

Oxycombustion Flue Gas Measurements from Coal Fired Plants: Analytical Challenges

Morgane Riviere, Daniel Missault,, Patrick Mauvais, Martine Carre, <u>Tracey Jacksier</u>

SNURONITED STATES SOME STATES

20 October 2015

Presentation Outline

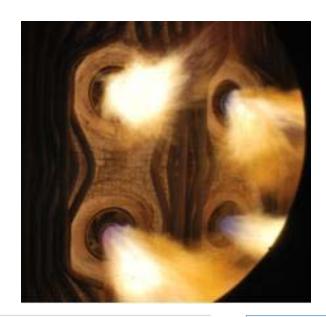
Oxy-combustion for Power Generation

- Demonstration Project Objectives
- Analytical Challenges
- Analysis Campaign Results

Summary

2

Research & Development


Air Liquide, world leader in gases for industry, health and the environment

Presentation Outline

□Oxy-combustion for Power Generation

- Demonstration Project Objectives
- Analytical Challenges
- Analysis Campaign Results
- Summary

3

Air Liquide, world leader in gases for industry, health and the environment

Coal is the most abundant fuel
 Lowest cost for fuel production

Impact of CO₂ on global warming is still under intense debate

Coal is the *most* carbon intensive fuel

Economical means of carbon management important to coal's future use

Air Liquide, world leader in gases for industry, health and the environment

- Clean coal development is very important to reduce CO₂ emissions in the environment.
 - Electricity production can generate significant amounts of CO₂ emission contribution to almost 39% of WW emission.
- Carbon Capture and Sequestration (CCS) can reduce the CO₂ emission by
 - Injecting CO₂ at high pressure under ground for geological storage
 - Enhanced oil recovery applications

T. Chaubey, P. Terrien, J-P. Tranier, R. Prabhakar and A. Delebecque, "Greenhouse Gas Capture and Mitigation Techniques for Different Industries" in "CO2 Summit: Technology and Opportunity", Frank Zhu, UOP, LLC, USA Eds, ECI Symposium Series, Volume P12 (2010).

Most Viable Options

Main options for capturing carbon from coal-fired systems

- 1. Flue gas scrubbing with amine
 - Most mature, but requires significant scale-up
- 2. Integrated gasification combined cycle (IGCC)
 - Greenfield option that has long been favored
 - Major scale-up of water shift reactor and H₂ burning gas turbine as well as proof of reliability
 - Costs have been much higher than anticipated, and performance estimates have fallen far short of expectations

M. McDonald, D. DeVault, R. Varagani, "Oxy-combustion in Pulverized Coal Power Plants for Carbon Dioxide Concentration", Presented at 2007 Electric Power Conference, Chicago, May 2007

Most Viable Options

Main options for capturing carbon from coal-fired systems

- 3. Oxy-Coal combustion
 - Commercially available equipment
 - Oxygen mixing, control of flue gas flow O₂ mixture and heat transfer performance must be optimized
 - Predicted to have the highest overall efficiency and promises to be the low-cost option

OCC more readily deployable for capture and storage of CO₂

M. McDonald, D. DeVault, R. Varagani, "Oxy-combustion in Pulverized Coal Power Plants for Carbon Dioxide Concentration", Presented at 2007 Electric Power Conference, Chicago, May 2007

2015

- 🗾 🔪 🔪

6 à a'

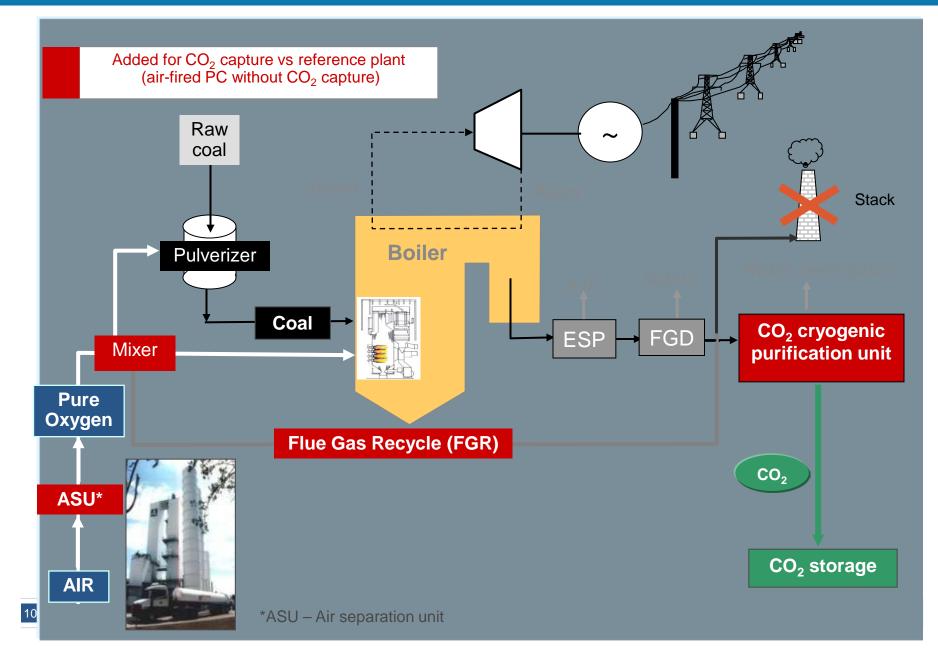
What is Oxy-Coal Combustion?

- Uses O₂ as the oxidant rather than air diluted with recycled flue gas in the combustion process
 - Combustion with pure O₂ would result in too high of a flame temperature for the boiler
 - Dilute with recycled flue gas
 - \blacksquare Yields a flue gas stream primarily of CO₂ and H₂O
 - After removal of H_2O , nearly pure CO_2 stream can be produced
 - It is assumed that:
 - NOx, CO, unburned hydrocarbons, and SOx do not interfere with the sequestration process
 - However, impurities need to be reduced to prevent corrosion
 - Transportation, piping, etc...

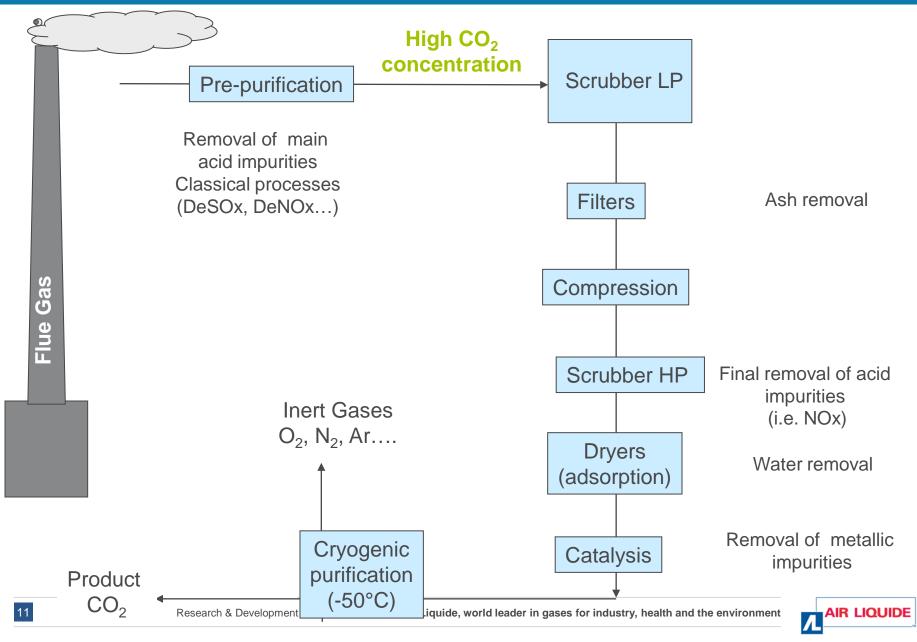
Research & Development

Oxy-Fuel combustion has significant advantages over traditional air fired plants

Flue gas volume is reduced, decreasing the heat loss in the flue gas
 Concentration of pollutants making separation easier
 Most of flue gases are condensable making sequestration possible
 Because air is not used for combustion, NOx production will be greatly reduced



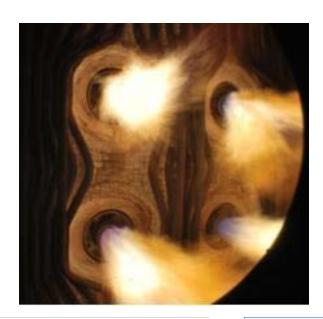
2015


Research & Development

Oxy-Coal Combustion

Cryogenic Purification Unit (CPU)

Presentation Outline


Oxy-combustion for Power Generation

Demonstration Project Objectives

Analytical Challenges

Analysis Campaign Results

Summary

12

Research & Development

Air Liquide, world leader in gases for industry, health and the environment

Carbon Capture & Sequestration Demonstration

Callide Australia

100 MW demonstration of the complete CCS chain for steam & power production in Australia with hard coal
 Retrofit of existing Callide coal power plant
 2 x 330 TPD ASU
 Oxy-combustion retrofit
 75 TPD CO₂ recovery
 Trucking to CO₂ reservoir

2015

Carbon Capture & Sequestration Demonstration

Objectives

- Validate "Near Zero Emissions"
- Understand & validate mass balance of "impurities" throughout the entire process
 - Impurity management

 Particle Matter, SOx, NOx, Hg
 - Equipment efficiency
 - Equipment sizing

Enable cost reduction and performance improvement for large scale units

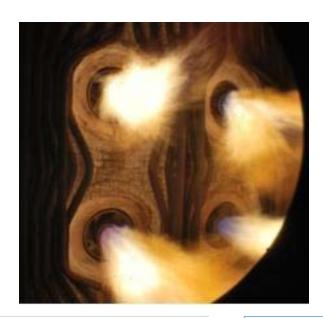
Provide feed back from operation

- Corrosion
- Aging

14

Research & Development

Presentation Outline


Oxy-combustion for Power Generation

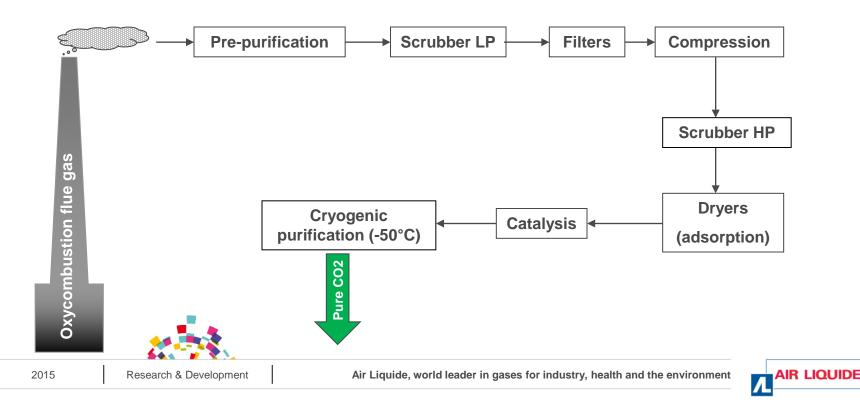
Demonstration Project Objectives

□Analytical Challenges

Analysis Campaign Results

Summary

15


Air Liquide, world leader in gases for industry, health and the environment

Analytical Challenges

Understand flue gas composition at each step of the CPU

CPU	T (0°C)	P (bar)	Particulate content (mg.m ³)	Moisture content (%)	CO ₂ (%)	N ₂ (%)	Ar (%)	CO (ppm)	SO ₂ (ppm)	NO (ppm)	NO ₂ (ppm)	0 ₂ (%)
Inlet	175	1	50	25	50	25	3	800	700	1600	300	12
Outlet	-27	25	0	0	100	0	0	0	0	0	1	0

The analyzers need to be able to analyze multi-component mixtures containing high levels of impurities
 NOx, SOx, H₂O, HCl, etc. in CO₂

Since the gas composition will change as it progresses through the CPU

Analyzers need to detect variations with a high degree of accuracy as gas composition changes

Analytical Challenges

- Reliability of measurements MUST be validated for each analytical tool
 - Critical when matrix, temperature & pressure vary significantly

AIR LIQUIDE

Analytical Challenges – Sampling System

- Sampling system for a CO₂ rich flue gas over the entire process
 - Must be appropriately specified for accurate analysis
 - Wide range of conditions
 - Fast loops for rapid sample transfer
 - Prior to cryogenic purification
 - Heated lines (up to 60 M)
 - Heated sample panels & specific heated sample probes
 - Specific materials for Hg analysis (Teflon, Silcosteel)

Air Liquide, world leader in gases for industry, health and the environment

2015

Analytical Challenges – Sampling System

Cryogenic Purification

- Stainless steel tubing
- Headed sample panels
- Vaporizer

Air Liquide, world leader in gases for industry, health and the environment

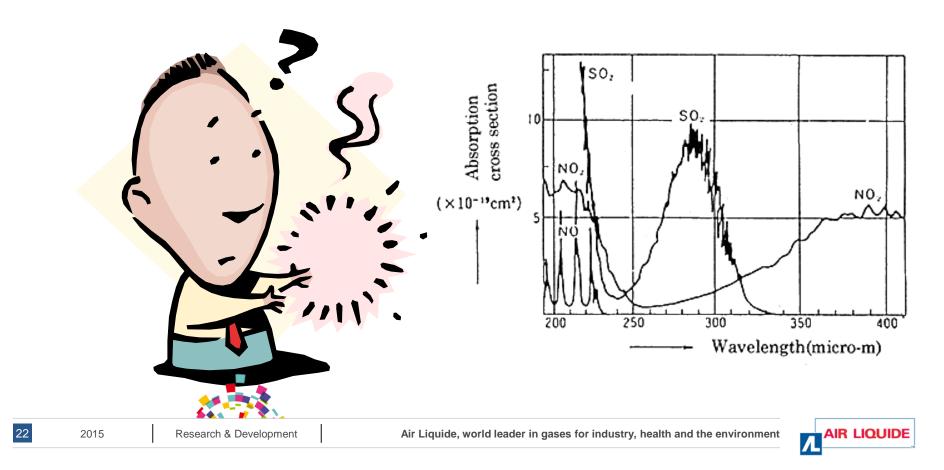
2015

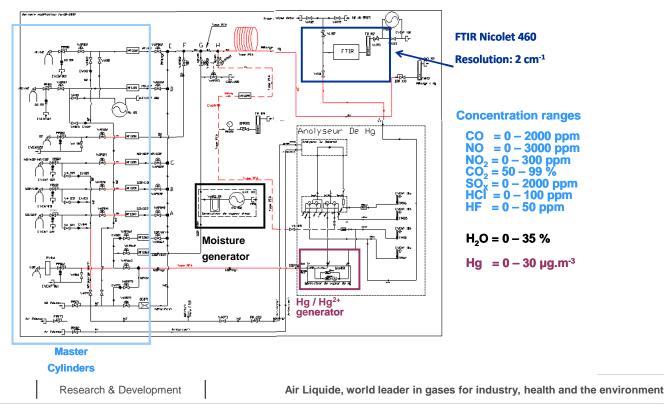
Analyzers

Prior to cryogenic purification

- Multicomponent system from Sick Maihak (MCS) including ZrO₂ oxygen probe
- Mercury analyzer from PS Analytical

After cryogenic purification


- NOx with an Environment SA TOPAZE
 - Additional NOx analyzer is necessary to reach lower dL anticipated
- Air gases: Varian micro GC
- Multicomponent system from Sick Maihak


Cross interferences MUST be known and corrected for prior to on-site analysis

Cross Interference Identification

Synthetic gas generator

- Composition representative of the oxy-combustion flue gas at each step of the process
 - NO, NO₂, SO₂, HF, HCI, O₂, N₂, H₂O, CO₂ and Hg
- Performance of analyzers can be correctly evaluated

- To control the synthetic gas composition, a quantification method based on FTIR was developed
- Concentration ranges correspond to anticipated in the demonstration project
- Validated with multicomponent "certified" mixtures

Global Uncertainty

Measurement uncertainty

- Calibration gas mixture uncertainty
- Calibration curve uncertainty

Sources	μ
Concentration	Value on certificate
MFC	0.1% FS + 0.5% RD 0.29%
Peak area	(σ/√n)/A
Calibration Curve	Component dependant

 σ = standard deviation, A = peak area, n = number of replicates

2015

Global Uncertainty

For the uncertainty of the calibration curve, uncertainties in dilution must also be calculated

Conc (ppm)	U _{co} (ppm)	RSD (%)
20.5	2.0	9.6
49.8	1.5	3.0
103.3	3.9	3.7
206.6	6.2	3.0
413.2	25.4	6.2
620.0	31.4	5.1
825.8	25.5	3.1
1034.3	31.0	3.0
2070.0	65.6	3.2

95% confidence interval

Air Liquide, world leader in gases for industry, health and the environment

Research & Development

Chemiluminescence Based Analyzer

TOPAZE 32M from Environment SA

NOx analysis

- Potential interfering species in oxy-fuel combustion gas
 - CO₂, H₂O, CO
- Dedicated to analysis of "dry gas"
 - H₂O does not considered

- Use "Design of Experiments" to quantify potential interferences
 - A systematic approach to variation of a system
 - JMP software from SAS

27

Research & Development

Air Liquide, world leader in gases for industry, health and the environment

Chemiluminescence Based Analyzer

Experimental plan based on JMP DOE

Experimental Plan								
Experiment	NOx (ppm)	CO (ppm)	CO ₂ (%)					
1	36.3	500	50					
2	36.3	20	95					
3	554	500	95					
4	36.3	500	95					
5	556	500	50					
6	556	20	50					
7	288	260	72.5					
8	554	20	95					
9	36.3	20	50					

Air Liquide, world leader in gases for industry, health and the environment

2015

Chemiluminescence Based Analyzer

Effect of CO₂ on NOx measurement

Exp	erimental	Experimental	Results			
Experiment	NOx (ppm)	CO (ppm)	CO ₂ (%)	NOx (ppm)	Stdev ppm	
1	36.3	500	50	35.39	0.52	
2	36.3	20	05	30.84	0.07	
3	554	500	95	445.89	1.81	>
4	30.5	500		31.10	0.06	
5	556	500	50	495.36	2.99	>
6	550	20	50	107.75	3.09	
7	288	260	72.5	250.52	0.11	
8	554	20	95	448.08	0.92	
9	36.3	20	50	35.86	0.56	

 Concentrations of NOx and CO are identical

• Concentration of CO₂ varied

Measured NOx concentration varies by >50ppm from theoretical value

Air Liquide, world leader in gases for industry, health and the environment

2015

Research & Development

Effect of CO on NOx measurement

Exp	erimental I	Plan		Experimental	imental Results • Concent		
Experiment	NOx (ppm)	CO (ppm)	CO ₂ (%)	NOx (ppm)	Stdev ppm	of NOx and CO ₂ are identical	
1	36.3	500	50	35.39	0.52	Concentration of CO varied	
2	30.3	20	05	30.84	0.07	COvarieu	
3	554	500	95	445.89	1.81		
4	36.3	500	95	31.18	0.06	Negligible	
5	556	500	50	495.36	2.99	variation in measured NOx	
6	556	20	50	497.75	3.09	concentration	
7	288	260	72.5	250.52	0.11		
8	554	20	05	448.08	0.92		
9	36.3	20	50	35.86	0.56		
2015 Res	earch & Development		Air Liquid	le, world leader in gases for ind	y, nealth and	the environment	

Key result: CO₂ concentration in the gas stream has significant impact on NOx measurement

Summary of Fit			Lack Of Fit				
RSquare		0,999939	Source	DF	Sum of Squares	Mean Square	F Ratio 23,0131
RSquare Adj		0,999931	Lack Of Fit	3	76,80640	25,6021	Prob > F
Root Mean Square Error		1,745249	Pure Error	35	38,93763	1,1125	1
Mean of Response		248,327	Total Error	38	115,74403		Max RSq
Observations (or Sum W	gts)	44					1,0000
Sorted Parameter Estimates							
Term	Estimate	Std Erro	or tRatio				Prob> t
NOx (ppm)(36,3,555)	219,39314	0,27999	3 783,57				<,0001*
CO2 (%)(50,95)	-13,97122	0,2799	8 -49,90				<,0001*
NOx (ppm)*CO2 (%)	-11,49487	0,27997	9 -41,06				<,0001*
CO (ppm)(20,500)	-0,665191	0,27996	4 -2,38				0,0226*
NOx (ppm)*CO (ppm)	-0,622579	0,27993	2 -2,22				0,0322*

Results statistically significant

Y(NOx) = Const + a[NOx] + b[CO2] + c[NOx][CO2]

Model

CO₂ concentration <u>must</u> be known to use the correction

Potential interfering species

Components	Interfering Components							
Components	NO	NO ₂	CO	CO ₂	SO ₂	HCI	H ₂ O	
NO		Х	Χ				Х	
NO ₂	Χ					Х	Χ	
CO	Х							
CO ₂								
SO ₂							Χ	
HCI		Χ						
H ₂ O	Х	Χ			Х			

Validate manufacturers internal corrections

32

Research & Development

NDIR Based Analyzer: MCS

Experiment		NO (ppm)	NO ₂ (ppm)	SO ₂ (ppm)	CO (ppm)	HCI (ppm)	H ₂ O (%)		
4	$egin{array}{c} C_{ ext{theo}} \ C_{ ext{exp}} \ \sigma \end{array}$	100.00 107.94 0.88	250.00 246.80 0.56	600.00 607.21 5.03	550.00 560.51 0.51	30.00 25.61 0.67	2.00 2.81 0.03		
14	C _{theo} C _{exp} σ	100.00 112.91 0.81	250.00 206.19 1.17	600.00 636.34 0.90	50.00 37.09 01.3	30.00 24.57 0.32	20.00 20.11 0.02		
10	C _{theo} C _{exp} σ	1500.00 1620.03 1.58	250.00 249.15 2.64	50.00	550.00 571.30 0.36	30.00 24.26 0.16	20.00 19.73 0.06		
16	C _{theo} C _{exp} σ	100.00 113.36 0.77	250.00 190.76 1.68	50.00 77.49 6.06	550.00 580.72 2.02	2.00	20.00 20.04 0.33		
20									

DOE for IR Based Measurements

Concentration ranges for DOE

Components	Concentration range		
NO (ppm)	100	1500	
NO ₂ (ppm)	20	250	
CO (ppm)	50	550	
SO ₂ (ppm)	50	600	
HCI (ppm)	2	30	
H ₂ O (%)	2	20	

Sorted Parameter Estimates

Term	Estimate	Std Error	t Ratio	
NO (ppm)(100,1500)	753,0585	0,448661	1678,5	
NO (ppm)*H2O (%)	-23,99048	0,372461	-64,41	
H2O (%)(2,20)	-18,50257	0,458851	-40,32	
CO (ppm)*H2O (%)	-1,890222	0,577166	-3,28	
NO2 (ppm)*H2O (%)	-0,944879	0,387723	-2,44	
NO2 (ppm)(20,250)	-0,972817	0,474653	-2,05	
NO (ppm)*CO (ppm)	0,9858665	0,570782	1,73	
NO2 (ppm)*CO (ppm)	-0,546852	0,583078	-0,94	
CO (ppm)(50,800)	-0,339664	0,576601	-0,59	
NO (ppm)*NO2 (ppm)	0,1019099	0,381728	0,27	

Manufacturer implemented corrections are validated

NO results

Prob>|t| <,0001* <,0001* <,00019* 0,0183* 0,0455* 0,0901 0,3526 0,5584 0,7905

AIR LIQUIDE

2015

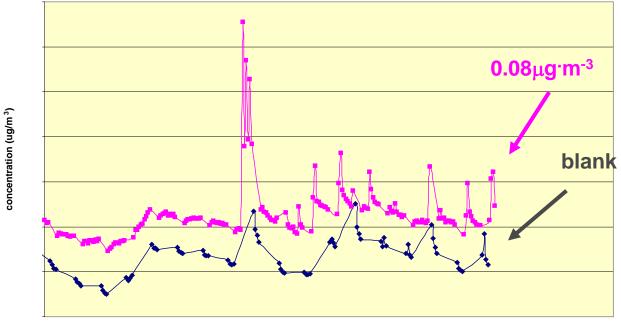
Air Liquide, world leader in gases for industry, health and the environment

Mercury Analysis

Detection limit validation

- 0.08 µg/m³ elemental Hg generated using the calibration system of the mercury analyzer
- Connected to multi-component mixer

Measurements made on mercury analyzer


- 10 minute collection time
- Alternating analysis sequence
 - -5 blanks
 - -10 samples

Mercury Analysis

Time

Statistical difference between the sample & blank
 0.085 μg/m³ ± 0.019

36

Research & Development

Balance gas comparison

HovaCal system used to generate Hg vapor from $Hg(NO_3)_2$

 \square CO₂ or N₂ was mixed at a total flow of 3 L/min into analyzer

Balance gas	Average concentration (µg/m ³)	Standard deviation (µg/m ³)
N ₂	34.5	3.1
CO ₂	37.2	3.6

Data is statistically insignificant

37

Research & Development

Mercury Analysis

Catalyst conversion rate

- Probe is used to sample gas from process stream
- Contains a catalyst chamber at 700°C
 - Convert Hg²⁺ to Hg^o
- At ambient temperatures, Hg²⁺ will not be converted
 - Can not simultaneously measure Hg^o & Hg²⁺

Aqueous solutions of oxidized & elemental mercury generated with HovaCal system

Same concentrations ($5*10^{-6}$ g·mol⁻¹)

Mercury Analysis

Catalyst conversion rate

30 replicate analyses

	Average concentration (µg/m ³)	Standard deviation (µg/m³)
Hg°	53.4	4.7
Hg ²⁺	33.8	2.8

60% difference between elemental & oxidized form
 Hg²⁺ is not totally converted by catalyst

Uncertainty of total Hg measurements will be high
 Looking into alternative solutions
 Proportion of Hg²⁺ in the flue gas is unknown and conversion efficiency is significantly below 100%

2015

Presentation Outline

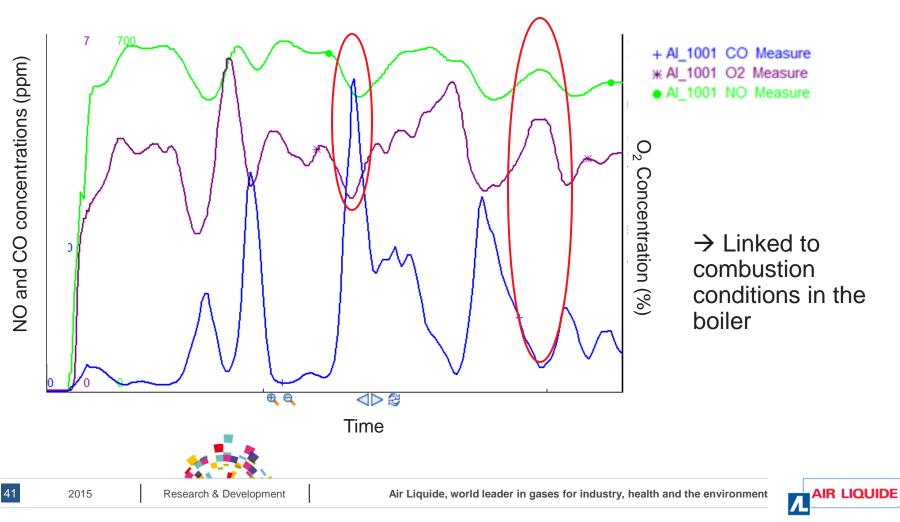
Oxy-combustion for Power Generation

Demonstration Project Objectives

Analytical Challenges

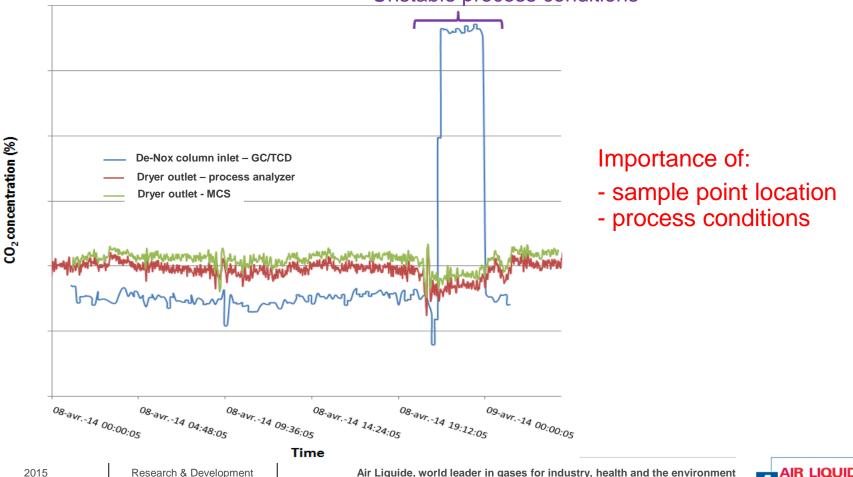
□Analysis Campaign Results

Summary



Analysis Campaigns – Multi-Component Analyzer

Multi-Component analyzer based on NDIR


- Good results obtained over the whole process on specified sample points
- Correlations found between NO, CO and O₂ concentrations at CPU inlet

Analysis Campaigns – Operation Conditions Influence

Analysis of the same flue gas at two different sample points

Different results of CO₂ concentrations depending on process conditions

Unstable process conditions

Air Liquide, world leader in gases for industry, health and the environment

Analysis Campaign – Multi-component Analyzer

Multi-Component analyzer based on NDIR

- Good results obtained over the whole process on specified sample points, however.....
- Measurement of SO₂ concentration at the LP scrubber outlet gave inconsistent results
 - Process NDIR \rightarrow >10ppm SO₂
 - -Not part of R&D analytical system
 - Other methods \rightarrow <1ppm

Consequence

• High SO₂ level will trip the plant

Which is the correct value?

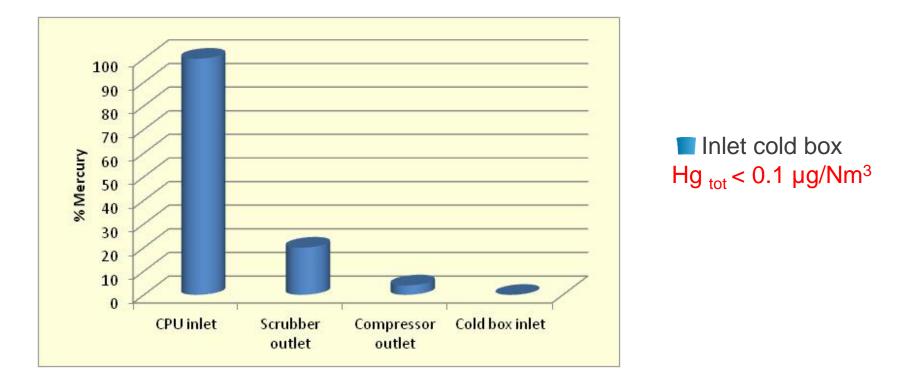
Analysis Campaign – Multi-component Analyzer

Test with calibration gas cylinders on the process analyzer

Gas Cylinder	SO ₂ reading (ppm _v)	CO ₂ reading (%)
55% CO ₂ balance N ₂	6.6	55.2
75% CO ₂ balance N ₂	24.3	76.8
100% N ₂	0	0

- CO₂ interference → Manufacturer's Correction model underestimated
- Manufacturer contacted and updated correction model installed

Significance of prework clearly validated



Research & Development

2015

Analysis Campaign - Mercury Analysis

Total mercury analysis from the outlet of the dryers to the CPU inlet
 Different collection times (30 s and 10 min) on the gold trap depending on mercury levels

Analysis Campaign – CO₂ Product Analysis

\blacksquare Ar, O₂, N₂, CO and CO₂ analysis

Frequent column reconditioning for good resolution of Ar/O_2 peaks Determination of % levels O_2 as well as low O_2 concentrations

NO/NOx analysis

Concentration levels between low ppm to low % levels

2015

46

Research & Development

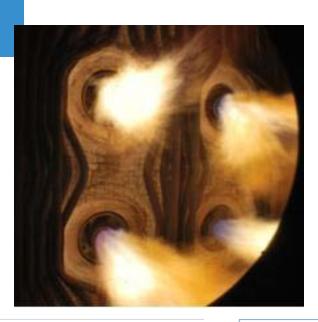
Analysis Campaign – CO₂ Product Analysis

Results

- Good analytical measurements obtained on site
- High purity CO₂ achieved at the CPU outlet

Analysis of the CO₂ gas product

Component	Concentration
CO ₂	>99.9% vol
SO ₂	<1ppm _v
NOx	<20ppm _v
H ₂ O	<20ppm _v
O ₂	<30ppm _v


2015

Presentation Outline

Oxy-combustion for Power Generation

- Demonstration Project Objectives
- Analytical Challenges
- Analysis Campaign Results

□Summary

48

Research & Development

Air Liquide, world leader in gases for industry, health and the environment

- Reliable results were obtained owing to prior analyzer evaluation
- Data obtained helped to better understand the CPU
- Performances of the CPU were as expected
- Calide pilot test results are a good contribution to further demonstration projects
- Demonstration of concept with more than 5500 hours of operation

Callide Oxyfuel Project

Research & Development

Air Liquide, world leader in gases for industry, health and the environment

2015

Research & Development Opening new ways

THANK YOU FOR YOUR ATTENTION

Research & Development

Air Liquide, world leader in gases for industry, health and the environment

