

Teledyne Tekmar Purge and Trap (P & T) Advances of Volatile Organic Compound (VOC) Analysis Including Alternate Carrier Gases

> Tom Mancuso and Lee Marotta, PerkinElmer Jacob Rebholz, Roger Bardsley and Tom Hartlein, Teledyne Tekmar

Region 6 Quality Meeting

October, 2015

PerkinElmer Gas Chromatograph / Mass Spectrometer (GC/MS)

Teledyne Tekmar Purge and Trap (P & T)

Introduction

Introduction

- Method EPA 524.3 covers toxic volatile compounds that may be present in drinking water. The volatile compounds are purged from water and trapped on a concentrator trap using Purge and Trap technology. After the volatiles are concentrated, the trap is heated to volatilize compounds which are eluted onto a GC column where they are separated and detected by mass spectrometry.
- This method helps to ensure the safety of our drinking water.

Purpose of Research: Alternative Carrier Gases

- The goal of this research was to investigate the use of alternative carrier gases while meeting method criteria.
- Helium is the referee. Hydrogen and nitrogen were investigated. Nitrogen may be our best choice!

Space (or to give it a more technical name, 'The Universe') is big. Really Big.

Douglas Adams, The Hitchhiker's Guide to the Universe

Element	Abundance (%)
Hydrogen	73.90
Helium	24.00
Oxygen	1.07
Carbon	0.46
Neon	0.13
Iron	0.11
Nitrogen	0.10
Silicon	0.07
Magnesium	0.06
Sulfur	004
Others	0.07

Earth:

Mostly Harmless: a small, blue-green world in one of the less fashionable sectors of the galaxy.

Douglas Adams, The Hitchhiker's Guide to the Universe

Gas	Abundance (%)
Nitrogen	78.08
Oxygen	20.95
Argon	0.93
Carbon Dioxide	0.04
Neon	0.0018
Helium	0.00052
Methane	0.00017
Krypton	0.00011
Hydrogen	0.000055
Water	~ 1

Helium Mining

- USA (83%)
- Algeria (11%)
- Canada
- Poland
- Russia
- Qatar

Slide courtesy of Andy Tipler, PerkinElmer Scientist

Applications of Helium

Application	Usage (%)
Lifting	15.1
Magnetic Resonance Imaging (MRI)	15.0
Welding	14.9
Chromatography	7.6
Heat Transfer	6.4
Leak Detection	5.6
Pressurizing	5.5
Fibre Optics	4.1
Diving Mixtures	4.0
Superconductors	2.9
Inert Atmospheres	2.7
Nuclear Magnetic Resonance (NMR)	1.3
Other	14.9

Should chromatographers be investigating other suitable carrier gases?

PerkinElmer Gas Chromatograph / Mass Spectrometer (GC/MS)

Teledyne Tekmar Purge and Trap (P & T)

Comparisons of Carrier Gases

Criteria

Chromatographic Efficiency

Detection Limits

PerkinElmer Gas Chromatograph / Mass Spectrometer (GC/MS)

Teledyne Tekmar Purge and Trap (P & T)

Atomx

Parameter	Helium	Hydrogen	Nitrogen
Safety	Safe	Caution	Safe
Source	Cylinder	Cylinder or Generator	Cylinder or Generator
Cost	Expensive	Cost Effective	Cost Effective
Supply	Concern	n/a	n/a
Column choices	Wide to narrow bore	Narrow bore	Narrow bore
Inertness	Inert	Highly Reactive	Inert
BFB/DFTPP	Passes	Passes	Passes

Concerns

Hydrogen:

- Possible protonation
- 2 to 4 times reduction in response.

Nitrogen:

- Chromatography efficiency
- 15 times reduction in response

- Meet tune criterion
- Chromatographic efficiency
- 0.2ppb requirements
 - Signal to noise above 30 to one or better for all targets
 - Ensuring quantification meets method requirements
 - Linear to 0.2 ppb (reporting limit)
- Additional Initial Demonstration of Capability (IDC)
 - Precision at mid-point
 - MDL
 - LPIR and UPIR

United States Environmental Protection Agency

US EPA Method 524.3

PerkinElmer Gas Chromatograph / Mass Spectrometer (GC/MS)

Teledyne Tekmar Purge and Trap (P & T) Alternative Carrier Gases:

Ensuring peak efficiency

Chromatography

Meeting Method Criteria and Initial Demonstration of Capability

EPA Method 524.3

Teledyne Tekmar Purge and Trap (P & T)

Bromofluorobenzene (BFB): Tuning Criteria 524.3

Mass	Ref Mass	Range	Relative Abudance (%)		e (%)
			Helium	Hydrogen	Nitrogen
50	BPI	Report only	16.1	15.9	17.1
75	BPI	Report only	45.6	51.7	49.2
95	BPI	100%	100.0	100.0	100.0
96	95	≥ 5% ≤ 9%	6.4	6.5	7.5
173	174	< 2%	0.4	0.6	0.8
174	95	>50% < 100%	83.9	75.8	83.2
175	174	≥ 5% ≤ 9%	6.6	6.2	7.3
176	174	>95% <105%	99.8	101.4	97.8
177	176	≥ 5% ≤ 10%	6.4	5.4	6.9

... passed tuning criterion in all three carrier gases!

Range: 0.2 to 50 ppb

Carrier		Helium			Hydrogen			Nitrogen	
Compound Name	Lipoprity	0.2ppb	S:N @	Linoprity	0.2 ppb	S/N @	Linearity	0.2ppb	S/N @
Compound Name	Linearity	std	0.2 ppb	Linearity	std	0.2ppb	Linearity	std	0.2ppb
Vinyl Chloride	0.9999	0.21	470:1	0.9998	0.21	175:1	0.9998	0.19	55:1
1,3-Butadiene	0.9998	0.23	360:1	0.9996	0.20	73:1	1.0000	0.20	36:1
Carbon disulfide	1.0000	0.21	250:1	0.9999	0.23	222:1	1.0000	0.20	230:1
Methylene chloride	0.9999	0.20	440:1	0.9999	0.20	93:1	1.0000	0.20	480:1
Methyl tert-Butyl Ether	0.9999	0.20	110:1	0.9994	0.21	350:1	0.9999	0.19	68:1
Chloroform	0.9999	0.19	260:1	1.0000	0.22	85:1	1.0000	0.20	308:1
Benzene	0.9998	0.20	120:1	1.0000	0.21	460:1	1.0000	0.21	134:1
Toluene	1.0000	0.20	550:1	1.0000	0.20	454:1	0.9999	0.18	208:1
Chlorobenzene	1.0000	0.22	320:1	0.9999	0.22	845:1	0.9998	0.17	257:1
1,2-Dichlorobenzene	1.0000	0.21	450:1	1.0000	0.20	484:1	0.9999	0.23	186:1
Naphthalene	1.0000	0.21	820:1	0.9996	0.24	367:1	0.9998	0.24	246:1

The range for LPIR and UPIR is 50 to 150

Carrier Gas	Helium			Hydrogen			Nitrogen		
Compound Name	%RSD @ midpoint	LPIR	UPIR	%RSD @ midpoint	LPIR	UPIR	%RSD @ midpoint	LPIR	UPIR
Vinyl Chloride	3.9	73	126	7.6	78	105	6.9	56	128
1,3-Butadiene	3.7	84	133	2.3	75	100	2.1	67	126
Carbon disulfide	5.1	54	92	3.2	96	115	3.4	88	130
Methylene chloride	3.0	70	112	4.7	87	100	4.6	74	123
Methyl tert-Butyl Ether	1.5	86	116	3.7	97	105	3.3	72	130
Chloroform	1.7	62	111	1.9	93	110	2.2	85	133
Benzene	2.1	77	96	2.3	78	105	2.0	73	111
Toluene	1.7	89	127	4.7	82	100	2.1	67	98
Chlorobenzene	1.5	105	145	2.0	84	133	2.2	68	79
1,2-Dichlorobenzene	1.4	87	131	1.7	82	113	1.2	90	103
Naphthalene	0.6	79	128	1.1	103	120	0.9	107	134

Purge and Trap Conditions

Purge		Desorb			
Valve Oven Temp	140°C	Methanol Needle Rinse	Off		
Transfer Line Temp	140°C	Methanol Needle Rinse Volume	3.0 mL		
Sample Mount Temp	90°C	Water Needle Rinse Volume	7.0 mL		
Water Heater Temp	90°C	Sweep Needle Time	0.25 min		
Sample Vial Temp	20°C	Desorb Preheat Temp	245°C		
Sample Equilibrate Time	0.00 min	GC Start Signal	Start of Desorb		
Soil Valve Temp	50°C	Desorb Time	0.50 min		
Standby Flow	10 mL/min	Drain Flow	300 mL/min		
Purge Ready Temp	40°C	Desorb Temp	250°C		
Condensate Ready Temp	45°C	Bake			
Presweep Time	0.25 min	Methanol Glass Rinse	Off		
Prime Sample Fill Volume	3.0 mL	Number of Methanol Glass Rinses	1		
Sample Volume	5.0 mL	Methanol Glass Rinse Volume	3.0 mL		
Sweep Sample Time	0.25 min	Number of Water Bake Rinses	1		
Sweep Sample Flow	100 mL/min	Water Bake Rinse Volume	7.0 mL		
Sparge Vessel Heater	On	Bake Rinse Sweep Time	0.25 min		
Sparge Vessel Temp	40°C	Bake Rinse Sweep Flow	100 mL/min		
Prepurge Time	1.00 min	Bake Rinse Drain Time	0.40 min		
Prepurge Flow	0 mL/min	Bake Time	3.00 min		
Purge Time	8.00 min	Bake Flow	400 mL/min		
Purge Flow	60 mL/min	Bake Temp	270°C		
Purge Temp	20°C	Condensate Bake Temp	200°C		
Condensate Purge Temp	20°C	Bake Temp	270°C		
Dry Purge Time	1.00 min	Condensate Bake Temp	200°C		
Dry Purge Flow	100 mL/min				
Dry Purge Temp	20°C				

Carrier	Helium	Hydrogen	Nitrogen
GC Conditions			
Oven Parameters	35°C for 4.0min ramp @ 16°C/min to 85°C ramp @ 30°C/min to 210°C hold 1.71min	35°C for 4.0min ramp @ 16°C/min to 85°C ramp @ 30°C/min to 210°C hold 1.71min	35°C for 3.0min ramp @ 10°C/min to 70°C ramp @ 20°C/min to 230°C hold 1min
Run Time	13min (last peak elutes @ 11.5min)	13min (last peak elutes @ 11.5min)	15.5min (last peak elutes @ 14.5min)
Inlet Temperature	220°C	220°C	220°C
Carrier Flow	0.4mL/min	0.2mL/min	0.3mL/min
MS Conditions			
Ionization	EI+	EI+	EI+
Mass Range	35 to 270	35 to 270	35 to 270
Scan Speed	12 to 15 scans per peak	12 to 15 scans per peak	12 to 15 scans per peak
Source Temp	260°C	260°C	280°C
Transfer Line Temp	240°C	240°C	240°C

using Nitrogen as Carrier Gas

PerkinElmer Gas Chromatograph / Mass Spectrometer (GC/MS)

Teledyne Tekmar Purge and Trap (P & T)

8260 Total Ion chromatogram: Carrier is Nitrogen

BFB: Passing 8260C Criteria (carrier nitrogen)

Mass	Ref Mass	Range	Relative Abudnace
			Nitrogen
50	95	15 to 40 %	17.1
75	95	40 to 60	47.1
95	BPI	100%	100.0
96	95	5 to 9 %	6.8
173	174	< 2%	0.9
174	95	>50%	81.0
175	174	5% to 9%	6.6
176	174	>95% <101%	98.6
177	176	5% to 9%	5.6

8260 Meeting Criteria in Nitrogen

Compound Name	%RSD Calibration 0.5 to 200 ppb	Correlation Coefficient 0.5 to 200 ppb	S/N @ 0.5 ppb	%RSD @ 0.5ppb (n=7)
Vinyl Chloride	4.81	0.9999	95:1	4.70
Methylene chloride	6.50	0.9999	100:1	6.28
Methyl tert-Butyl Ether (MTBE)	3.57	0.9991	380:1	6.49
1,1-Dichloroethane	3.24	0.9997	431:1	8.69
Chloroform	3.83	0.9997	225:1	9.25
Carbon Tetrachloride	8.65	0.9995	132:1	11.36
1,1,1-Trichloroethane	3.42	0.9995	225:1	5.69
Benzene	4.36	0.9999	400:1	6.85
Toluene	3.14	0.9998	410:1	8.42
Chlorobenzene	5.16	0.9999	615:1	9.89
Ethylbenzene	8.27	0.9999	506:1	5.89
n-Butyl Benzene	3.00	0.9999	572:1	6.99
1,2-Dichlorobenzene	2.90	1.0000	605:1	5.25
1,2,4-Trichlorobenzene	2.83	0.9999	318:1	7.41
Naphthalene	6.38	0.9999	395:1	8.35

Summary

- All method criteria for 524.3 was met using all three gases
- Since nitrogen appears to be the favorable alternative, this should be investigated further
- All method criteria for 8260 was met using nitrogen as a carrier gas
- To come investigation of nitrogen and hydrogen as alternative carrier gases for all methods

Contact Information thomas.mancuso@perkinelmer.com lee.marotta@perkinelmer.com

PerkinElmer Gas Chromatograph / Mass Spectrometer (GC/MS)

Teledyne Tekmar Purge and Trap (P & T)