

Integration of CHP with Renewables

IDEA Annual Conference, Inspiring the Next Generation, June 2015

Neeharika Naik-Dhungel, EPA CHP Partnership

Presentation Objectives:

Presentation Focus:

 Emissions profile of CHP integrated in a microgrid with renewable systems

Purpose:

 Quantify the environmental benefits of multiple clean energy projects in a microgrid

Approach Taken:

- Case studies approach
 - Documented technology and operational characteristics based on project profiles for two microgrid applications
- Emissions estimator tool (CHPP's Emissions Calculator)
 - Inputted documented microgrid project metrics into the CHP Emissions Calculator to determine the emissions profile + savings

Study Approach

Microgrid Case Studies Considered

- MCAGCC Twentynine Palms military base in California (PV + CHP)
- City of Milford, CT– under development (will integrate PV + CHP)

Emissions Estimator Tool

- The CHP Emissions Calculator calculates the difference between the anticipated CO₂, methane (CH₄), nitrous oxide (N₂O), SO₂, and NO_x emissions from a CHP system to those of a separate heat and power system.
- The Calculator uses fuel specific CO₂, CH₄ and N₂O emissions factors from the EPA's GHG Reporting Program, region specific Transmission & Distribution (T&D) loss values, and data from eGRID 2012.

Overview of Emissions Estimation Methodology

- Type of inputs required
 - CHP or solar electric capacity (kW)
 - Annual hours of operation
 - CHP fuel type
 - CHP thermal energy use: heating, cooling or both
 - Whether there is emissions control equipment (+ NOx emissions rate if there are controls)
- CHP/RE integration component details
 - Conducted individual runs of the Emissions Calculator for each technology type (e.g., 1 run for the CHP system, 1 run for the PV systems)
 - Added the emissions calculator results from the individual technology runs for each microgrid project together.
 - For the CHP system took the overall emissions results from the Calculator
 - For the PV systems only counted the displaced electricity production results (did not include the CHP system or the displaced thermal production results)

- Located at Twentynine Palms,
 California, in the Mojave Desert.
 Over 900 square mile of land area.
- The facility has two gas turbine CHP systems
 - A 7.2 MW unit (installed 2003); system has "black start capability"
 - A 9.2 MW system (installed 2013)
- The military complex has two solar installations
 - A 1.2 MW PV system (installed 2003), and a subsequent 4.5 MW PV system
 - Future plans are to bring total capacity to 6 MW

Case Study 1 – Twentynine Palms Emissions Calculator Inputs

The following are the key parameters used in the Emissions Calculator:

	CHP System 1	CHP System 2
Type of CHP System	Gas Turbine	Gas Turbine
CHP Electric Capacity (kW)	7,200	9,200
Annual Hours of Operation	8,403	1,000 (peaker)
CHP Fuel Type	Natural Gas	Natural Gas
Thermal Energy: Heating, Cooling, or Both?	Both	Both
Hours in Cooling Mode?	1,008	50
Emissions Control Equipment? (yes/no)	Yes	Yes
If Yes, what is NOx emission rate? (ppm, or lb/MWh)	3 ppm	3 ppm
What type of thermal system was displaced?	Existing gas boiler	Existing gas boiler

Natural Gas

Solar PV Array

Electric Capacity (kW) 4,500

Annual Hours of Operation, or Capacity Factor

Fuel Type of Displaced Thermal System

1,324

Natural Gas

Case Study 1 – Twentynine Palms Individual Results by Technology

CHP System Results (7.2 + 9.2 M	/IW Units)	Annual Emiss	sions Analysis		
	CHP System	Displaced Electricity Production	Displaced Thermal Production	Emissions/Fuel Reduction	Percent Reduction
NO _x (tons/year)	4.54	80.64	21.68	97.77	96%
SO ₂ (tons/year)	0.24	246.29	0.13	246.18	100%
CO ₂ (tons/year)	48,112	76,898	25,337	54,123	53%
CH ₄ (tons/year)	0.91	1.493	0.48	1.067	54%
N ₂ O (tons/year)	0.09	1.250	0.05	1.212	93%
Total GHGs (CO ₂ e tons/year)	48,160	0.24 246.29 0.13 48,112 76,898 25,337 0.91 1.493 0.48 0.09 1.250 0.05 48,160 77,317 25,362 823,138 777,608 433,478		54,519	53%
Fuel Consumption (MMBtu/year)	823,138	777,608	433,478	387,948	32%
Equal to the annual GHG emissions from	Equal to the annual GHG emissions from this many passenger vehicles:				
Equal to the annual GHG emissions from	n the generati	on of electricity fo	r this many homes:	6,970	

	CHP System	Displaced Electricity Production	Displaced Thermal Production	Emissions/Fuel Reduction	Percent Reduction
NO _x (tons/year)	- 17	6.66	-	6.66	100%
SO ₂ (tons/year)	-	20.34	-	20.34	100%
CO ₂ (tons/year)	18/1-	6,351		6,351	100%
CH ₄ (tons/year) N ₂ O (tons/year)	W.X	0.123 0.103		0.123 0.103	100% 100%
Total GHGs (CO ₂ e tons/year)	-	6,386	-	6,386	100%
Fuel Consumption (MMBtu/year)	1	NA	V- ()	64,226	100%
Equal to the annual GHG emissions from the		1,213			
Equal to the annual GHG emissions from the	ne generation c	of electricity for the	nis many homes:	793	

Case Study 1 – Twentynine Palms Combined Results (CHP + PV)

CHP + PV Results Annual Emis	sions Analysis				
	CHP System (CHP only)	Displaced Electricity Production (CHP + PV combined)	Displaced Thermal Production (CHP only)	Emissions/Fuel Reduction (CHP + PV combined)	Percent Reduction (CHP + PV combined)
NO _x (tons/year)	4.54	87.30	21.68	104.43	96%
SO ₂ (tons/year)	0.24	266.63	0.13	266.52	100%
CO ₂ (tons/year)	48,112	83,249	25,337	60,474	56%
CH ₄ (tons/year)	0.91	1.616	0.48	1.190	57%
N ₂ O (tons/year)	0.09	1.353	0.05	1.315	94%
Total GHGs (CO ₂ e tons/year)	48,160	83,703	25,362	60,905	56%
Fuel Consumption (MMBtu/year)	823,138	777,608	433,478	452,174	37%
Equal to the annual GHG emissions from	this many passenger v	vehicles:		11,870	X . 7
Equal to the annual GHG emissions from	the generation of elec	tricity for this ma	any homes:	7,763	

Case Study 2 – City of Milford, CT

Proposal an outcome of CT DEEP Round 2 Microgrid Program (October 2014)

- 5 facilities will have the ability to operate independently of the UI grid
 - Parsons Center
 - Milford Senior Center
 - Harborside Middle School
 - City Hall
 - River Park Senior Apartments

Microgrid components

- Two 146 kW natural gas-fired reciprocating engine CHP systems will replace the existing outdated boilers in the Parsons Center.
- A photovoltaic array accompanied by battery energy storage will help offset the daytime electric load.
- The PV system will be located in a parking lot adjacent to the Parsons Center and will provide supplemental power during the daylight periods.
- The necessary electrical and controls infrastructure will tie these buildings together as a microgrid that will operate in parallel with the utility grid.

Case Study 2 – City of Milford Inputs

CHP System 1

Type of CHP System	NG Fired Reciprocating Engine
CHP Electric Capacity (kW)	292 kW
Annual Hours of Operation	8,322 (95% availability)
CHP Fuel Type	Natural Gas
Thermal Energy: Heating, Cooling, or Both?	Heating
Hours in Cooling Mode?	NA
Emissions Control Equipment? (yes/no)	Yes
If Yes, what is NOx emission rate? (ppm, or lb/MWh)	0.15 lb/MWh
What type of thermal system was displaced?	Existing boilers
Fuel Type of Displaced Thermal System	Natural Gas

[[4]]	Solar PV Array
Electric Capacity (kW)	120 kW
Annual Hours of Operation, or Capacity Factor	1,555

Case Study 2 – City of Milford Results

CHP System Results Annual Emis	sions Analysis				
	CHP System	Displaced Electricity Production	Displaced Thermal Production	Emissions/Fuel Reduction	Percent Reduction
NO _x (tons/year)	0.18	1.08	1.01	1.90	91%
SO ₂ (tons/year)	0.01	1.92	0.01	1.92	100%
CO ₂ (tons/year)	1,728	1,796	1,181	1,249	42%
CH ₄ (tons/year)	0.03	0.057	0.02	0.047	59%
N ₂ O (tons/year)	0.00	0.021	0.00	0.020	86%
Total GHGs (CO ₂ e tons/year)	1,730	1,804	1,182	1,256	42%
Fuel Consumption (MMBtu/year)	29,568	23,296	20,204	13,932	32%
Equal to the annual GHG emissions from t	his many passenger veh	icles:		238	
Equal to the annual GHG emissions from t	he generation of electric	city for this mai	ny homes:	156	MAZ

PV Results Annual Emissions Analysis							
	CHP System	Displaced Electricity Production	Displaced Thermal Production	Emissions/Fuel Reduction	Percent Reduction		
NO _x (tons/year)	- /	0.08	-	0.08	100%		
SO ₂ (tons/year)	-	0.15	-	0.15	100%		
CO ₂ (tons/year)	- 1928	136		136	100%		
CH ₄ (tons/year)	-	0.004	-	0.004	100%		
N ₂ O (tons/year)		0.002	-	0.002	100%		
Total GHGs (CO ₂ e tons/year)	-	137	-	137	100%		
Fuel Consumption (MMBtu/year)	- >	XX	10-1	1,765	100%		
Equal to the annual GHG emissions from this m		26					
Equal to the annual GHG emissions from the ge	qual to the annual GHG emissions from the generation of electricity for this many homes:						

Case Study 2 – City of Milford Combined Results (CHP + PV)

	CHP System (CHP only)	Displaced Electricity Production (CHP + PV combined)	Displaced Thermal Production (CHP only)	Emissions/Fuel Reduction (CHP + PV combined)	Percent Reduction (CHP + PV combined)
IO _x (tons/year)	0.18	1.16	1.01	1.98	91%
O ₂ (tons/year)	0.01	2.07	0.01	2.07	100%
O ₂ (tons/year)	1,728	1,932	1,181	1,385	44%
H ₄ (tons/year)	0.03	0.061	0.02	0.051	61%
I ₂ O (tons/year)	0.00	0.023	0.00	0.022	87%
otal GHGs (CO ₂ e tons/year)	1,730	1,941	1,182	1,393	45%
uel Consumption (MMBtu/year)	29,568	23,296.36	20,204	15,697	32%
qual to the annual GHG emissions from	this many passenger	vehicles:		264	

Overall Conclusions

- The CHPP Emissions Calculator can be used to determine the CHP emissions benefits
 - CHP energy savings using the calculator has been considered in some states such as New York and Arizona
 - Grid factor choices in other policy decisions have been predicated on the emission calculator
 - The calculator can provide an estimate of emissions from CHP when integrated with renewables in a grid
- Microgrid projects that incorporate CHP with renewables are gaining traction in the U.S.
 - Over the past decade, there has been a steady increase in such projects. Examples
 in Massachusetts, Connecticut, and New York.
 - There are clear emission reduction and the calculator provides one estimation methodology
 - Area ripe for further work on emission estimation methodologies

Questions and Contact Information

Contact:

Neeharika Naik-Dhungel Naik-Dhungel.Neeharika@epa.gov

