Black Carbon, Air Quality and Climate

Spyros Pandis

Department of Chemical Engineering Carnegie Mellon University

The Team

Allen Robinson

Neil Donahue

Peter Adams

Rawad Saleh

R. Subramanian

Black Carbon, Air Quality and Climate

.005 .01 .02 .05 .1 .2 .5 1 2 5

Sources of BC

Objectives

- Improve our understanding of the optical properties of BC-containing particles and their evolution during their lifetime
- Link emissions of BC particles with particle number concentrations over the US
- Improve the ability of the existing regional models to simulate the BC mass and number concentrations
- Quantify effects of changes in BC emissions in PM and PN over the US

Project Overview

- **1.** Laboratory Studies
 - Primary emissions characterization
 - Aging of primary emissions

2. Emission inventory development

- Source-resolved inventories
- Inventories for number
- 3. Model extension
 - Particle number source attribution
 - Mixing state and optical properties
- **4.** Black carbon number concentrations
- Regional scale simulations Scenarios and controls

BC Emissions, Chemical Aging, and Optical Properties

• Brown Carbon?

• How does the condensation and chemical aging of OA affec the absorption of BC?

Carnegie Mellon University

BrC in Biomass Burning: Chaos

BrC in Biomass Burning: More Chaos

OA and BC Formation and Aging (FLAME III and IV)

Aethalometer

OA/BC from biomass burning

Morphology and Mixing State

Morphology and Mixing State

- We simulate the condensation process of OA on BC.
- The growing distribution cannot go beyond the SMPS distribution.
- We can only constrain the maximum coating thickness.
- This maximizes the lensing effect, thus minimizes BrC absorption
- Conservative approach.

The Fit

The Fit (Absorption due to BC only-Mie calculations)

The Fit (Absorption due to BC+ Lensing)

The Fit (Absorption due to BC+ Lensing+BrC)

The best fit, from which we obtain the absorptivity of OA.

Chaos Returns !

- A lot of variability across fuels, and even within the same fuel.
- Similar to previous work.

Some Order

Some Order

CMU Smog Chamber

Coating of BC with D-toluene SOA (fuel: White birch bark)

HONO **HONO** HONO 60 200 BC 50 Aerosol mass (µg m⁻³) 40 150 D - toluene (ppb) 30 **D-toluene** 100 20 50 Org 10 0 12:00 14:00 16:00 18:00 20:00 $CE_{BC} = 0.4$ CE_{org}=1

24

O/C during D-toluene SOA formation

(fuel: White birch bark)

Absorption during D-toluene SOA formation

Absorption Angstrom exponent during D-toluene SOA formation

(fuel: White birch bark)

ig of Monodisperse Cookstove Soot

- Absorption enhancement of mono-disperse aged BC particles.
- Three nascent BC core diameters (100, 130, 150 nm mass equivalent diameters).
- •Soot was coated with α -pinene SOA in stages till a shell/core diameter ratio of ~2.5
- •SP2 for BC mass; SP-AMS for organic aerosol mass; PAXs for light absorption/scattering.

Black Carbon Emissions

Organic/Elemental Carbon Emissions

Pre-LEV made before 1994 LEV-1 1994-2003 LEV-2 2004 and later

EC Emissions

May et al. (Atmos. Environ, 2014)

BC and Aerosol Number Concentrations

Source-Resolved Total Number Emissions (particles d⁻¹ km⁻²)

PMCAMx-UF base number concentration (particles cm⁻³)

PMCAMx-UF Evaluation (Pittsburgh)

Size-resolved Aerosol Number Source Apportionment algorithm (SANSA)

Total primary particle number fractional source contributions

Primary particle number source apportionment in Pittsburgh

Sources of Measureable (>3 nm) Particle Number in Pittsburgh

Effects of Controls of Diesel Particulate Emissions (-50% Scenario)

Fractional Change of EC

Average $PM_{2.5}$ reduction around 3%.

Fractional Changes of N_{0.8-3}

Nucleation increases, creating more smaller particles due to the decrease in the condensation sink.

Fractional Changes of N₃₋₁₀

These increases also suggest that nucleation may increase and nucleated particles grow into this size range.

Fractional Changes of N₁₀₋₅₀

Particles in this size range are typically emitted or grown from nucleated particles, so they see increases (from nucleation) and decreases elsewhere.

Fractional changes of N₅₀₋₁₀₀

Fractional changes of N₁₀₀

Non-linear Response of CCN to Diesel PM Controls

50-100% higher reduction in N50 and N100 than the linear response

Improving Regional Scale BC Models

Conclusions

- Brown carbon in emissions from biomass burning is associated mostly with organic compounds of extremely low volatility
 - Effect can be parameterized as a function of BC/OA
 - Quite sensitive to burn conditions
- This effect was not observed in diesel emissions
- Condensation and chemical aging of biogenic and anthropogenic SOA on BC was reproduced within experimental error by core-shell Mie models.
 - No effect of O:C during aging of SOA
- Estimated radiative forcing of 0.1-0.2 W m⁻² due to biomass burning BrC.

Net effect of biomass burning is still cooling.

Conclusions

- New particle number source apportionment algorithm (SANSA) for TOMAS (used in PMCAMX, GISS-II' and GEOS-CHEM)
- Diesel sources responsible for approximately 25% of particle number emissions in the Eastern US during summer
 - 30% of emissions of N_{100}
- Reduction of these emissions leads to increases of nucleation rates
 - Increases of very small particles predicted
 - The N50 and N100 concentrations decrease more than expected
 - This reduction in CCN could result in warming
- Development of a computationally efficient multidistribution model to better simulate the mixing state of BC in regional models

Acknowledgments

- Graduate students/postdocs
 - Laura Posner, Christos Fountoukis, Antonis Tassoglou.

