

Detection of Emerging Environmental Pollutants using LC-MS/MS

Jennifer Krone & André Schreiber SCIEX, Concord, Ontario (Canada)

Outline

- Using SCIEX LC-MS/MS for:
- EPA 537 (PFAA)
- Investigation of PFAA from packaging into food
- EPA 539 (hormones in drinking water)
- Marine and freshwater toxins

EPA 537 – Analysis of Perfluoroalkyl Acids (PFAA) Specified Under the UCMR3

* The authors would likes to thank Lily Sanchez, Lee Yoo, and Mike Wehner of Orange County Water District (Fountain Valley, California,).

Experimental

- Solid Phase Extraction (SPE) following the EPA 537 method section 10, 11, and 12
 - All required quality control parameters (section 9.3) were met or exceeded
- Agilent 1260 with Eksigent ULC 100 HTC-xt autosamples
 - Atlantis T3 analytical column (150 x 2.1 mm, 5 µm)
 - Gradient with water + 20mM ammonium acetate and methanol
 - 5 μ L injection (vs. 10 μ L in EPA 537)
 - Atlantis T3 column (50 x 2.1mm, 5 µm) was also used as a delay column (installed between pump and autosampler)
- SCIEX QTRAP[®] 6500 system with IonDrive[®] source (400°C)
 - Negative polarity Electrospray Ionization (ESI)
 - Multiple Reaction Monitoring (MRM)

Triple Quadrupole – Multiple Reaction Monitoring (MRM)

Highest Selectivity and Sensitivity for Screening and Quantitation

MRM Transitions for PFAAs, ISTDs and Surrogates

2 MRM Transitions Were Monitored for Each Target PFAA

Compound	Q1	Q3	RT	DP (V)	CE (V)
PFBS 1	298.8	79.8	6.8	-60	-68
PFBS 2	298.8	98.9	6.8	-60	-36
PFHpA 1	362.8	318.8	10.7	-5	-12
PFHpA 2	362.8	168.8	10.7	-5	-22
PFHxS 1	398.9	79.7	10.7	-70	-86
PFHxS 2	398.9	98.7	10.7	-70	-74
PFOA 1	412.8	368.9	12.1	-5	-14
PFOA 2	412.8	168.7	12.1	-5	-24
PFOS 1	498.9	79.8	13.2	-60	-122
PFOS 2	498.8	98.9	13.2	-60	-98
PFNA 1	462.9	418.9	13.3	-30	-14
PFNA 2	462.9	218.9	13.3	-30	-24
¹³ C ₂ -PFOA*	414.9	369.8	12.1	-20	-14
¹³ C₄-PFOS*	502.9	79.8	13.3	-10	-102
¹³ C ₂ -PFHxA [^]	314.8	269.8	8.9	-15	-12
¹³ C ₂ -PFDA [^]	514.9	469.9	14.3	-25	-16

6 © 2015 AB Sciex

LC Separation of PFAA

Target PFAA (Top) and ISTDs and Surrogates (Bottom)

S/N of Target PFAA

Low Calibrator at 1/2 of UCMR Reporting Limits

45 ng/mL

5 ng/mL 15 ng/mL

20 ng/mL

10 ng/mL 10 ng/mL

Low level ng/L levels were easily obtained for all PFAA.

Calibration Lines for all Six PFAA

R > 0.999 for all Target PFAA

Accuracy QCS with < \pm 30% and precision of 3.1 to 9.8%

MRL and MDL and Statistical Verification

PIR must be within 50 and 150% to be a validated MRL

Compound	Fortification Level (ng/L)	Lower PIR (%)	Upper PIR (%)	MDL (ng/L)	
PFBS	90	81	99	8.3	
PFHpA	10	75	114	1.4	
PFHxS	30	86	99	1.6	HR _{PIR}
PFOA	20	77	109	3.1	S
PFOS	40	56	144	35.9	3.963
PFNA	20	75	98	7.0	

 $HR_{PIR} = 3.963s$

 $\frac{\mathit{Mean} + \mathit{HR}_{\mathit{PIR}}}{\mathit{Fortified Concentration}} \times 100\%$

- = Half Range for the prediction interval of results
- = the standard deviation of replicate analyses
- 3.963 = a constant value for seven replicates

Using the MRL extracts, the calculated MDLs ranged from 1.4 to 35.9 ng/L.

Liesl Krone (15): "Are perfluorinated compounds leaching into your food?"

* The authors would like to thank Nicole Riddell (Wellington Laboratories) for providing standards and Jack Cochran (Restek) for supplying LC columns.

We also would like to thank Jeffrey McDonald from University of Texas Southwestern Medical Center Dallas, TX for assistance in sample analysis.

Extended Panel to Screen and Quantify PFAA

Restek Raptor C18 (50 x 2 mm, 2.7 µm) column and gradient of water/methanol with 5 mM ammonium formate

Detection of Short-Chain PFAA in Corn Chip Bag

Concentrations: 0.30 to 0.79 ng/cm²

Migration of PFBA from Cupcake Wrapper into Cupcake

EPA 539 – Analysis of Hormones in Drinking Water

* The authors would like to thank Lily Sanchez and Lee Yoo of Orange County Water District (Fountain Valley, California,).

Experimental

- Solid Phase Extraction (SPE) following the EPA 539 method section 10, 11, and 12
 - All required quality control parameters (section 9.3) were met or exceeded
- Agilent 1260 with Eksigent ULC 100 HTC-xt autosamples
 - Phenomenex Kinetex C18 column (100 x 2.1 mm, 5 μm)
 - Gradient with 0.02% NH4OH and 0.02% NH4OH in methanol
 - 10 μ L injection (vs. 50 μ L in EPA 539)
- SCIEX QTRAP[®] 6500 system with IonDrive[®] source (600°C)
 - Electrospray Ionization (ESI)
 - 3 separate experiments to facilitate polarity switching (25 msec)
 - Multiple Reaction Monitoring (MRM)

MRM Transitions for Hormones, ISTDs and Surrogate

2 MRM Transitions Were Monitored for Each Target Compound

Compound	Experiment (Polarity)	Q1	Q3	Dwell (ms)	DP (V)	CE (V)
Estriol 1	1 (-)	287.0	170.9	200	-115	-46
Estriol 2	1 (-)	287.0	144.9	200	-115	-50
Equilin 1	2 (-)	267.0	142.8	20	-100	-42
Equilin 2	2 (-)	267.0	223.0	20	-100	-44
Estrone 1	2 (-)	269.0	145.0	20	-130	-48
Estrone 2	2 (-)	269.0	143.0	20	-130	-64
Estradiol 1	2 (-)	271.0	145.1	20	-140	-50
Estradiol 2	2 (-)	271.0	143.0	20	-140	-66
Ethynylestradiol 1	2 (-)	295.0	143.0	20	-130	-70
Ethynnylestradiol 2	2 (-)	295.0	159.0	20	-130	-44
Androstenedione 1	3 (+)	287.0	97.0	35	116	27
Androstenedione 2	3 (+)	287.0	109.0	35	116	29
Testosterone 1	3 (+)	289.0	97.0	40	96	27
Testosterone 2	3 (+)	289.0	108.9	40	96	31
Estriol-D ₂ *	1 (-)	289.0	146.9	200	-165	-54
Estradiol-13C ₆ *	1 (-)	277.0	144.9	20	-145	-50
Ethynylestradiol-13C2*	1 (-)	297.0	145.0	20	-155	-54
Testosterone-D₃*	3 (+)	292.0	97.1	35	106	27
Ethynylestradiol-D₄^	2 (-)	299.0	145.0	20	-145	-72

LC Separation of Hormones

Target Hormones, ISTDs and Surrogate (EE2-D4)

Three Critical Pairs of Isotopes Require LC Separation

Estrone/Estradiol, Equilin/Estrone, and Testosterone/Androstenedione

S/N of Target Hormones

Low Level Calibrator Corresponding at UCMR3 Reporting Limits

Calibration Lines for all Hormones

R > 0.999 for all Target Hormones

Accuracy QCS with $< \pm 30\%$ and precision of 3.1 to 9.8%

MRL and MDL and Statistical Verification

PIR must be within 50 and 150% to be a validated MRL

Compound	Fortification Level (ng/L)	Lower PIR (%)	Upper PIR (%)	MDL (ng/L)
Estriol	0.8	77%	98%	0.068
Equilin	4.0	61%	93%	0.50
Androstenedione	0.3	82%	101%	0.023
Estrone	2.0	79%	100%	0.17
Estradiol	0.4	81%	126%	0.071
Testosterone	0.1	68%	104%	0.014
Ethynylestradiol	0.9	62%	112%	0.18

 $HR_{PIR} = 3.963s$

$$\frac{Mean + HR_{PIR}}{Fortified \ Concentration} \times 100\%$$

- HR_{PIR} = Half Range for the prediction interval of results
 - = the standard deviation of replicate analyses
- 3.963 = a constant value for seven replicates

Using the MRL extracts, the calculated MDLs ranged from 0.014 to 0.50 ng/L.

S

EPA 539 – Freshwater and Shellfish Toxins

* The authors would like to thank Pearse McCarron and Michael Quilliam of National Research Council of Canada, Halifax, NS (Canada); Philipp Hess of Ifremer, Nantes (France); Bernd Krock of Alfred Wegener Institute, Bremerhafen (Germany)

Toxins Overview

- Amnesic shellfish poisoning (ASP)
 - Amino acids: Domoic acid
- Diarrhetic shellfish poisoning (DSP)
 - Polyethers: Okadaic acid and derivatives
- Neurotoxic shellfish poisoning (NSP)
 - Cyclic polyether: Brevetoxin, Yessotoxin
- Paralytic shellfish poisoning (PSP)
 - Alkaloids: Anatoxin, Saxitoxin
- Cyanotoxins
 - Cyclic peptides: Microcystins (MC), Nodularin
- Analytical challenges
 - Both hydrophilic and lipophilic compounds
 - ionic and non-ionic substances
 - Some compounds are not detectable without derivatization (UV, FLD),
 - Different matrices (algae, cyanobacteria, mussel, fish, drinking water etc.)

ö соон

Structure of Microcystin-LR (MC-LR) Regulated by WHO

Why Use LC/MS/MS for marine biotoxin analysis?

- Chromatography with spectrometric detection
 - LC with UV or FLD, GC-MS, HPTLC
 - Non- specific, low sensitivity
 - Rigorous sample preparation and derivatization often required
 - Difficulty to analyze multiple analytes in a single run
- Immunoassay (i.e. ELISA) and Bioassays
 - Not specific, problems with cross contamination, false positive
 - Difficulty to distinguish between multiple analytes
 - Mouse or rat bioassay ethical issues

LC-MS/MS

- Highly selective, sensitive and accurate quantitation
- Reduced sample preparation
- No issue with false positives
- Provides both qualitative and quantitative analysis in a single run
- Meet all requirements for modern residue analysis

Regulation

- Old official method for detection of biotoxins
 - Mouse bioassay, rat bioassay
- Commission regulation EU No. 5/2011
 - "these bioassays have shortcomings and are not considered an appropriate tool for control purposes because of the high variability in results, the insufficient detection capability and the limited specificity"
 - "A liquid chromatography-mass spectrometry (LC-MS/MS) method was validated under the coordination of the European Union Reference Laboratory on marine biotoxins (EU-RL)"
- EU-harmonized SOP using LC-MS/MS for lipophilic marine biotoxins:
 - Okadaic acid (OA), Pectenotoxin (PTX), Azaspiracid (AZA), Yessotoxin (YTX) group toxins

INVESTIGACE Provide de Provide de Vocale d
EUROPEAN UNION REFERENCE LABORATORY FOR MARINE BIOTOXINS
EU-Harmonised Standard Operating Procedure for determination of Lipophilic marine biotoxins in molluscs by LC-MS/MS
Version 2, July 2010
Coordination:
European Union Reference Laboratory for Martne Biotoxins (EU-RL-MB) Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) Estación Martina SN 36200 Vipo, Spain E-mait: <u>surfindanges es</u> <u>http://www.aesan.msps.es/en/CRLMB/web/home.shtml</u>
CCIEV

Regulated Residue Levels

- Regulation (EC) No. 853/2004
- Food business operators must ensure that live bivalve molluscs placed on the market for human consumption... must not contain marine biotoxins in total quantities.. that exceed the following limits:
 - 800 µg/kg of PSP toxins
 - 20 mg/kg of domoic acid for ASP
 - 160 µg/kg of okadaic acid equivalents
 - 1 mg/kg of yessotoxin equivalents
 - 160 µg/kg of azaspiracid equivalents

Cyanotoxins

- WHO guidelines for drinking water quality 1 µg/L
- Many countries, especially with geographies in warmer climate zones detect at 0.1 µg/L or lower

Detection of 0.1 µg/L of Microcystins in Drinking Water

25 µL injected into an API 4000[™] System (over 10 years ago)

Standards and Sample Preparation

- Standards and CRM from National Research Council of Canada, NRC (Halifax, Canada)
- EU-harmonized SOP
 - Methanol extraction from homogenized tissue
 - Alkaline hydrolysis to determine total content of OA group toxins
- New developments by M. Quilliam and P. McCarron at NRC
 - Matrix Solid Phase Dispersion (MSPD)
 - Fast MSPD procedure: mixing, elution
 - and in-line filtration of extracts
 - Presented at AOAC Annual Meeting (2011) and AOAC Annual Meeting of Pacific NW Section (2012) on 'Marine and Freshwater Toxins Analysis'

Basic MSPD Procedure

- Mix sample and extraction material (bonded silica)
 - Typical ratio 0.5 g sample : 2.0 g dispersant
- Prepare column
- Extraction by eluting column with appropriate solvent(s)
 - Analyte dependent

S. A. Barker, J. Chromatogr. A 885 (2000) 115-127

Liquid Chromatography

- EU-harmonized SOP
 - Reversed phase (RP column)
 - Acidic conditions (water, acetonitrile, formic acid)
 - Basic conditions (water, acetonitrile, pH=11 with ammonia or bicarbonate
- New developments by M. Quilliam and P. McCarre
 - Neutral conditions (water, acetonitrile, ammonium acetate)
- HILIC conditions for PSP toxins
- Faster analysis using UHPLC conditions
 - Small particle size columns, 2.5 or 3 µm
 - Core-shell particle columns, i.e. Kinetex, UHPLC speed and separation efficiency at reduced pressure

Acidic LC Conditions

CRM-FDMT1

- Phenomenex LUNA C18(2)
 2.5 µm (50 x 2 mm) with gradient of water / acetonitrile + 50 mM formic acid and 2 mM ammonium formate
- Good peak shape and resolution
- Suited to MS/MS instruments capable of rapid polarity switching

Neutral LC Conditions

CRM-FDMT1

- Phenomenex Gemini-NX C18
 3 µm (50 x 2 mm) with
 gradient of water / acetonitrile
 + 5 mM ammonium aceate
- Good peak shape and resolution
- Separation of regulated toxins into periods according to best ionization conditions
- Not useful for domoic acid (analyzed by LC-FLD at the NRC)

MS/MS Detection

- EU-harmonized SOP
 - AB SCIEX 3200 QTRAP® system
 - Electrospray Ionization (ESI)
 - Multiple Reaction Monitoring (MRM)
 - 2 Transitions per compound (ratio for identification)
- Newer triple quadrupole LC-MS/MS instruments offer
 - Higher sensitivity
 - Reduced matrix effects and interferences after dilution of extract
 - Detection at lower levels allows prediction of upcoming problems when analyzing phytoplancton and water samples
 - Fast polarity switching
- QTRAP[®] and TripleTOF[®] technology offers
 - Unique features for quantitation and identification (EPI, MRM³) and unknown screening and identification of new toxins (TOF-MS and MS/MS)

SCIEX QTRAP[®] 4500 system

Triple Quadrupole – Multiple Reaction Monitoring (MRM)

Highest Selectivity and Sensitivity for Screening and Quantitation

QTRAP® 5500 System with Polarity Switching

Fast acidic LC using Phenomenex Kinetex C18 2.7µm (50x2mm) column

QTRAP® 5500 System – Reduced Matrix Effect

QTRAP[®] System – MS/MS Full Scan and Library Searching

High Selectivity and Fast MS/MS Scan to Increase Confidence

MRM Quantitation and QTRAP[®] Full Scan MS/MS can be combined in Information Dependent Acquisition (IDA) methods for simultaneous quantitation and Identification

QTRAP[®] 4500 System – MS/MS Identification

2011 DSP outbreak: British Columbia

Application of methods to Gorge Harbour sample (July 2011)

Concentrations in BC sample (Gorge Harbour)

Low levels of cyclic imine toxins (GYM, SPX, PnTX-G)

4000 QTRAP[®] System on Board a Research Vessel

Rosette sampler and phytoplankton net

Live data acquisition and processing

(ruggedness !!!)

Sampling (15. April to 05. May)

Summary

- LC-MS/MS strategies for monitoring of emerging environmental pollutants
 - EPA 537
 - Migration of PFAA from packaging into food
 - EPA 539
 - Marine and freshwater toxins

Trademarks/Licensing

For Research Use Only. Not for use in diagnostic procedures.

The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners.

© 2015 AB Sciex.

47 © 2015 AB Sciex

Thank you for your attention!

Holy Ghost and surrounding rocks in Meteora (Greece).

