

Automated Thermal Desorption TO-17 Extended for Soil Gas and *NEW* EPA Method 325a/b Fenceline Monitoring of Refineries

Tom Mancuso, Product Specialist, PerkinElmer Lee Marotta, Sr Field Application Scientist, PerkinElmer Stephen Varisco, CARO Analytical Laboratories Roberta Provost, Pace Analytical Laboratories

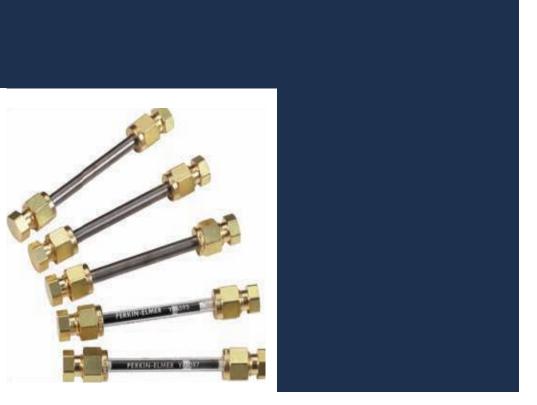
- Introduction
- Tube Design
- Active and Passive Monitoring
- Functioning and Operations
- Performance
- Ensuring quality
- Summary

History

- 1980 introduced the first automated thermal desorber
- 1990 introduced next generation ATD 400
 - Portable
 - Ease of use
 - Remote control software
- 2000 introduced the TurboMatrix (TMX) 50 and TMX 1
 - TMX-1 dedicated system for online sampling and ozone precursors
 - TMX-50 automated tube sampler
 - Touch Screen GUI for ease of operation
 - Optimized flow path
 - Ease of Maintenance
- 2005 introduced family of five thermal desorbers to five laboratory needs
 - Flexibility for customer needs and solutions
 - Many added features and benefits

- Environmental (Investigation of toxic compounds and / or ozone precursors in air) Using Sorbent Tube Sampling
 - Soil Gas (soil vapor intrusion)
 - Indoor/Outdoor air
 - Fence line monitoring including New EPA Method 325
 - Stack monitoring
 - Manufactured Gas Plant (MGP) sites

Innovations: Relevant to Air Analysis



- Electronic control of all flows
 - Program flow, velocity or pressure
 - Enhances RT precision
- Automates spiking internal standard as a gas
- Automates spiking a surrogate prior to sending tubes out for sampling
- Automates sample tube and cold trap impedance check to validate trap and tube
- Automates sample recollection: confirmatory analysis through sample recollection on the same or new tube
- Automates tube conditioning during analysis
- Automates leak check of tube and trap prior to each analysis
- Excellent water management

The Clarus TurboMatrix 650 Automated Thermal Desorber

Advantages Sorbent Tube Recipe Active and Passive Sampling

Advantages of Tube Sampling

- Established methodology
- Convenient and less expensive to transport
- Easy to clean, immediate reuse means fast turnaround
- Cost effective
- Larger sample volumes
- Suitable for non-polar and polar compounds
- Inherent Water Management
- Enables Recollection to preserve sample
- Enhances recovery of high boilers extends analyte list
- Completely Automated

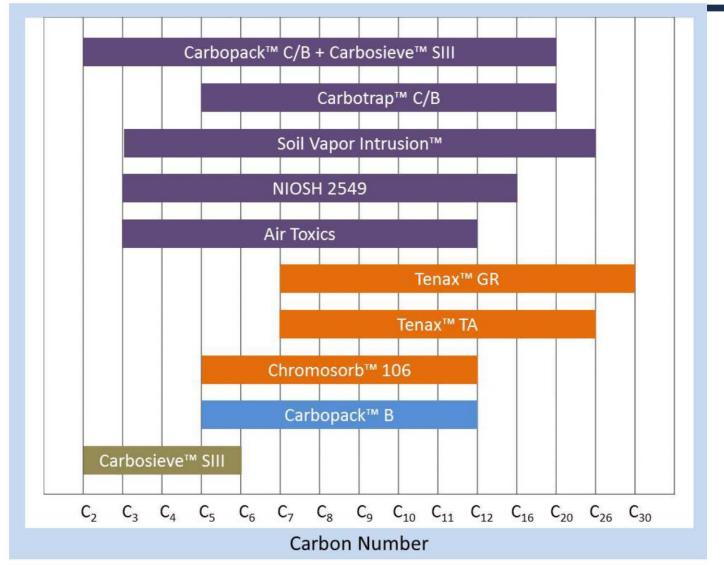
New Sorbent Tubes Investigated: Active Sampling

- 2010: Soil Vapor Intrusion (SVI) Tube (patented)
 - (C_3 to C_{26})
 - Combines VOC & SVOC from the seven VOA gases to phenanthrene
 - Developed by PerkinElmer, CARO Analytical Services thanks for your help

2011: XRO-640 tube (patent pending)

- (C_6 to C_{40})
- Combines VOC & SVOC from BTEX to benzo(g,h,i)perylene
- Developed by PerkinElmer, Alberta Innovates Tech Futures and Pace Analytical Services thanks for your help

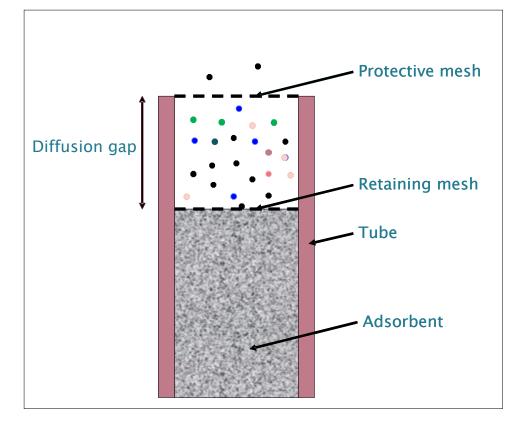
2013: XRO-440 (patent pending)


- (C_4 to C_{40})
- Combines VOC & SVOC from 1,3-butadiene to benzo(g,h,i)perylene
- Developed by PerkinElmer, Pace Analytical Services thanks for your help

Additional Tubes

- Multiple Adsorbents: accommodate wide boiling point analyte range
- A known flow is pumped through the tube for a specified amount of time to attain volume desired (mL/min x min = volume)

Desorb the tube in the direction of strong adsorbent to weak adsorbent



- Precise caps for diffusive sampling
- Tubes accommodate clips for personal monitoring
- Many uptake rates have been determined
- PerkinElmer uses the adsorbent tubes the EPA used in developing method 325

The Diffusive Sampling Process

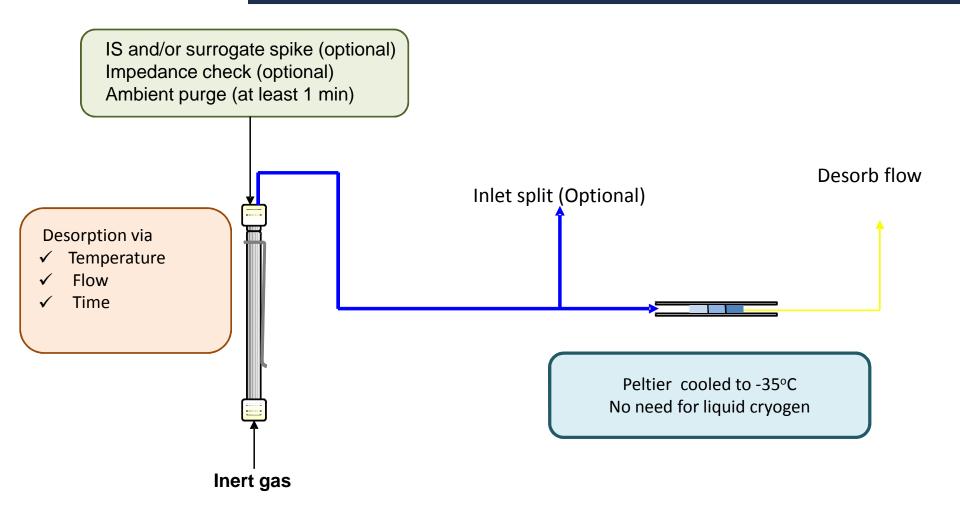
- Diffusive Uptake Rate dependent on diffusion gap geometry and diffusion coefficient of analytes
- Only small surface area of a single adsorbent exposed
- If the adsorbent is strong, it will retain all analytes but may only release the lighter Danes during analysis $U = \frac{U}{L}$
- If the adsorbent is weak, it will retain just the heavier analytes.
- Because of this, diffusive monitoring <u>cannot</u> be used for applications with a wide range of analyte volatilities (e.g. TO-17)

Differences

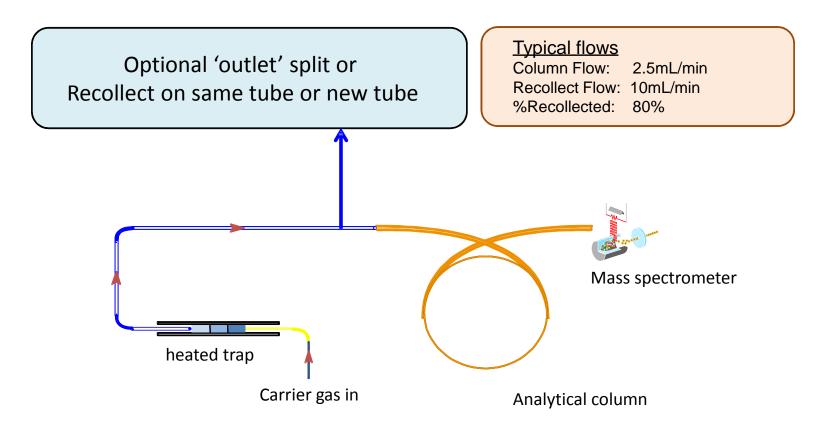
Active Sampling	Passive Sampling
 Very easy to ascertain volume on tube Can use multi-bed adsorbents for a wide boiling point target range determination Easy to apply several tubes but typically not necessary Requires a pump 	 Excellent for long term sampling (time weighted averaging) Easy to apply several tubes Does not require a pump A single adsorbent so has a limited component range as compared to active sampling per tube. Uptake rates are adsorbent and component dependent (reason why we use the adsorbents with uptake rates

adsorbents with uptake rates calculated by EPA)

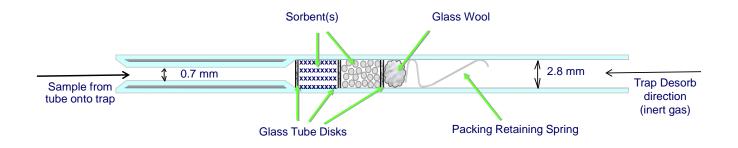
TurboMatrix ATD


Clarus SQ8 GC/MS

Thermal Desorption


Operation

State 1: Sample Tube Desorption



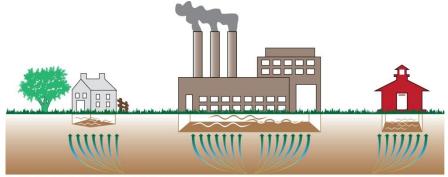
Cold Trap

- Reduced diameter outlet reduces analyte dispersion or band broadening for narrower, focused peaks
- Trap flow is reversed during desorption to enhance efficiency and ensure recovery of high boiling compounds

TurboMatrix ATD

Clarus SQ8 GC/MS

Applications


Soil Gas

and

Refinery Fenceline Monitoring

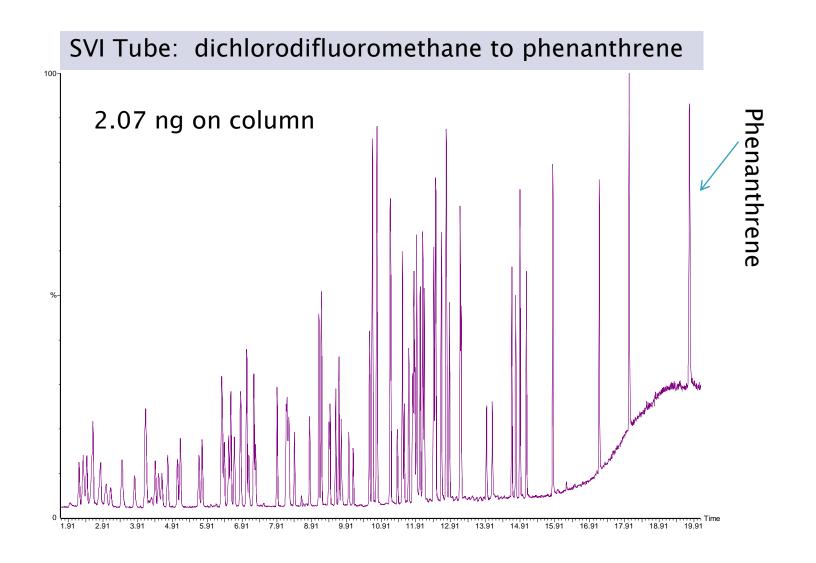
Soil Vapor Intrusion

Soil Vapor Intrusion[™] Tubes

- Soil vapor intrusion occurs when toxic compounds that are present in the air space in soil of a contaminated location have pathways of entering a building, potentially creating a health risk
- These toxic vapors typically occurred because of a contaminated water and/or soil source

- Soil vapor differs from other air sampling
 - High moisture content
 - Greater analyte range
 - Wider concentration range

- Broad Compound Boiling Point Range
 - Dichlorodifluormethane to phenanthrene
 - nC3 to nC26
- Front adsorbent capable of recovering high boilers and protecting the stronger adsorbents
 - Prevents irreversible adsorption
 - Clean (compound recovery) after one desorption cycle
- Excellent recovery of high boilers while maintaining the gasses at high sample volumes

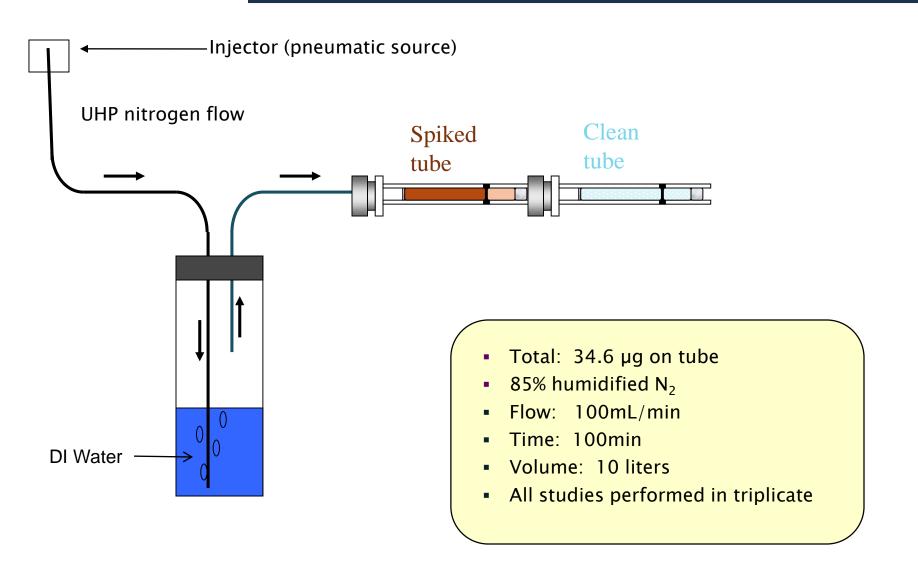

- Increasing sampling volume while ensuring retention of all volatiles
- Excellent recoveries of Polynuclear aromatic hydrocarbons (PAHs)
- Automated water management
- Recollection of sample
- Automated sample integrity

Analytical Performance Characteristics

1 Liter sample volume Reporting Limit 0.05 $\mu g/m^3$

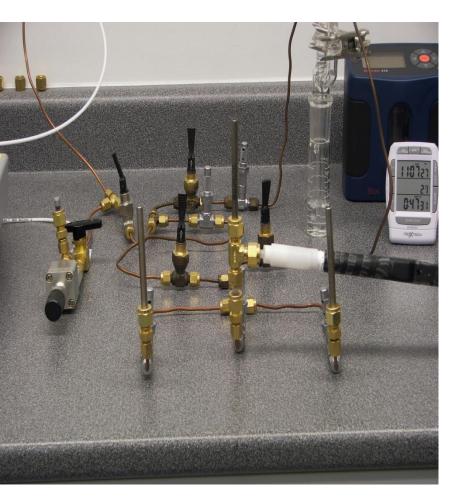
Class of compound	# of analytes	Linearity (0.05 to 250 μ g/m ³)*		Precision	Reporting Limit
	per group	r ²	Ave RF	(n=10)	S/N at 0.05 μg/m ³)
Gases	7	0.9994	9.07	7.39	530:1
Aliphatic Hydrocarbons (halogenated)	35	0.9996	14.00	4.80	560:1
Aromatics (halogenated)	9	0.9997	13.30	2.58	1350:1
Aromatics (non-halogenated)	14	0.9996	10.27	1.91	1220:1
Polynuclear Aromatic Hydrocarbons (PAHs)	5	0.9997	8.69	3.56	570:1
others	13	0.9996	9.26	3.19	560:1

... better than method criteria


What's on Tube for Recovery and Breakthrough Experiments

- > 300ng: 8260B Mega Mix (76 target analytes)
- > 300ng: 502.2 volatile (voa) mix #1 (six gases)
- > 300ng: 1,3butadiene
- > 250ng: Four polynuclear aromatic hydrocarbons (PAHs)
- > 10µg of diesel

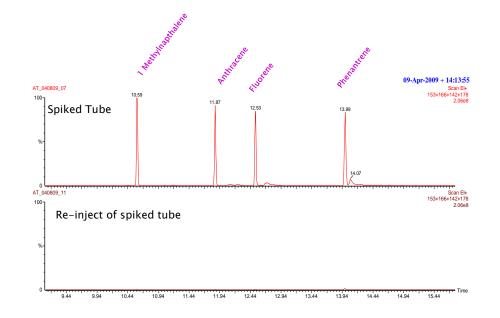
Concentration on tube for experiments 24.6µg standard mixes plus 10ug of diesel: *34.6µg Total*


(Standard stocks courtesy of Restek Corp.)

Results from Breakthrough Experiments

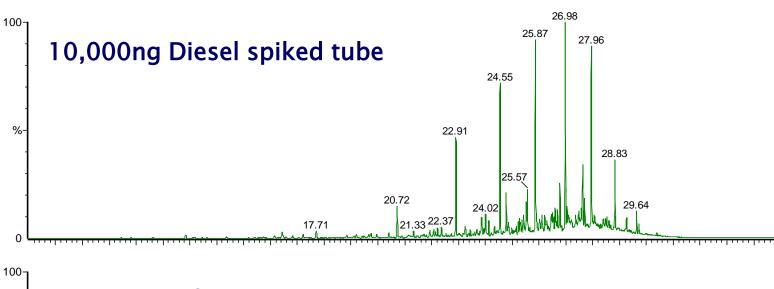
> 10L Sample Volume> 85% Humidity

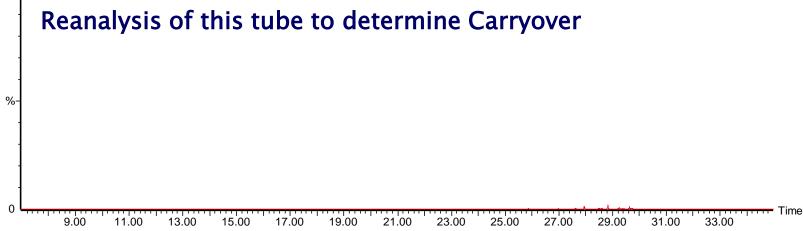
Component	% BT
Dichlorodifluoromethane	1.0
Chloromethane	5.4
Vinyl Chloride	nd
1,3-Butadiene	nd
Bromomethane	nd
Chloroethane	nd
Trichlorofluoromethane	nd


>Recovery procedure

- Analyzed spiked tube
- Analyzed trap
- Analyzed blank tube
- Re-analyzed spiked tube which should be clean

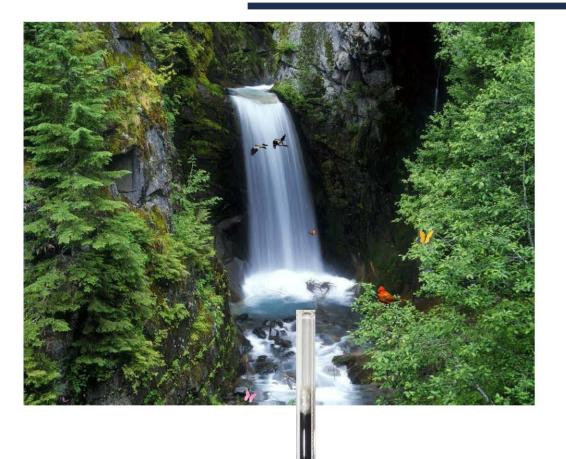
PAH Compounds	% Recovery	
1-Methyl Napthalene	99.7	
Anthracene	99.8	
Fluorene	99.4	
Phenanthrene	98.8	


- Insignificant carryover of 4 heaviest PAHs
- Significantly below method criterion



Excellent Recovery of Diesel

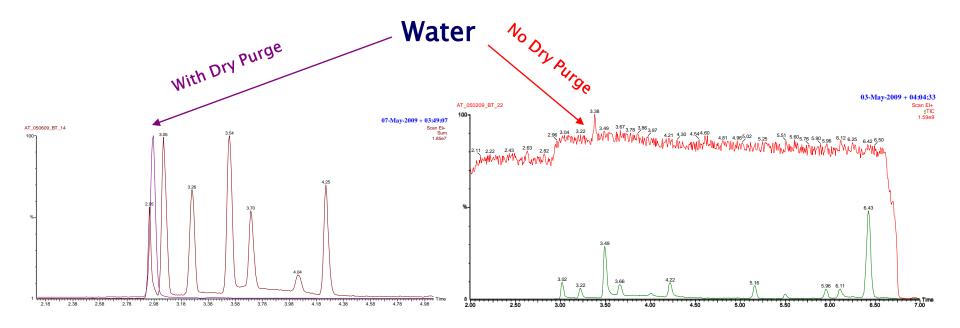
Carryover <1%



Masses 57 + 69

Water Management

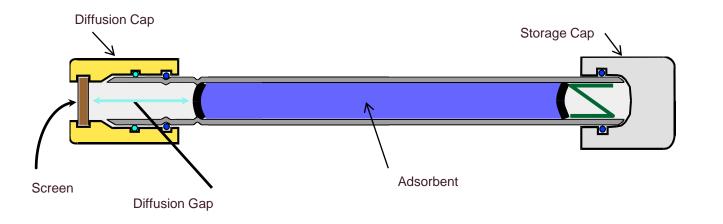
- > Nafion Drier / Desiccants
 - Polar Compounds Removed Cannot be used for Air Toxics (TO-15/TO-17 Component list)
- Hydrophobic adsorbents
- > Dry Purging!
 - Time depends upon sample humidity
 - 1 minute to rid tube of oxygen


Why Remove Moisture?

- > Mass Spectrometer
 - Signal quenching
 - Increased maintenance

Chromatography

Can effect peak shapes

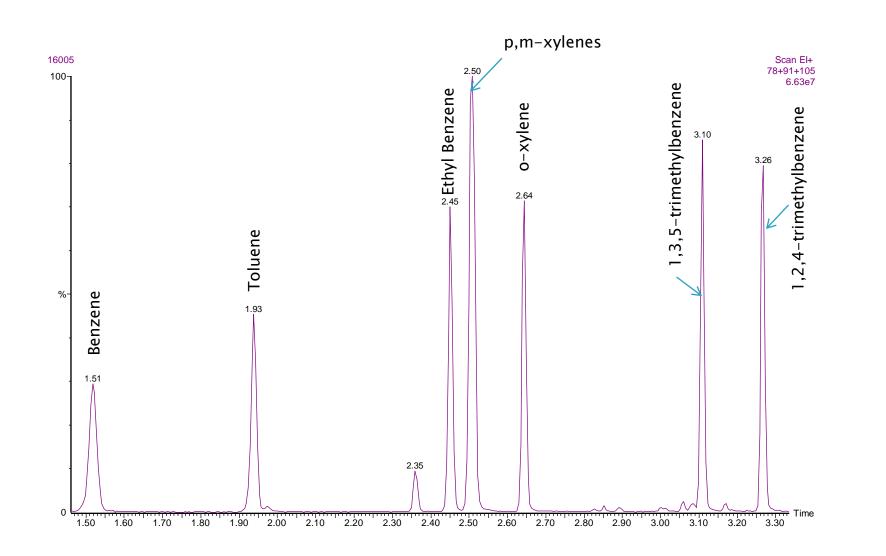


EPA Method 325 a/b Regulated Fenceline Monitoring of Refineries for Benzene

- EPA calculated uptake rates for 20+ targets using Carbopack X specially treated tubes. PerkinElmer recommends and provides these tubes
- Sampling: Continuous two weeks intervals
- Uptake rate on Carbopack X for the regulated target benzene is 0.67mL/min
- Volume on tube over a two week sampling period is 13.507 liters

	Samples required for refinery (field)			
Refinery size	<750 acres	750 to 1500 acres	>1500 acres	
Primary sampling	12	18	24	
Duplicates per 10 samples	2	3	4	
Near Source	~3	~6	~9	
Field Blanks per 10 samples	2	3	4	
Sample total at day 14	~16	~24	~32	
Sample total at year end	~416	~624	~832	
	Additional tubes required by the laboratory			
Calibration tubes	10	10	10	
Labortory blanks	2	2	2	
Quality Control tubes	14	14	14	

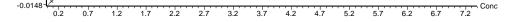
Sampling Shelter



- Optimized for accurate sampling
- Protected from weather and bugs, etc

Total Ion Chromatogram:

Mass	Ref Mass	Range	Relative Abudance (%)
50	95	> 15% and < 40%	20.2
75	95	> 30% and < 60%	38.4
95	BPI	100%	100.0
96	95	> 5% and <9%	6.3
173	174	< 2%	0.4
174	95	> 50% and < 100%	71.8
175	174	> 5% and < 9%	6.8
176	174	>95% and < 101%	95.7
177	176	> 5% and < 9%	6.0


3.90-

Response

Concentrations adjusted for 13.5 L volume Range from 0.074 to 7.404 ug/m3 Correlation Coefficient: 0.9999

Actual	Calculated	%Dev	S/N @ RL
Amount	Amount		
0.074	0.085	15	202 to 1
0.148	0.145	-2	
0.370	0.337	-9	
0.740	0.707	-4	
7.404	7.462	1	

Summary

- Advantages of tube sampling
 - Allows for sampling targets with a higher boiling point range
 - Easier and less expensive to transport
 - Polar and non-polar compounds
 - Passive sampling
 - Enhances detection limits ... larger sample amounts

PerkinElmer

- Single Vendor Solution
- Experts in thermal desorption and air sampling
- Experienced sales, application specialists and service support
- State of the Art solution from sampling to final report!!!!

PerkinElmer TurboMatrix 650 Thermal Desorber / SQ 8 GC/MS ...

Solution for Measuring Toxic Compounds in Air

Thank you!

??? Please

thomas.mancuso@perkinelmer.com lee.marotta@perkinelmer.com

