much of the data required for statistical models are available 
from other agencies or are easily measured by field staff. Once a model proves to be useful, a 
beach manager can invest in more expensive equipment to measure environmental conditions in 
real time. 

A statistical software package (such as SAS), Virtual Beach, or Excel can construct a 
multivariable linear regression equation using a data set containing the necessary data. The result 
of a multivariable linear regression statistical analysis will be an equation of this generic form: 

Y = b0 + b1X1 + b2X2 + b3X3 + E 

Where Y, the dependent variable, is an FIB measurement; X1, X2, and X3 are independent 
variables such as turbidity or rainfall amount; b1, b2, and b3 are regression coefficients; b0 is the 
intercept of the model; and E is random variation or unexplained error. The Es are assumed to be 
independently and identically distributed from some distribution (frequently assumed to be 
normal) with a mean of zero and a standard deviation of Eσ . If Y and Xs do not have linear 
relationships, both Y and the Xs can be transformed using the log function, the natural log, square 
root, square, or other transformations to ensure that Y and X have a linear relationship. 

Often, models are refined and improved as new data are gathered (Frick et al. 2008). In Ohio, for 
example, it has been found that splitting the swimming season into two separate periods (early 
summer and late summer) produces the best predictive models (Francy and Darner 2007). That 
approach of developing sub-models for complete data sets has also been applied to Huntington 
State Beach in California, where pathogen dynamics during the wet and dry seasons can be 
driven by different environmental factors (Boehm et al. 2007). When the model changes over 
time, i.e., the independent variables important for predicting water quality at a site change over 
time, statistical techniques like weighted regression (weighting most recent observations the 
highest) and machine learning might be needed. The actual causal factors behind the temporal 
changes could be related to watershed development, seasonal differences, climate change, 
changes in large-scale hydrologic patterns, and so forth. The developers of Virtual Beach 
software have achieved favorable results at certain beaches by using a rolling data set—
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developing predictive models using only the most recent 90 days of data, as described in Volume 
II of this report. 

5.2 SELECTING VARIABLES FOR A STATISTICAL MODEL 
Many independent variables might be included in a statistical model, ranging from physical 
hydrologic measurements (such as turbidity and air/water temperature), chemical parameters 
(such as DO, pH, and specific conductivity), biological (chlorophyll a), meteorological (rainfall, 
solar irradiance, stream discharge), beach characteristics (number of birds and bathers), and 
pollution inputs (stormwater, sewage). The following sections provide information about 
potentially useful independent variables and why they might be included in a statistical model for 
a beach program. 

5.2.1 Physical 
Turbidity can be increased by stormwater input or stream inflow, wind speed and direction, wave 
activity, swimmer activity, and other factors. Some of these factors might be associated with 
input of pollution (input of stormwater or stream flow), resuspension of bottom sediments (which 
might or might not be associated with higher indicator counts), or both (for example, swimmer 
activity). No matter the cause of increased turbidity, if a correlation to FIB levels exists, it is 
usually a positive correlation. 

Water temperature can also be important in assessing the persistence of FIB in the environment, 
because some are intolerant of extreme high or low temperatures. Unusual water temperature 
stratifications or large changes in water temperature can be an indication of important water 
inputs that could carry high FIB loads to the beach (e.g., stormwater or stream flow input). 

Sunlight intensity or solar irradiance can also be an important independent variable because 
some FIB are sensitive to sunlight and might not tolerate high levels. 

5.2.2 Chemical 
Conductivity is highly correlated with the concentration of dissolved solids in the water column. 
In a freshwater environment, elevated conductivity could be associated with runoff or effluent 
from a POTW. In a marine environment, changes in conductivity might be associated with input 
from a freshwater tributary, POTW effluent, or tidal stage. DO is measured at some beaches and 
can be associated with a variety of pollution sources. Also, increases in dissolved organic matter 
and UV absorption coefficients can provide an indication of FIB contamination from tributaries 
near a beach. pH has also sometimes proven to be a useful predictor of FIB levels. Fluctuations 
in those or other chemical parameters can indicate surface water inputs to a beach and a potential 
source of FIB. 

5.2.3 Meteorological and Hydrologic 
Rainfall data have historically been important in developing predictive tools for beach 
management. For some beaches, characteristics of antecedent rainfall are the primary inputs 
needed to predict the beach water quality. In addition to knowing the rainfall volume, the 
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intensity of rain and antecedent dry or wet days are also useful. The rain data can be for specific 
locations in a watershed affecting a beach, at the beach itself, or at some other monitored rain 
gauge for which data are available. 

Often, a threshold level of rainfall exists beyond which elevated bacteria counts are likely. The 
threshold varies from site to site and from region to region and is determined through sampling 
and data analysis. Developing rainfall threshold levels is discussed in Chapter 6. 

Conditions that affect surface-water runoff from rainfall include amount and intensity of rainfall, 
land use and land cover, saturation level of soil, stormwater management systems and retention 
ponds, and other factors. Intense rainfall, leading to overland flows, can erode soil and stream 
sediments and transport entrained material, including animal feces. 

Wind Speed and Direction 
Wind speed and direction can play a crucial role in transporting FIB from a potential source 
location to a beach. Wind especially influences wave formation. Waves are the main source of 
energy that causes beaches to change in size, shape, and sediment type. They facilitate 
movement of debris between the beach and the offshore zone. The three main characteristics of 
waves are their height, wavelength, and the direction from which they approach. Bacteria in 
bottom sediments or sand can be resuspended by wave action, increasing FIB levels in the 
adjacent waters. For example, studies at beaches along the southern shore of Lake Michigan have 
shown that E. coli densities in the sands of the swash zone are high, or higher, than those of the 
water column (Whitman et al. 1999). When storm winds initiate waves and direct them onto 
beaches, the foreshore sand is disturbed, and stored bacteria are released into the water, raising 
the E. coli densities to levels above the allowable threshold for full-body contact (Whitman et al. 
1999; Haack et al. 2002). In such an instance, the sand acts as a reservoir of FIB that might or 
might not be accompanied by other fecal constituents. 

Current Magnitude and Direction 
Several studies have shown that the magnitude and direction (alongshore and cross-shore 
components) of currents strongly influence FIB levels at beaches (Thupaki et al. 2010). A 
longshore or littoral current runs parallel to the shore as a result of waves breaking at an angle on 
the shore or as a result of larger hydrologic processes. The speed and direction of the currents 
can be critical parameters that explain the transport of FIB from a nearby source to the beach. 

Tide/Moon Phase 
Depending on the location of the beach, the tidal phase can have an effect on water quality. Such 
information is easy to find and could be a useful, independent variable in a statistical model. 
Incoming tides are associated with onshore currents, which tend to prevent pollutants from 
flowing seaward. Tidal flushing of an embayment might occur, moving pollutants out from 
beach areas. However, in some cases (e.g., physical barriers or structures), tidal flushing can be 
inhibited. Tidal activity has the potential to affect ambient water quality conditions either by 
increasing or decreasing FIB levels. The increased range of spring tides has been shown to be 
associated with increased indicator (enterococci) densities at 60 beaches in Southern California 
(Boehm and Weisberg 2005). Likely sources of indicator bacteria include groundwater 
discharges from the beach face as well as beach materials containing FIB such as wrack and bird 
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feces on sand newly inundated by spring tides. High tides also have been associated with 
elevated levels of FIB at beaches, presumably from resuspension of FIB from contaminated 
beach sands into the water column (Shibata et al. 2004). 

River Flow 
Increases in river flow are typically associated with rain events and runoff, and they could be 
indicative of high pollutant loads. If the beach area is along the river itself, higher flows are 
typically correlated with higher FIB levels. Flow rate has an effect on the travel time of 
pollutants moving from a source to a beach and would therefore affect the timing of a potential 
associated notification. 

River Stage 
It is well known that a key factor in causing episodes of short-term pollution with elevated FIB 
densities is wet weather. A rise in the river stage is associated with rain. The river stage is related 
to the river discharge and velocity. River stage has frequently been found to correlate with 
bacteria densities or with a likelihood of exceeding the bacteria standard. At 10 beaches in 
Scotland, a predictive tool has been developed that uses rainfall and river flow to predict FIB 
densities (McPhail and Stidson 2009). 

Lake Stage 
The lake stage gives an indication that previous rainfall amounts might have increased the 
volume of the lake. Rainfall and stormwater flow into a lake is usually associated with increased 
FIB levels. Inundation of shoreline areas previously unexposed (and suspension of the bacteria 
harbored in the sediments) can lead to decreased water quality. 

Groundwater 
Groundwater flow into beach water can carry FIB and enteric viruses from nearby septic systems 
or leaking wastewater infrastructure. It has been shown at a California beach that microbes can 
be transported through pore spaces in groundwater (Boehm et al. 2004). Groundwater flow into 
the system could also be a dilution factor. 

5.2.4 Other 
Physical Location of the Beach (Bay or Shore) 
The geographic setting of a beach should be considered when developing a statistically based 
model. Knowledge of the location of potential FIB sources and hydrologic attributes of the 
waterbody, as incorporated in a sanitary survey at a beach, are the basis of beach management 
including the use of statistical models. 

Sampling Methods 
Factors such as sampling location, sample depth, and time of sample collection need to be 
considered for data collection when developing a predictive tool. EPA’s Environmental 
Monitoring for Public Access and Community Tracking (EMPACT) study (USEPA 2005) 
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examines relationships between FIB measurements (using EPA-approved culture methods) and 
such factors. Because of the predictable differences in microbial counts with spatial and temporal 
factors, choosing a consistent sampling strategy is important. 

EPA found that at three of the five beaches studied, no statistical difference existed among 
bacteria densities on the basis of samples collected from different points parallel to the 
beachfront, which spanned a distance of 60 meters, as long as they came from water of the same 
depth. 

The greatest single determinant of bacteria densities was found to be the depth zone (distance 
from the shoreline at which the sample was collected). Bacterial densities became substantially 
lower as one moved from ankle-deep to knee-deep to chest-deep water. That has important 
implications for sample design and for public health. However, the study also found no 
significant difference in indicator levels among samples that were taken at different depths below 
the surface, such as between those taken 0.3 meter beneath the surface and those taken near the 
bottom. 

EPA observed significant declines in indicator densities from the morning to the afternoon (9:00 
a.m. to 2:00 p.m.) at four of the five beaches investigated in the EMPACT study. That effect was 
seen only on sunny days at one freshwater beach, but it was observed to be independent of 
sunshine at three others—a freshwater beach and two marine beaches. Indicator levels at the 
remaining beach, a West Coast marine environment, tended to be very low at all times. 

The EMPACT study was conducted using culture methods. Similar data using qPCR methods 
are preliminary and not yet available. 

Pollution Inputs 
Some pollution sources are measureable and could be included in a statistical model. They 
include agricultural runoff volume during a rain event, stormwater flows, CSO/SSO discharges, 
number of swimmers/bathers, and the presence of sediment, measured as turbidity or total 
suspended solids. 

5.3 COLLECTING DATA FOR A STATISTICAL MODEL 
For beach water quality modeling, free, publicly available meteorological data from a nearby 
airport or weather station will typically form the base or foundation of the independent variable 
data set. Collecting on-site hydrological (e.g., current direction, gauge height), meteorological 
(e.g., rainfall, solar irradiation, air temperature), or water chemistry (e.g., turbidity, water 
temperature, DO, specific conductivity) data requires additional personnel and financial 
resources. The benefits gained by having on-site data should be considered against the costs of 
deploying, maintaining, and collecting data from on-site equipment. Volume II, Chapter 2 details 
an example of such a comparative analysis at South Shore Beach, Milwaukee. Improvements in 
model accuracy from having additional on-site data are likely to be beach-specific. Microbial 
data must be collected at the beach. Given the day-to-day variability of microbial data, 
measurement frequency should be a minimum of several times per week over a period of months 
to years to develop reliable models (see Frick et al. 2008 and Volume II of this report). 
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Several options for data collection are available, depending on the needs and resources of the 
prediction efforts. Automatic samplers are desirable for frequent and regular sampling but might 
not be useful (except in special situations) for collecting microbial samples because of required 
holding times and sample degradation. Automated sampling equipment (such as ISCO samplers) 
has been used to collect water samples for microbial measurements in streams and rivers 
following rainfall events. Collection by such samplers is initiated automatically by signals from 
rainfall sensors. Sensors, meters, data loggers, and telemetry can be used to communicate an 
instantaneous reading to a network system or for readings at regular times when staff are 
unavailable. Typical USGS gauging stations and those applied in Kansas and Georgia report 
instantaneous water stage measurements at 15-minute or 1-hour intervals. 

Maintaining a full weather station at the beach or at another location for the purpose of 
developing and operating a predictive tool has been done at several locations in the Great Lakes. 
In Lake County, Illinois, for example, the data are transmitted via satellite to the office. For 
information about automated sampling and remote transmittal of data, see Volume II of this 
report. Maintaining a local river stage gauge is feasible and has relatively low cost. Data can be 
transmitted via satellite to the office. Managers can intensify sampling efforts for model setup or 
calibration, and then lessen them as a prediction tool becomes established and proven to be 
reliable. 

The following list summarizes data collection parameters likely to be most useful for developing 
a predictive tool. 

• Possible for automated collection 
- Stream or river: flow, velocity, stage (gauge height) 

- Waterbody: current speed and direction (often measures using Acoustic Doppler 
Current Profiler equipment), tidal phases, swimmers, wave height, lake level, 
underwater light sensors 

- Weather: air temperature, wind speed and direction, precipitation, relative humidity, 
lake stage, water temperature and clarity, solar irradiance (sunlight intensity), and 
wave height 

- Water characteristics: water quality (data sondes), turbidity, salinity, conductivity, 
temperature, DO, pH 

- Season, day of year, and moon phase are all easily obtainable 

• Field observations 
- Number of swimmers and animals on beach and in swim area 

- Chlorophyll a 

- Bacterial indicator 

- Surface water flow conditions (are there visible changes in surface water flow?) 
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5.3.1 Widely Used Data and Data Sources 

5.3.1.1 National Weather Service Weather Station Data 
Weather data are frequently available and easily downloaded from local stations and airports in 
various formats and for different variables. Meteorological weather data can be successfully used 
for statistical predictive tool development and implementation. The location of a weather station 
relative to the beach is important. The correlation between meteorology at the weather station 
and the beach degrades as the distance of the weather station from the beach increases. To find a 
weather station closest to a beach, use http://lwf.ncdc.noaa.gov/oa/climate/stationlocator.html. 

Some variables, such as insolation or solar radiation, which influences the survival of FIB, are 
not collected at some public weather stations and would therefore have to be collected locally. 

Many municipalities prefer to have site-specific weather data collection equipment at the beach 
to ensure more reliable predictive models. Especially on large lakes and coastlines, weather 
conditions can be dramatically different on the shore compared to inland. 

Historical data of water quality and microbial indicator levels are not as common, but they are 
very useful if available. A historical data set is useful only if it includes bacterial indicator levels 
coupled with other measurements and if it is of consistent and of acceptable quality. 

5.3.1.2 U.S. Geological Survey Stream Gaging Station Data 
The USGS maintains a network of stream gauging stations around the country. To see if a stream 
is in the network, visit http://waterdata.usgs.gov/nwis/rt. Often, historical data can be 
downloaded from that site. Data at the stations might include results from occasional bacterial 
sampling, but rarely will it include results from an established, periodic bacterial sampling 
regime, unless the station was designated for FIB monitoring under a special project. Station 
records can include meteorological data, in some cases, and occasionally water chemistry 
sampling data, such as pH, specific conductance, and DO. 

Stream flow data include river stage, and a calculated river discharge or volume variable. Either 
of those parameters could prove useful as an independent variable. 

Real-time, daily stream flow conditions typically are recorded at either 15- or 60-minute 
intervals, stored on-site, and then transmitted to USGS offices every 1 to 4 hours, depending on 
the data relay technique. Recording and transmission times can be more frequent during high 
flow events. Data from real-time sites are relayed to USGS offices via satellite, telephone, or 
radio and are available for viewing within minutes of arrival. 

5.3.1.3 Data from Sanitary Survey Investigations 
Sanitary survey information can help beach managers synthesize all contributing beach and 
watershed information—including water quality data, pollutant source data, and land use data—
so that sources of pollution can be identified. 

Sanitary survey investigations will contribute to the knowledge of the hydrologic setting of a 
beach and can result in information about which data are most important for developing a 
predictive tool. 

http://lwf.ncdc.noaa.gov/oa/climate/stationlocator.html�
http://waterdata.usgs.gov/nwis/rt�
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Beach sanitary surveys consist of collecting information on contributing sources of water and 
water pollution in the watershed and gathering information. Depending on the level of detail, the 
survey can include collecting and analyzing already available information, or it could include 
new daily measurements and field observations. A sanitary survey provides a documented 
historical record of beach and watershed water quality. It serves as a baseline snapshot to 
compare future beach and watershed assessments, and it enables beach managers to perform 
long-range water quality and resource planning. An official sanitary survey that has been well 
documented and validated can provide information for prioritizing funds used to remediate and 
eliminate pollution sources. The information in the survey can benefit stormwater program 
managers, wastewater facility managers, local elected officials, local planning authorities, 
academic researchers, and other beach and water quality professionals. 

The sanitary survey information collected on Great Lakes beaches has been useful to the Great 
Lakes states for developing statistical models. That information consists of measurements of 
turbidity, nearby stream discharge measurements, longshore currents, and regular observations of 
beach activity. It is important that observations be associated with microbial sampling because 
that will serve as the response variable when developing a statistical model. 

Data collected for a beach sanitary survey can facilitate the development of a predictive tool; 
however, the purpose of a beach sanitary survey is different from that of a data-collection effort 
specifically designed for statistical modeling. For that reason, data collected for a beach sanitary 
survey might not always be useful in predictive modeling. 

Information from a sanitary survey can be used to develop a predictive tool in several ways: 

• If the pollution source seems to be mostly urban or stormwater runoff or CSOs, 
developing a rain threshold level might work well and not require as many resources as a 
statistical model. 

• If leaky septic systems abound, sewage overflows occur, or other known sources of 
human fecal material are present, managers will want to account for such factors in the 
model or notification protocol. 

• If weather conditions (rainfall, wind speed, intensity of sunlight) or water currents affect 
bacteria levels at the sampling stations, managers should include such conditions in the 
data-collection efforts for predictive tool development. 

5.4 ENSURING DATA QUALITY 
Developing and implementing a Quality Assurance Plan is recommended for a beach monitoring 
program. Managers should develop a plan when developing a data set leading to an effective, 
reliable predictive tool. Decisions regarding what data are of a useable quality are made when 
developing a Quality Assurance Plan, which is then followed throughout the project. 

Examples of details covered in a Quality Assurance Plan include the following: 

• Laboratory methods (laboratories employ different methods, and their detections will 
vary) 

• Laboratory certification requirements 
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• Sampling protocol (sampling time of day, sampling depth) 

• Field sampling procedures and schedule 

• Replicate sampling procedure and schedule 

• Procedures for data collected by an auto sampler 

• Data processing procedures and documentation 

• Quality assurance/quality control procedures 

• Information on using historical data (when acquiring and using historical data, the quality 
of the data is important if the data will be compared with newly collected samples) 

Data quality guidelines should apply to all data collected, including turbidity, water chemistry, 
stream gaging measurements, and microbiological sampling data. However, more inherent 
uncertainty exists within the microbiological samples. That uncertainty is in the sample 
collection location, the sample collection method, and in the analytical method. For that reason, 
duplicate sampling or composite sampling protocol can be incorporated into the sampling 
procedures. 

Immediately after data collection, an examination should follow to identify any observations 
with high leverage or outliers in the data set. Points with high leverage could greatly affect the 
fitting of model coefficients. An outlier, on the other hand, refers to an observation that markedly 
differs from the other points in a data set, possibly because of data entry error. Influential points 
both have high leverage and are outliers. 

Figure 5-1 demonstrates those concepts in terms of a simple linear regression of Y on a single X 
variable. Point A is an outlier. It does not fit the trend mapped by the rest of the data. However, 
the X value of Point A is very near the mean value of X across the data set, so it would have very 
little influence on the slope of the fitted regression line. It could pull the line up, thereby 
influencing the value of the intercept but not the slope. Point B has high leverage, because its X 
value is much greater than the X values of the other observations. However, it is in line with the 
trend mapped by the other observations, so it has little influence on the slope or intercept of a 
fitted regression line. Point C is the most influential point in the data set. Not only does it have 
high leverage, but it also is an outlier, meaning it does not fit the trend mapped by the rest of the 
data set. If one includes Point C in the analysis, it would have a large effect on the regression 
model fit to the data. That observation should be examined closely to determine if it is indeed a 
valid data point. 
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Figure 5-1. Points A, B, and C represent an outlier, a high-leverage point, 
and an influential point, respectively, in a regression context. 

Several statistical techniques are useful for detecting such types of points: 

• Index plot of residuals: This is the simplest way to visually identify outliers. The residual 
measures how far off the general trend of the data a given data point lies. 

• Index plot of leverages: The average leverage of a data point is p/n, where p is the 
number of parameters, and n is the number of observations in the data set. As a general 
rule, any leverage greater than 2p/n is relatively large and should be investigated further. 

• Studentized (either internal or external) residuals: The advantage of studentized residuals 
over normal residuals is that they have been standardized to have equal variance. An 
internally studentized residual is based on the residual of a given observation when that 
observation is included in the data set. An externally studentized residual is based on the 
residual of a given observation when that observation is removed from the data set before 
a regression line is fit. 

• Cook’s distance: This statistic combines the internally studentized residual and leverage 
value for a data point and, thus, can be used to identify influential points. 

• DFFITS: This statistic is similar to Cook’s distance, but it is based on the externally 
studentized residual and as such can more easily identify highly influential points. 

Observations identified as extreme values using the above techniques should be noted for further 
investigation. If highly influential points or extreme outliers are confirmed as stemming from bad 
data, they should be removed to maximize model accuracy and efficiency. 

5.5 CONDUCTING EXPLORATORY DATA ANALYSIS 
Developers of statistical models should answer a number of key questions using exploratory data 
analysis before beginning the actual model development. They include the following: 

A

C

B

Y

X
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• Are there outliers or high leverage observations, as detailed in the previous section? 

• Is the relationship between the FIB densities and the independent variables linear? If not, 
consider a transformation of any of the explanatory variables to linearize the relationship, 
or consider omitting the variable. 

• Are any pairs of independent variables highly correlated? Such co-linearity can lead to 
later problems with regression analyses. 

• Which explanatory variables have strong univariate associations with FIB densities? In 
multivariable linear regression, the association of each independent variable is being 
measured in the presence of the other independent variables in the model. Some 
independent variables alone would have a strong relationship to the response, but once 
other independent variables are added to a model, the usefulness of the original 
independent variable would be minimal. Likewise, two independent variables could 
interact in such a way that neither is highly correlated to the response alone, but both are 
highly correlated to the response if they appear in a regression model together. The lesson 
is to interpret univariate correlations between the response and any independent variables 
carefully. 

• Was the strength of the univariate correlation between the response and independent 
variables consistent through time? 

A statistical model is developed using a water quality data set including FIB concentrations (the 
dependent variable) and an assortment of independent variables. For each beach, summarize 
beach data as the data are collected, so that errors can be quickly identified and corrected. 
Because of their wide range, bacterial densities are generally log(10) transformed before data 
analysis (Francy 2006) to ensure normality of the measurement. If data are available for one year 
or more, start by summarizing the data for each year or for years of data combined. Include the 
median, minimum, and maximum bacterial indicator concentration and the number of days the 
standard was exceeded. Simple relationships to potential explanatory variables might begin to 
emerge. 

If data are available for less than one year, they can still be analyzed, especially if samples have 
been taken frequently. Keep in mind that relationships between variables and bacteria densities 
might not be apparent with a smaller data set. The correspondence between the predictions of the 
statistical model and actual observations at the beach is the final proof of model 
efficacy/reliability. The model is best evaluated using a data set outside the one used to develop 
the model (Frick et al. 2008; Boehm et al. 2007). Developers of Virtual Beach used data sets as 
small as 25–30 data points over a period of 60 days, or approximately a single swimming season 
(Frick et al. 2008). Evaluation of models is covered in Volume II of this report). 

Next, examine scatter plots of all measured independent variables versus bacteria densities. If a 
continuous linear relationship is apparent in the scatter plot, the constituent could be useful as a 
predictive variable. If the relationship is continuous but nonlinear, try transforming the variable 
using a second-order polynomial, square root, logarithm, or inverse. If a linear relationship is still 
not apparent after transformation, consider expressing the variable in categories or omit the 
variable from consideration in the model. For variables that might not be continuous (cloud 
cover, wave heights), use box plots to summarize mean responses by category. Analyze plots by 
year and for all years combined (Francy 2006). 
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Before the multivariable linear regression model development phase proceeds, check the data set 
to determine if it includes explanatory variables that are strongly related to each other (co-
linearity). If such pairs of independent variables exist, consider using only one in a multiple 
linear regression model because high co-linearity among the independent variables leads to 
poorly estimated regression coefficients. A general rule is to be cautious about correlation 
coefficients that exceed 0.80. Often, the choice of which of the pair to retain for analysis comes 
down to deciding which one is easiest or cheapest to measure or interpret. 

Although not discussed in this volume, Boehm et al. (2007) have provided evidence that the 
partial least squares modeling approach does not require that the independent data sets be 
uncorrelated. Additional work is required to determine if the partial least squares approach can 
be generalized. 

5.6 DEVELOPING YOUR STATISTICAL MODEL 
This section is a compilation of published and unpublished methods of developing a statistical 
model for predicting beach advisories. Many of the recommendations come from publications of 
the Ohio USGS and from the EPA developers of Virtual Beach. After constructing a set of 
independent variables, a statistical software package such as Excel, Virtual Beach, or SAS can be 
used to initiate multiple linear regression model development evaluation. 

Several metrics can be used to measure model goodness-of-fit or explanatory power. The 
coefficient of determination, R2, was historically used as the primary determinant of model 
fitness. The R2 value summarizes the percent of the variability in the response variable that can 
be attributed to the variability in the independent variables. Values of R2 can vary from 0 (no 
variability explained) to 1 (all variability explained). 

Statisticians recognized a flaw in R2, however. It always rises as more parameters are added to 
the model. At some point, a model becomes over-parameterized—meaning the ratio of 
explanatory parameters to data observations is too low. An over-parameterized model can 
closely fit a set of training data (i.e., data used to generate the model), but it poorly predicts any 
new observations outside the original data. In essence, it is too tightly tailored to the training 
data. 

To counteract that phenomenon, statisticians developed new metrics that include a penalty for 
adding parameters. The adjusted R2 is one such measure, as is Mallows’ Cp (Mallows 1973; 
Frick et al. 2008), Akaike’s Information Criterion (AIC) (Akaike 1974), and the Bayes 
Information Criterion (BIC) (Schwarz 1978). Those metrics attempt to maximize the amount of 
explained variability in the response variable while relying on a minimum number of parameters 
in the model, thus avoiding over-fitting. If the modeler adds a parameter to an existing model, 
and the parameter does little to reduce the unexplained variability in the response variable, the 
metrics will identify the parameter as relatively useless. In comparing two models using 
Mallow’s Cp, AIC, or BIC, the model with the smaller metric has a better fit to the data, the 
same fit with fewer independent variables used, or both. The metrics vary in how severely they 
penalize additional parameters. In general, the order from least to most severe is as follows: 

adjusted R2 < Mallow’s Cp < AIC < BIC 
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There is also a corrected AIC (McQuarrie and Tsai 1998), which fits between the AIC and BIC 
in terms of penalty severity. Model developers who choose to use the adjusted R2 as their 
selection criterion will likely end up with larger models than if they had used the BIC as their 
criterion. 

In the model-selection process, modelers should consider the selection algorithm in addition to 
the selection criteria as discussed above. One can choose from backward elimination, forward 
selection, or stepwise procedure. 

• Backward elimination: Start with the full model including all predictors, then remove the 
predictor with highest p value greater than the significance threshold (usually 0.05). The 
process is repeated until all p values are less than the significance threshold. 

• Forward selection: Start with no variables in the model, then add the predictors to the 
model one by one based on their p values. Choose the one with lowest p value less than 
the significance threshold. The process continues until no new predictors can be added. 

• Stepwise procedure: This is a combination of the backward elimination and forward 
selection algorithms. At each step, a variable can be added or removed; any removed 
variable still has a chance to reenter the model. 

Models can be ranked according to any one of the criteria using one of the model-selection 
algorithms, and the best models are then selected for further examination. 

5.7 ASSESSING AND REFINING YOUR STATISTICAL MODEL 
Given a candidate best model, it is important to analyze the residuals of that model to ensure an 
important assumption of regression analysis is being met. Multivariable linear regression 
assumes that the residuals are independent and identically distributed. A plot of the model’s 
residuals versus the fitted values of the response should indicate no obvious pattern (Figure 5-2). 

 
Figure 5-2. An ideal residual plot for a multiple linear regression model 
showing no discernible pattern among the residuals. 
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If a non-constant variance is evident in the residuals (Figure 5-3), the Box-Cox transformation 
can be used. 

 
Figure 5-3. A plot of regression residuals that shows indications of 
heteroscedasticity and the need for a Box-Cox transformation. 

The Box-Cox method transforms y into (yλ – 1) / λ, where the value of λ is determined by an 
iterative algorithm (Box and Cox 1964). The goal of the procedure is to find λ such that the 
model residuals have equal variance across the range of the fitted values (i.e., they appear as in 
Figure 5-2, rather than as in Figure 5-3, where variance increases as the fitted response gets 
larger). 

Once the residuals of the candidate model are shown to be independent and identically 
distributed, the next step is to quantitatively assess the accuracy of model predictions. Such an 
assessment would ideally use data other than that used to develop the model. The data used to 
generate the model are called the training data set, while the testing data are used to assess model 
predictive accuracy. 

Because the statistical model will be used for making public health decisions, the most critical 
assessment question asks if the model can make correct decisions to post beach notifications (a 
notification is defined as either an advisory or a closure). In a multivariable linear regression, the 
total proportion of variability in the response explained by all independent variables in the model 
is expressed as R2, and if the model is applied to the testing data set, it could be used as a 
measure of the predictive strength of the model. Another test of model performance is to 
examine the number of Type I and Type II errors. A recommendation to close a beach when 
there is not actually a threshold-exceeding density of bacteria (a Type 1 error, or false positive 
result) would be considered conservative from a public health point of view. However, false 
positives deprive the would-be swimmer of the enjoyment and use of the beach and can have 
adverse economic effects on business owners in near-beach locations and erode public 
confidence in public health decisions. Type II errors (or false negatives) result in beaches being 
opened (or not having a notification in place) when bacterial levels actually exceed the standard. 
By evaluating how many false positive and false negative predictions a model produces (or the 
percentage of errors compared to correct predictions), the analyst can begin to determine if the 
model is indeed good enough for reliable use. 
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In addition to evaluating model performance on the basis of a comparison of model predictions 
with known measurements, the model’s performance should also be compared against a basic 
and commonly applied method used for assessing recreational water-quality—the persistence 
model. That model uses the most recent bacterial measurement (typically from the previous day) 
to predict today’s water quality. 

Factors that influence the fate and transport of FIB to a specific beach site can change over time. 
Land use alterations, degradation or improvements to infrastructure, adding near-site sources, 
and other conditions can cause shifts in the underlying processes driving FIB densities. Even 
without ostentatious changes in the watershed or near-site geography, one should continually 
monitor model performance for signs of degrading performance through time. 

5.8 IMPLEMENTING YOUR STATISTICAL MODEL 
How are the outputs from predictive tools used in decision making? Model developers and beach 
managers, who consider protecting public health their top priority, continue to creatively address 
that important question. 

Model outputs can be estimated FIB densities, a probability that the water quality standard will 
be exceeded, or a daily notification status that is to be posted. Chapter 4 provides an overview of 
several beach models in different stages of use. In the case of the Nowcast model developed by 
the USGS in Ohio, a probability threshold is set for decision making (e.g., at 25 percent 
probability of exceeding the water quality standard, close the beach). Such probability thresholds 
can be adjusted and refined to maximize the number of correct predictions or to minimize false 
negative or false positive outcomes. At those Ohio sites, water quality sampling continued during 
model development so that decision accuracy could be tested. Given the low threshold 
(25 percent rather than 50 percent or higher), an emphasis was clearly placed on minimizing 
false negatives so that public health would be protected. The process of model development, 
implementation, validation, monitoring, and refinement is used not only for multivariable linear 
regression analyses, but also for other models of any type as a groundwork for predictive tool 
implementation. 

5.9 ADDITIONAL RESOURCES 
Procedures for developing a statistical model are outlined in the USGS document, Procedures 
for Developing Models to Predict Exceedances of Recreational Water Quality Standards at 
Coastal Beaches (Francy and Darner 2006). Donna Francy and others with the USGS in Ohio 
have published work regarding the Nowcast system of predicting and forecasting, as have 
Richard Whitman and others with the USGS in Indiana, regarding their work in Indiana and 
Illinois. Olyphant and Pfister (2005) also published work for the Swimcast model in Lake 
County, Illinois. Those are all good sources of information. Another good source on developing 
a statistical model is Chapter 9—Nowcasting recreational marine environments (Boehm et al. 
2007)—in Statistical Framework for Recreational Water Quality Criteria and Monitoring 
(Wymer 2007). That chapter discusses predictive variables that should be considered in marine 
environments, and statistical methods other than multivariable linear regression models (e.g., 
Partial Least Squares Regression) that should be considered. Language conventions used in this 
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report might differ slightly from other publications. Those resources will provide more technical 
and detailed information than is covered in this report. 
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6 Developing Rain Threshold Levels and a Rain 
Notification Protocol 

Many beach managers have noticed a relationship between the concentration of FIB at a beach 
and the amount of rain received in nearby areas. That relationship can be quantified as an amount 
or intensity of rainfall (a threshold level) that is likely to cause exceedances of water quality 
standards at a beach, and the length of time over which the standards will be exceeded. Rain 
threshold levels can be used as the basis for a beach notification. 

Beach managers can also develop a series of questions, or a decision tree, considering factors 
other than rainfall, to guide beach notifications. Such evaluations use water quality sampling, 
rainfall data, and other environmental factors that could influence the FIB levels, such as 
proximity to pollution sources, wind direction, visual observations, or other information specific 
to the region or beach. In this document, that process is referred to as developing a notification 
protocol. 

Exceedance of a predetermined rain threshold level might be one piece of data that is considered 
in a notification protocol, or it might be the only piece of information considered in a notification 
protocol. 

Guidelines developed by the beach manager should allow for consistent decisions resulting from 
protocol that can be repeated and tested to determine, for a rainfall event, whether a beach should 
be placed under a notification. The guidelines might also recommend how long the notification 
should persist and when follow-up sampling for FIB should occur. Some examples of places that 
have notification protocol are given in Section 4.2. 

The process of developing a rain threshold and notification protocol has three steps: 

1. Collecting data for rain threshold levels and notification protocols 

2. Developing a rain threshold level 

3. Developing a beach notification protocol 

6.1  COLLECTING DATA FOR RAIN THRESHOLD LEVELS AND 
NOTIFICATION PROTOCOLS 

To develop rain threshold levels and notification protocols, a large amount of site-specific data 
on rainfall amounts and FIB sampling results is needed. The investigator must either install a 
local rain gauge or select a rainfall station that adequately represents local conditions affecting 
the beach. That technique, at its foundation, assumes that the magnitude and duration of rainfall 
determines surface water runoff and, thus, FIB loadings to the beach. Data from several rain 
gauges can be compared before choosing the one whose data best relate to on-site FIB measures. 

Key rainfall characteristics when developing rain threshold levels include the following: 

• Amount of rainfall 

• Storm duration 
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• Intervening periods expressed in dry days 

• Lag time between rainfall record event and receiving beach response 

• The season/times of year when the beach receives the most use 
Meteorological stations commonly collect and submit daily or hourly data. Hourly stations are 
preferred especially when dealing with small- to medium-sized watersheds. Additional factors 
that can be incorporated into the decision protocol include river or lake stage, tide, and current 
information. 

When initiating development of a rain threshold level, it is important to understand wastewater 
and stormwater infrastructure affecting a beach. Some good questions to ask are as follows: 

• Is the sewer collection system combined with the wastewater collection system and 
routed to a WWTP? If so, what is the level of treatment? 

• What is the capacity of the WWTP? 

• How often is that capacity exceeded and what amount of rainfall causes that exceedance? 

If an amount of rainfall produces a stormwater volume that exceeds the capacity of the WWTP, 
parts of the treatment process can be bypassed. In watersheds where stormwater is not routed 
through a WWTP, stream surges can be evident after even small rain events, transporting 
contamination accumulated on the land surface since the last rain. Flow from a combination of 
such infrastructure scenarios can contribute to FIB loadings at a beach. It is important to also 
determine if the impacts of rainfall and loadings have a strong seasonal component and, if so, 
why that might be the case. 

FIB data supporting the development of rain threshold levels are generated from water column 
densities obtained from ambient or targeted monitoring programs. FIB densities can be used in 
the analyses as direct observations or can be transformed as geometric mean values. 
Transformation of FIB observations before developing regression models or exceedance analyses 
can allow direct comparison to state water quality standards for recreational uses. A rain 
threshold level can be developed for one or several FIB species. Fecal coliform, E. coli, and 
Enterococcus bacteria are common indicator species used in those models. 

For relatively small watersheds, it is common to use a single rainfall station selected to be 
representative of storm conditions experienced by the upstream drainage area. The investigator 
selecting a representative rainfall station takes into consideration its location in the watershed 
and its ability to capture the most dominant rainfall events (magnitude and duration) that could 
generate relatively high storm runoff volumes and transport FIB loadings to the beach. For 
example, in Delaware, the Department of Natural Resources and Environmental Control selected 
a rainfall station because of its central location in the watershed and strong statistical correlation 
with observed FIB densities at the beach site of interest (Delaware Department of Natural 
Resources and Environmental Control 1998). 

When dealing with nonpoint-source-dominated systems, antecedent rainfall conditions can be 
very significant factors in explaining the relationship between rainfall and FIB densities. Kuntz 
(1998) found higher FIB densities during periods of low rainfall or near-drought conditions than 
during seasons of normal rainfall. However, Ackerman and Weisberg (2003) found that an 
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antecedent dry period in Southern California had a minimal effect on FIB levels, given the same 
storm intensity. Storm event duration might also be a key factor in explaining rainfall-water 
quality relationships. For a watershed in Delaware, an examination of the relationship between 
cumulative rainfall over two different durations (24 and 72 hours) and FIB densities shows that 
the 24-hour cumulative rainfall data yield a statistically stronger relationship than the 72-hour 
cumulative rainfall data (Delaware Department of Natural Resources and Environmental Control 
1997). 

6.2 DEVELOPING A RAIN THRESHOLD LEVEL 

6.2.1 Frequency of Exceedance Analysis 
Frequency of exceedance analysis is a rainfall-based method that is used to develop rain 
threshold levels (also called rainfall-based alert curves). A rain threshold level is the smallest 
amount of rainfall likely to result in an exceedance of the water quality standard. A realization or 
prediction of that amount of rainfall would trigger a beach notification. Such a method can be 
applied to situations only in which historical rainfall data and corresponding FIB data exist. After 
establishing a relationship between rainfall amounts and FIB densities, developing guidelines or 
a decision protocol for a beach notification is the next step. 

Analyzing rainfall data by storm events and identifying a representative data set yields storm 
characteristics to consider in developing a rain threshold level (e.g., station location, storm 
duration, intensity, antecedent conditions). Once a representative data set has been obtained, 
divide the total amount of rainfall over a certain period into segments that range from no rainfall 
to an upper limit representative of the rainfall record, type of storms, and season. For each 
rainfall volume category, compare the observed FIB measurement to the water quality standard. 

As with any model, the rain threshold level should be validated by testing predictions at beach 
locations of concern. Those validation exercises will aid in selecting the most appropriate rain 
threshold level. 

6.2.2 Regression Modeling 
Another way to develop a rain threshold level is using a simple linear regression (a single 
independent variable) relating FIB levels to rainfall amounts. Rainfall-based regression models 
require relatively large monitoring data sets of both rainfall and FIB densities. The basics of that 
process are described in Chapter 5. 

6.3 DEVELOPING A NOTIFICATION PROTOCOL 
The rain threshold level is used along with other site-specific information to develop the 
notification protocol for a beach. Some examples of ancillary information to be considered are 
observational data (e.g., indications of WWTP bypass), communications with WWTP managers, 
wind direction, tidal phase, river stage, long shore current direction, and season. Decision 
protocol will typically specify the conditions requiring a beach warning/notification, closure, or 
increased water testing. 
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Because of the seasonality of recreational activities and rainstorm characteristics, rainfall 
threshold levels and notification protocols can be developed for targeted seasons. Developing 
predictive tools for various seasons can significantly enhance the predictive capability of the 
tool. Milwaukee developed beach closure rules on the basis of an analysis of fecal coliform and 
E. coli densities collected daily (Monday–Friday) during the June–September season (City of 
Milwaukee Health Department 1998). Another example of this is Ohio’s model for beaches on 
Lake Erie. One model is applied for early summer, and another model has been found to be most 
effective for late summer (Francy 2009). 

Consider whether the decision protocol is still in the information collection phase or in the 
implementation phase. If it is in the information collection phase, decision protocol performance 
should be tested frequently and opened for readjustment as needed. In the implementation phase, 
performance testing does not need to be as frequent unless a significant change in conditions has 
occurred. Once in the implementation phase, establish a schedule for testing and reevaluating the 
decision protocol and for recording performance results. 
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7 Common Challenges and Obstacles 
A review of predictive tools for beach notifications reveals different challenges for each beach. 
Several beach managers have expressed concern that predictive statistical models are cost 
prohibitive because they require a commitment of resources (data collection, use of software, 
expertise) and there is no guarantee that a useful predictive tool will be produced. Efforts to 
develop statistical models in some locations have been aborted. Table 7-1 provides a collective 
list of challenges and problems reported with predictive tools. 

Table 7-1. Issues concerning statistical predictive models and tools 

Model setup Model application Administrative concerns 

• Difficulty in achieving good 
calibration, degree of accuracy, or 
correct predictions needed 

• Determining necessary inputs 
• Establishing nearby rain gauges 

• Intensive sampling to explore and 
establish statistical correlations 

• Additional sampling required for 
validation period 

• Necessary monitoring equipment 

• Computer programs for analysis 
(statistics software package) 

• Long period for setup 
• Unknown outcome of model 

accuracy before necessary funding 

• Water quality standard 
exceedances inconsistent or 
sporadic, not enough data for the 
times when FIB levels are high 

• Monitoring equipment for inputs 
requires maintenance 

• Challenges placing equipment in 
secure and meaningful location 

• Accuracy of prediction and 
accuracy of analytical method 

• Staff is still needed to take 
samples 

• Prediction accuracy varies 
depending on environmental 
(weather) conditions 

• Model recalibration is necessary 
for changes in infrastructure and 
land development 

• Knowledgeable staff are 
needed to understand and run 
the model 

• Expertise is needed for model 
development and maintenance 

• Equipment, sampling, staff 
costs 

• Public confidence 
• Staff time used in sampling 

procedures 

• Communication and storage of 
data, if data loggers are used 

 

Collective experience suggests that statistical modeling will improve when paired with an 
enhanced understanding regarding the relationships between weather conditions and bacteria 
residence time, source-concentration, and water flow directions and hydrology at the beach and 
in the contributing watershed. Managers of the most successful models discussed in Chapter 4 
have documented and understood pollutant sources and how they are manifested at their beaches 
(e.g., Valley Creek at Port Washington Beach, stormwater outfalls in New York City). Having a 
good understanding of the important sources and relevant fate and transport mechanisms can 
greatly improve model prediction accuracy, especially if that knowledge can be used to direct 
data collection efforts. In some cases, developing a statistical model leads to identification of 
control measures or correction of infrastructure problems. Even though complex physical, 
biological, and chemical processes are being represented by a relatively simple statistical 
relationship, model accuracy can be augmented if the important environmental processes are 
considered, leading to the monitoring and data collection of useful explanatory variables. Rain 
threshold and river stage models have proven histories because clear and direct relationships 
exist between measurable inputs (e.g., rain, turbidity), and measured FIB densities. 
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8 Beyond Statistical Modeling 
The theme of Volumes I and II of this report is using statistical models and other predictive tools 
to produce timely estimates of water quality at beaches. 

Different types of statistical models are used successfully at many beaches. Development of 
deterministic models has also advanced. In deterministic models, algorithms are applied that 
reflect natural processes such as sediment resuspension as they are understood. Deterministic 
models typically require expertise to implement and would likely be challenging for local beach 
managers or public health agencies to set up, run, and achieve the accuracy and reliability needed 
for protecting human health. 

An important distinction between statistical models and deterministic models is that in a 
statistical model, the relationship between water quality and the predictive variable does not have 
to be understood. In deterministic models, the system being modeled must be fully or partially 
understood, because applying modeling algorithms that reflect natural processes is what makes 
them work. Blending the performance of statistically based models with the ability of 
deterministic models to account for complex variations in circumstances can improve the 
successful use of statistical models in making accurate and timely predictions of high bacteria 
levels or water quality standard exceedances. 

Researchers are making advances in predictive tool development throughout the United States. 
The advances are in the areas of data collection and telemetry, data sources, selecting 
independent variables, quantifying natural processes, statistical methods, computing 
technologies, and understanding hydrological influences. Components of models are being 
advanced and fine-tuned at such a rapid pace that it is difficult to capture all developments in this 
chapter. 

8.1 FORECAST MODELING 
The prospect of days-in-advance forecasts of beach water quality raises the endeavor to a new 
level. Being able to incorporate forecasting technologies into the process of making beach water 
quality decisions further increases the utility of predictive modeling to the beach-going public. 

Weather forecasting is a core activity of NOAA and is one that is itself based on the use of many 
models, including deterministic predictive meteorological models. NOAA forecasts include 
predictions for many of the variables known to directly or indirectly influence water quality at 
beaches (cloud cover, precipitation, wind velocity, and direction). Using available forecasts for 
current speed and direction, water and air temperature, wave height, precipitation, stream or river 
stage combined with knowledge from other models, it is hoped that beach water quality will soon 
be forecasted in the Great Lakes. NOAA is collaborating with USGS, EPA, and state agencies to 
develop a system for water quality forecasts at any swimming beach. The system will involve 
weather predictions from NWS, hydrodynamic predictions from the Great Lakes Environmental 
Research Laboratory, and site-specific factors for individual beaches (Schwab and Bedford 
1994). For more details on the system, visit 
http://www.glerl.noaa.gov/res/Centers/HumanHealth/near_shore.html. 

http://www.glerl.noaa.gov/res/Centers/HumanHealth/near_shore.html�
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8.2 REGIONAL MODELING 
In general, statistical models and rain threshold level determinations are beach-specific. It would 
be beneficial if the techniques could apply to a larger geographic area such as a shoreline of 
several miles or more. On the southern shore of Lake Michigan, NOAA’s regional model is 
being combined with locally collected beach information to enhance predictive capabilities on a 
regional level. 

8.2.1 Great Lakes Finite Element Nested Models 
In the mid 1990s, NOAA developed a 5-kilometer-scale finite element model of all five Great 
Lakes. The model was calibrated to yield real-time predictions of three-dimensional water 
particle velocity; the three-dimensional temperature field; the water level distribution and the 
wind-wave height, length, period, and direction; and resuspension, transport, and deposition of 
bottom sediments on the basis of wave and current conditions. Inputs to the model were provided 
by satellite feed of NOAA weather data (Schwab and Bedford 1994). 

NOAA, USGS, Ohio State University, and EPA researchers have applied and calibrated 
100-meter grid nested models in NOAA’s 5-kilometer-scale finite element model of Lake 
Michigan at three locations to provide greater resolution to the effects of stream discharge 
plumes on nearby beaches. Water quality at Grand Haven State Park and other beaches in the 
vicinity of the mouth of the Grand River is overwhelmingly influenced by the direction of the 
plume from that major river, which carries the discharge from a watershed of more than 5,000 
square miles. The application and calibration of the nested 100-meter grid in that setting provides 
real-time updates on the trajectory of the discharge plume four times a day (Schwab and Bedford 
1994). 

Several statistical models in southern Lake Michigan use outputs such as wave information and 
current direction from the model, exemplifying how data from a deterministic model can provide 
input data to a statistical model. 

8.3 HYDRODYNAMIC AND FATE AND TRANSPORT MODELING 
Nevers and Boehm (2010) provide an overview of using deterministic models to predict FIB 
densities in surface waters. Nevers and Boehm underscore the value of fate and transport models 
for increasing and refining the understanding of mechanisms that lead to observed variations in 
water quality but that are not well defined. That would be of value in instances where the 
characteristics of a site produce poor or counterintuitive empirical relationships or sites where 
statistically based models, or decision tree models, fail to achieve satisfactory results. The 
authors also provide guidance on parameterization of many mechanisms applicable to fate and 
transport modeling of fecal indicators including advective flux, dispersion, inactivation, growth, 
predation, adsorption/desorption, deposition/resuspension, and loading. Their work also 
discusses empirical statistical models as described in Chapter 5 of this report. 
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8.3.1 Hobie Beach 
Hobie Beach, near Miami, Florida, used a deterministic model to further investigate observed 
contamination problems for which no apparent cause had been identified. At the site, elevated 
indicator bacteria densities had been a recurring problem, despite the absence of any identified 
specific point source of pollution. Researchers at the University of Miami (Zhu 2009) employed 
a predictive numerical model of water column proxy densities for a nonpoint source recreational 
marine beach. In the first of two phases, the model was used as a tool to investigate microbial 
processes and source functions and the relationship between observed indicator densities and 
identified sources in historic data sets. The microbial process model was based on the combined 
application of hydrodynamic and advection-diffusion equations for transport and mixing. The 
model calculated the reduction in culturable indicator bacteria densities as a first-order decay 
process solely on the basis of sunlight deactivation. 

Quantitative estimates of enterococci loadings from human shedding and animal fecal (avian and 
canine) inputs were integrated with beach-use data to estimate the source strength and timing. 
Model simulations illustrate the transient concentration plumes associated with heavy bather use 
and animal fecal input events. Model outputs also include current vectors at varying tidal stages 
and flow conditions. The outputs of the model show that the source of high FIB densities at the 
beach were from a nearby dog beach. That has clear implications to beach management so that 
water quality problems could be avoided. Deterministic models such as this might be applicable 
in a variety of settings without the requirement of an extensive data history (Zhu 2009). 

8.3.2 Other 
The Nevers and Boehm (2010) report also addresses the uses of deterministic model functions in 
quantitative microbial risk assessments, which are stacked deterministic models that include fate 
and transport models along with modeling the infectivity of various pathogens for which 
epidemiological data are not available. 

8.4 NEW USE OF EXISTING DATA AND INNOVATIVE ANALYSIS 

8.4.1 Use of Hydrography (NHDPlus Network) and Land Use Data 
In a project conducted in 2007–2009, Research Triangle Institute (RTI 2007), under contract to 
EPA, integrated calculated outputs from the NHDPlus geospatial data with a statistical model to 
relate watershed and waterbody characteristics to possible sources of pathogens that can affect 
water quality at a beach. RTI developed a multivariable linear regression model that relates 
characteristics of a river flowing into the ocean near the beach to water quality at a beach 
influenced by the outfall of that river. It incorporates explanatory variables from NHDPlus 
(elevation-based catchment for each flowline in the stream network, cumulative drainage area 
characteristics for example), calculated time of travel from potential watershed sources, and 
publicly available meteorological, marine, beach, and flow data. 
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The project employs an SAS-based regression system to facilitate a multivariable linear 
regression analysis. The system was applied and tested at several sites for which adequate data 
sets were available: 

• Santa Barbara, California (coastal) 

• Sunset Beach, Oregon (coastal) 

• Little Calumet Watershed, Indiana (freshwater) 

• Huntington Beach, Ohio (freshwater) (also a Virtual Beach site) 

RTI’s approach achieved results comparable to applying statistical relationships using other 
available data and other statistical regression software. As with most predictive models, the best 
results in terms of correct predictions were obtained with data from the intensively monitored 
sites over short periods. Although including time of travel information from potential watershed 
sources did not improve model performance as measured by R2 in most settings, results were 
obtained with good performance in terms of false negatives, false positives, and correct 
predictions, and using publicly available data. 

Routine monitoring data for FIB were made available to model developers, and no data were 
collected specifically for the purpose of developing the predictive model. RTI’s approach is a 
good example of broadening the range of potential predictive variables for regression models by 
using publicly available data from NHDPlus. Applying watershed land use data and calculated 
river hydrology characteristics as sources of empirical model inputs is an innovative approach. 

8.5 NEURAL NETWORKS AND GENETIC ALGORITHMS 
An artificial neural network (ANN) is a construct of software that partially mimics the workings 
of a biological neural network. ANNs are often applied as nonlinear statistical data modeling 
tools. They can be used to model relationships between inputs and outputs or to find patterns. 
The technique is often useful when relationships between inputs and outputs are complex and not 
clearly understood. An ANN learns relationships between inputs and outputs using a learning 
algorithm. 

ANNs have been used in a handful of studies for predicting pathogen and pathogen indicators in 
recreational beach and watershed surface water. He and He (2008) successfully used ANNs to 
predict FIB at marine recreational beaches receiving watershed baseflow and stormwater runoff 
in Southern California. Mas and Ahlfeld (2007) observed that ANNs performed better than 
ordinary least squares and binary logistic regression methods for predicting surface water fecal 
coliform concentrations in a mixed land use watershed. Jin and Englande (2006) used ANNs and 
logistic regression to predict swimmability for a brackish waterbody. They observed that ANNs 
performed better than logistic regression especially when conditions were not safe to swim. 
However, ANNs were successful in forecasting not safe to swim conditions only 53.9 percent of 
the time. Jin and Englande note that the poor performance was probably because most of the data 
used in developing the model were collected during safe to swim conditions. 

Genetic algorithms are search methods inspired by evolutionary biology. The algorithms are 
based on techniques such as inheritance, selection, crossover, and mutation used by nature for 
evolution of species. While genetic algorithms cannot not be used directly for modeling beach 



Predictive Modeling at Beaches—Volume I  November 22, 2010 
 

55 

pathogens, they can be used to evaluate and select models developed by other modeling 
techniques. For example, as the number of independent variables increases, the number of 
possible models to be evaluated by multivariable linear regression increases geometrically 
resulting in degraded computer performance. In such cases, genetic algorithms can be used to 
assist multivariable linear regression. Rather than evaluating every possible model, genetic 
algorithms would intelligently select models to be evaluated, resulting in fewer models needing 
evaluation. The objective of genetic algorithms is to select the near best model as opposed to 
finding the best model. The newer version of Virtual Beach uses genetic algorithms to assist 
multivariable linear regression in reducing the number of models to be evaluated when the 
number of independent variables is large. 
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