Emission metrics, especially for BC

Tami C. Bond and Yanju Chen University of Illinois at Urbana-Champaign March 4, 2014

What we learned from "Bounding-BC"
 Review of emission metrics
 Proposal and exploration

Definition of emission metrics

Some measure of impact per emission Relative to CO_2

"Purpose is...to put future climate impacts of unit emissions of compounds with different lifetimes and radiative efficiencies on a common scale."

T. Berntsen, CICERO, contribution in Bounding-BC

WHAT WE LEARNED FROM "BOUNDING-BC"...

WHAT WE LEAKNED FROM "BOUNDING-BC"...

"Comprehensive" with regard to climate effects

Direct forcing (the usual)

Direct forcing

Forcing was assessed to be higher than many previous estimates.

More absorption in the atmosphere than in models

But this was attributed to higher emissions. Emission-per-forcing didn't change much.

"Indirect" effect

Summary of cloud effects: *net positive*

Summary of cloud effects: net positive

Attribution (to particular sources) is a major problem

10

Snow-albedo effect

<u>Attribution</u> (to particular sources) is not TOO hard...

although there is still a lot we don't know about transport (More distant = More uncertain)

Snow-albedo effect

 Black carbon is the 2nd most important climate forcing agent in 2000-2005.

Cumulative forcing (add selected categories)

BC forcing positive (+0.33) Total forcing positive (+0.15)

BC forcing positive (+0.72) Total forcing still positive (+0.21) but becoming less certainly so, because of cloud uncertainties

BC forcing positive (+1.01) Total forcing nearly neutral (-0.06) because of large OC & its cloud forcing (note: simple sum differs from BC median produced by Monte Carlo analysis)

Remainder of aerosol forcing is in low-BC categories (total -0.95)

- IF we reduce aerosol concentrations
 (which <u>must</u> happen to protect public health)
- THEN "BC-rich sources" are the most climatefriendly targets.
- AND the sources with fewer cloud-active species are most certain to be climate-friendly.

NOTES ABOUT EMISSION METRICS

NOTES ABOUT EMISSION METRICS

Proposal

Metrics

Challenge

Figure from Bond et al., ACP 11, 1505 (2011) Forcing timescales: eg Wild & Prather, JGR 105, 24647 (2000)¹⁷

Each pollutant induces different response

Proposal

Metrics

Challenge

Short-lived and long-lived warming have different sources

* these are the "BC-rich" source categories identified in "Bounding-BC," Bond et al., JGR 2013

Bounding \rightarrow Metrics \rightarrow Proposal

Global Warming Potential: a review

Basic idea: How much forcing is caused by 1kg of substance Scompared with 1kg of CO₂?

Global Warming Potential: a review

Basic idea: How much forcing is caused by 1kg of substance Scompared with 1kg of CO₂?

> Absolute Global Warming Potential for *S*

$$GWP^{S}(H) = \frac{\int_{0}^{H} f^{S}m^{S}(t)dt}{\int_{0}^{H} f^{CO2}m^{CO2}(t)dt}$$

Absolute Global Warming Potential for CO₂

21

Global Warming Potential of BC

Time horizon,	AGWP	AGWP of	GWP
H (yr)	of BC	CO2	of BC
20	26010	÷ 13	= 2100

The BC part doesn't change ...no surprise; it occurs all in 1 year

Units above: W yr/kg You may also see (W m-2)/(kg yr-1) I don't use that here because global average forcing doesn't exist

Advocates' perception

GWP 20 = 2100*

* direct forcing only; values from Bounding-BC

Explaining the GWP time horizon

understand the importance... but policymakers

could care less

images: smh.com.au, dalje.com

GWP* has wildly varying values (despite its wide acceptance)

Variation is caused by an arbitrary choice: the time horizon

 Meanwhile, GWP misses distinguishing characteristics of short-lived climate forcers: immediate & spatially distinct

* and Global Temperature Potential, too

Ideal emission metrics would...

- capture important differences in atmospheric behavior
- enable analysis that can achieve climate targets
- minimize the "eye-glaze factor" for non-scientists
- evolve along with scientific understanding

How to evolve as understanding grows?

Image: Meeting Report, IPCC Expert Meeting on the Science of Alternative Metrics

PROPOSAL

FROPOSAL

Proposal: formal separation

integrated forcing (W•yr) is OK for now but use ratio (like GWP) only when it's useful or helpful

*Dear GWP*_{BC}: If I brought you into this world... can I take you out?

Environ. Sci. Technol. 2005, 39, 5921-5926

Can Reducing Black Carbon Emissions Counteract Global Warming?

TAMI C. BOND* AND HAOLIN SUN Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Feasibility: Cost and Control

In part due to the scientific arguments against equivalence, BC reductions have not yet been assessed within a framework similar to that of CO₂. Introducing a GWP for aerosols may be controversial, but it is useful for this preliminary inquiry. Within the limitations of current uncertainty, we can inquire whether these reductions might be cost-effective for climate purposes. If BC reductions are clearly expensive in such a framework, then they are not viable alternatives to GHG mitigation and should be discussed mainly for their ancillary

AR5, 2013: IPCC reports GWP for SLCF OK, now we can move on

The thinking about long-term carbon commitment is changing, anyway.

Peak temperature appears proportional to *cumulative* carbon emissions.

Equivalence on emission basis not possible

Metrics

Challenge

Proposal

IPCC AR5 Fig SPM.10 Based on work since 2009 & since See Allen et al, Nature 458, 1163; Matthews et al, Nature 459, 829; Zickfeld et al, PNAS 106, 16129

Proposal: formal separation

integrated forcing (W•yr) is OK for now use ratio (like GWP) only when it's useful or helpful

 $\hline Challenge \rightarrow Metrics \rightarrow Proposal$

Short-term integrated forcing

$$AGWP(H) = \int_{t=0}^{H} f^{s}m^{s}(t)dt$$
We really really need forcing-
per-emission values, please!
We also need fast responses
(within 1 year), normalized to
emission or forcing, please!
The global average is questionable, so
$$AGWP = \int_{surf} f^{s}m^{s}(t)dtdA$$
and you can do this
for any area, not just
have to be global, doesn't
have to be warming, and isn't a potential
(which was the point of dividing by CO2)– I would
rather call it something else
$$33$$

Short-term integrated forcing by one source

Short-term forcing by a single source

$$\sum \mathrm{Em}_{i} \left[\int \int f^{Si} m^{Si}(t) dt dA \right]$$

Sum of all the emissions weighted by integrated forcing of each

Units: TW yr

(This is pretty standard stuff, except for the separation.)

 $Challenge \rightarrow Metrics \rightarrow Proposal$

BC, OM

Bond et al. ACP 11, 1505, 2011 Multi-model estimates of forcing in multiple regions "Bounding-BC" estimate of fast response

data sources:

SO2

Koch et al. JGR 112, D02205, 2007

Single-model estimate of forcing in several regions

VOC, NOx, CO

Fry et al. JGR 117, 2012 Multi-model estimates of forcing from 4 regions

34

Short and longforging often similar in magnitude

Warning 1: Left out uncertainties to achieve graph visibility Warning 2: Depends on scaling to match atmospheric conc Incidentally: World energy consumption is ~16 TW yr

Mitigation is the difference between measures

No more ratio, but 1:1 lines maintain context

Policy picture:

- + Keep it simple. Short-term and long-term.
- + Provide quick, transparent evaluation of sources.

Scientific additions:

 Use integrated forcing over different areas to target desired climate change

e.g. Absolute Regional Temperature-Change Potential (Shindell, ACP 12, 7955 [2012]; Collins *et al.*, ACP 13, 2471 [2013])

Recommendations for scientists

- Keep it simple: [Short+Medium] vs [Long]
- + Keep it updatable
- + Limit use of *policy* ratios (like GWP)
 - Unwarranted confusion
 - Apples/oranges comparison hides important aspects (immediacy, spatial specificity)
- Fill in the important gaps (spatial differences, cloud response) by using *physical* ratios (emission per forcing or something else)
- + Provide quick, transparent evaluation of sources

Thanks. And sorry I was late.