

Building Climate Resiliency with Green Infrastructure

Tuesday, July 22, 2014 1:00 – 2:30pm EST

Speakers:

- Beth Sawin, Climate Interactive
- Alan Cohn, NYC Department of Environmental Protection
- Mikelle Adgate, NYC Department of Environmental Protection
- **Carolina Griggs,** NYC Department of Environmental Protection

Sponsored by U.S. EPA Office of Wastewater Management

Logistics

- <u>To Ask a Question</u>: Type your question in the "Questions" box on the right side of your screen and click "Send."
- <u>To report technical issues/audio problems:</u>
 - Type your question/issue in the "Questions" box on the right side of your screen and click "Send." We will respond by posting an answer in the questions box.
 - Call GoToWebinar support:[800 263-6317], and give conference ID# 733268065

Webcast Agenda

Introduction

- The Green Infrastructure
 Decision Support Tool
 Elizabeth Sawin
- Green Infrastructure and Climate Change in New York City
 Alan Cohn, Mikelle Adgate, & Carolina Griggs
- Q&A session
- Wrap up

Now to our speakers!

The Green Infrastructure Decision Support Tool 22 July 2014 Dr. Elizabeth Sawin EPA Green Infrastructure Webcast Series

Helping people see what works to address our biggest climate challenges: • clean energy

- food and water
- resilience

www.ClimateInteractive.org

Seeing what works --

Fast, interactive computer simulation to support learning and cooperation.

Why a Green Infrastructure simulation?

People need ways to see what they might accomplish together.

People need ways to ask 'what if' questions about the future before they invest time and money.

All impacted groups need to have a voice in infrastructure decisions

Why a Green Infrastructure simulation?

People need ways to prioritize which approaches will deliver the most benefit for investment of time and money.

Pilot project in Milwaukee, Wisconsin

Kinnickinnic River Watershed

Source: Map Milwaukee Portal

Source: Map Milwaukee Portal

Source: Map Milwaukee Portal

represented?

CLIMATEINTERACTIVE

Input so far from

•

- Milwaukee Metropolitan Sewerage District
- City of Milwaukee Dept. of Public Works
- City of Milwaukee Office of Environmental Sustainability
- Milwaukee Riverkeeper
- Wisconsin Voices
- 16th Street Community Health Center
- Gateway Milwaukee
- Citizen Action
- Brico Foundation
- Fund for Lake Michigan
- Joyce Foundation
- University of Wisconsin Madison
- Sweetwater
- University of Wisconsin Milwaukee
- American Rivers

Demo

Differing Green Investment

- 1 no investment
- 2- Partial Green
- 3 Full Green
- 4- Full Green with more bioretention and porous pavement

Environment Outputs

- 1 no investment
- 2- Partial Green
- 3 Full Green
- 4- Full Green with more bioretention and porous pavement

Social Outputs

Invest! Environment Social

GI Mix & Costs Economic

CLIMATE INTERACTIVE

Improvement

- 1 no investment
- 2- Partial Green
- 3 Full Green
- 4- Full Green with more bioretention and porous pavement

Economic Outputs

- 2- Partial Green
- 3 Full Green

4- Full Green – with more bioretention and porous pavement

- 1 no investment
- 2- Grey
- 3 Green

Environment Outputs

- 1 no investment
- 2- Grey
- 3 Green

Social Outputs

- 1 no investment
- 2- Grey
- 3 Green

Jobs Green

Cumulative Energy Savings

- 1 no investment
- 2- Grey
- 3 Green

1. Develop a simple, less graphintensive interface

In development - 'at a glance' output

Û

Sewer overflows Air* quality Basement backups +\$ Property values К.Л Jobs Water quality Energy savings No change High impact

In development - 'at a glance' output

- 1. Develop a simple, less graphintensive interface
- 2. Support local organizations in catalyzing a wave of GI investment in Milwaukee

- Local partners 16th Street Community Health Centers and Milwaukee Metropolitan Sewerage District
 - 6 municipalities, county, business groups, neighborhood associations, non-profits
 - Simulation will help citizens and leaders see what is possible and build a shared vision for their communities
 - Complemented with technical and planning expertise, site visits, information sharing
 - Vision of an implementation fund at the end of the project

- 2. Support local organizations in catalyzing a wave of GI investment in Milwaukee
- 3. Making insights from the simulation useful around the country, and making customized versions for other cities

- Late fall/early winter an online learning community of GI advocates from municipalities, regional agencies, and community groups
- Meeting via webinar, a few hours per month
- Our offers
 - More time with the Milwaukee tool, understanding the generalizable insights
 - Access to the Milwaukee tool and support in using it
 - For 2-4 cities willing to invest more time, the offer of more detailed consultation to customize the Milwaukee tool for other regions.

• How you can help

- Sign up if you'd like to be informed of call for applications to the learning network
 - <u>http://www.climateinteractive.org/infrastructure-community/</u>
- Let us know if your network or professional associations might like to partner with us or co-host these learning sessions.

Thank You!

esawin@climateinteractive.org

www.ClimateInteractive.org

To receive notification about our online learning community: http://www.climateinteractive.org/infrastructure-community/

Green Infrastructure and Climate Change in New York City

Alan Cohn

Director, Climate & Water Quality

Mikelle Adgate

Project Manager, Green Infrastructure Partnerships

Carolina Griggs

Deputy Director, Planning, Projections & Demand Management

- Introduction to DEP
 - Water and Wastewater Systems
 - Planning for Climate Change
- The NYC Green Infrastructure Plan and Program
- Quantifying Local Co-Benefits of Green Infrastructure

A Brief Introduction to DEP

- DEP provides more than 1 billion gallons of water each day to more than 9 million residents, including 8 million in NYC.
- NYC remains one of only five large cities in the United States that is not required to filter its drinking water.

A Brief Introduction to DEP

- Approximately 7,400 miles of sewer lines take wastewater to 14 treatment plants.
- DEP also manages stormwater throughout the City, and ensures that the City's facilities comply with the Clean Water Act and other federal, state and local rules.

Planning for Climate Change

DEP is planning for climate change, from reducing greenhouse gas emissions to preparing for the impacts of extreme weather to drinking water and wastewater infrastructure.

Learning from the Past, Planning for the Future

Recorded Data

Climate Projections

Projected Climate Change (Mean annual changes)					
	25 th to 75 th percentile	90 th percentile			
Air temperature					
2020s	+2 to 3 deg F	+3 deg F			
2050s	+4 to 5.5 deg F	+6.5 def F			
Precipitation					
2020s	0 to +10 percent	+10 percent			
2050s	+5 to 10 percent	+15 percent			
Sea level rise					
2020s	4 to 8 inches	11 inches			
2050s	11 to 24 inches	30 inches			

New York City Panel on Climate Change. *Climate Risk Information 2013.*

The NYC Green Infrastructure Plan and Program

NYC's Combined and Separate Sewers

- 7,400 miles of sewers
 - o 3,337 miles of combined
 - o 2,271 miles of sanitary
 - o 1,801 miles of storm
 - 400 acres of Bluebelts (draining 14,500 acres)

*Above statistics in process of being updated

NYC's Combined Sewer Area

Water Quality in New York City

- = does not meet water quality standards
- **75%** of Harbor meets pathogen standards for swimming
- **19%** meets standards for boating, fishing
 - 7% of our Harbor is made up of tributaries that do not meet secondary contact standards

A Sustainable, Hybrid Approach to CSOs

- 1. Build cost-effective grey infrastructure
- 2. Optimize the existing wastewater system
- 3. Control runoff from 10% of impervious surfaces through green infrastructure and other source controls
- 4. Institutionalize adaptive management, model impacts, measure CSOs, and monitor water quality
- 5. Sustain stakeholder engagement

2012 Amended CSO Consent Order

- March 2012 DEP signed Amended Consent Order with New York State Department of Environmental Conservation
- Among other grey projects, the Order ensures green infrastructure investments over 20 years to manage combined sewer overflows (CSO)

GI Program Overview

Overview: Over \$700 million budgeted in the 10 year capital plan

1. Right of Way GI Design/Construction:

- Area-wide implementation of Bioswales and Stormwater Greenstreets
- Adding GI to scope of existing capital highway and sewer projects

2. Public Property Retrofits:

• School yards, playgrounds, public housing, parkland, parking lots

3. Green Infrastructure Grant Program:

• \$11.5 million committed for 29 projects over 3 grant cycles

4. Neighborhood Demonstration Areas

- 5. Research and Development Program
- 6. O&M/Asset Management Program
- 7. Outreach and Engagement Program

Area-Wide GI Implementation

EXAMPLE

Preliminary Sites

The Area-wide approach allows OGI to:

- Focus resources on specific outfall tributary areas
- Saturate these areas with as much GI as possible
- Achieve efficiencies in design and construction

Right-of-way Green Infrastructure

Public Property Retrofits

PS 261 (Boerum Hill / Cobble Hill, Brooklyn)

Green Infrastructure Grant Program

Maintenance of Green Infrastructure

ROW Maintenance:

- Through FY2015 DEP will fund new Greenstreets crews to maintain all green infrastructure in the right of way.
- Maintenance MOU clearly defines roles and responsibilities for ROW installations for DEP/DOT/DPR.

Onsite Maintenance:

• Project specific maintenance agreements are developed with each partnering agency.

Quantifying Local Co-Benefits of Green Infrastructure

Green Infrastructure Co-Benefits Study

This preliminary study analyzed the following benefits:

- Carbon Sequestration
- Urban Heat Island Mitigation
- Reduced Energy Demand
- Improved Ecosystem Services
- Improved Air Quality
- Improved Quality of Life
- Reduced Treatment Needs
- Green Jobs

Using the following analyses:

- NYC pilot monitoring
- Literature review
- Life Cycle Analysis

For the following green infrastructure practices:

- Right of way bioswales
- Green streets
- Large bioretention
- Porous Pavement
- Constructed Wetland
- Green Roof
- Blue Roof

Pilot Monitoring

- Practices evaluated: Right of way bioswales, blue roofs, green roofs, large bioretention, porous pavement, wetland
- Preliminary results confirm that green infrastructure surfaces generally cooler than nearby pavement
 - Vegetation surfaces >10°F cooler than adjacent sidewalk and asphalt
- High temperature of bare soils illustrates importance of vegetation coverage

Literature Review Summary

	Co-Benefit	Findings from Literature Review
	Carbon Sequestration	 Methods to correlate vegetation coverage to CO₂ sequestration rates
AL	Urban heat island	UHI reduction through increases in albedo and vegetation coverage
E	mitigation	 Cooling impacts from urban trees
ЛE		 Modeled city-wide temperature reductions from large scale vegetation
Z		implementation
ō	Reduced energy demand	 Energy savings associated with shading from urban trees
II	in buildings	Energy savings associated with insulating effects of green roofs
Z	Ecosystem services	 Correlation between pollinators, bloom density, and specific vegetation
ш		Correlation between wildlife and presence of green space corridors
		Habitat potential provided by green infrastructure
L	Improved air quality	Air pollutant removal rates for vegetation
CIA		 Economic value of better public health from reduced pollution
SO	Improved quality of life	Non quantitative benefits
C	Reduced stormwater	Reduced stormwater treatment costs at wastewater treatment plants based on GI
Ξ	treatment demand	stormwater retention
<u></u>		Chemical and energy savings at waste water treatment plants
S	Green jobs	 From federal infrastructure investment estimates and engineer estimates
ŭ		

Environmental Protection

Life Cycle Analysis Inputs

20'x5' b	ioswale with tree	Conver	sion Factors:		
			1ft ³ =	28316.8466	cm³
Case Stu	udy: NYC Standard Bioswale		1 in =	1000	mils
Technol	ogy: NYC Standard Bioswale with 2 curb c	uts and 1 tree	1 ft =	12	in
Manufa	cturer:		1ft ³ =	1728	in ³
Installer:			1 ton =	2000	lb
Lifespar	n: Assume 25 years				
INPUTS	ARE FOR 1 bioswale				
			Calculation		
Stage	Description	Data/Assumptions	s	Units	LCA Description
Σ	Excavation of sand for engineered soil	Quantity: 2'x20'x'5', minus gabion in soil (3'x1'x2'), 80% of engineered soil	155	ft3	Sand, at mine
	Transport of sand to site		30	miles	Operation, lorry 3.5- 16t, fleet average/RER U
	Manufacturing of geotextile over stone bed	Quantity: 20'x5' + 2*20'x2' + 2*5'x2'	3.77	kg	Polypropylene
	Transport of geotextile		50	miles	Operation, van <3,5t/RER U
	Production of concrete for pour in place	Quantity: 6 flags (5'x5'x4"), curb (length of bioswale plus 2 flags on either side x 8" wide x 18" deep), header (3 sides of bioswale (30lf) x 6"x15"), aprons (2*46"x18"x8")	6930.8	kg	Concrete, not reinforced

Life Cycle Analysis Environmental Impact Metrics

Impact2002 Impact Units

Carcinogens	(kg C2H3CI)
-------------	-------------

- Non-carcinogens(kg C2H3Cl)
- Respiratory Inorganics (kg PM2.5 eq)
- Ionizing radiation (Bq C-14 eq)
- Ozone layer depletion (kg CFC-11 eq)
- Respiratory organics (kg C2H4 eq)
- Aquatic ecotoxicity (kg TEG water)
- Terrestrial ecotoxicity (kg TEG soil)
- Terrestrial acid/nutri (kg SO2 eq)
- Land occupation (m2org.arable)
- Aquatic acidification (kg SO2 eq)
- Aquatic eutrophication (kg PO4 P-lim)
- Global warming (kg CO2 eq)
- Non-renewable energy (MJ primary)
- Mineral extraction (MJ surplus)

Cost and Benefit Comparison Tool - Beta

V Bioswales Large Bioretention Porou	is Pavement Constructed Wetland Green Roof Blue	Roof To	ol Setup		
Benefits arbon Sequestration rban Heat Island Mitigation educed Energy Demand hproved Ecosystem Services hproved Air Quality hproved Quality of Life creased Property Value educed Treatment Needs reen Jobs	Co-Benefit Details Urban Heat Island Mitigation Description: Thermal properties of common urban surfaces can lead to warmer air temperatures. By using natural surfaces that are cooler and reflect more solar radiation, green infrastructure can help reduce urban heat island impacts. Literature: Higher surface albedos are reported in the literature for vegetation and soil surfaces than materials like asphalt pavement. These higher albedos mean less heat is being captured by these materials. Details NYC Monitoring: Infrared thermometer measurements confirmed that vegetation surfaces were cooler than bare soil and surrounding pavements. Air temperature reductions may not be consistently evident due to other site- specific factors. Details	Calcula Save N 50 2000 25 75 10 Flower Native Plant S Visible GI Acce Comm Unknow	Itor Inputs Iame: ROWB 1 ROWB Footprint (ft ²) Managed Impervious Area (ft ²) Anticipated Lifespan (yrs) Shrub and Herbaceous Cover (%) Tree Canopy Coverage (%) ing Vegetation Vegetation Vegetation Greenspace Corner Park essibility Accessible unity District Unknown wn/General	Calculator (a) Total Geograph Environn 37,400 180 707 4.36 2.14 1.91 1.73 1.00 0.51 86 % 79 % (a) Ed High High Medi- Social	 Per ft² GI Per ft² Man. Per ft² GI Per ft² Man. Per Gal. Per ft² GI Per ft² Man. Per Gal. Per ft² GI Per ft² Man. Per Gal. Low Internetal Gallons Managed (gal/yr) CO2 Produced (lb/yr) Co2 Produced (lb/yr) Carbon Sequestered (lb/yr) Inferred CO2 Reduction (lb/yr) Ozone Removed (lb/yr) PM10 Removed (lb/yr) NO2 Removed (lb/yr) SO2 Removed (lb/yr) SO2 Removed (lb/yr) CO Removed (lb/yr) Urban Heat Island Potential Ecosystem Score Detail Pollinator Support Native Habitat Support Biodiversity Support High Green Corridor Support
ave/Open Mode 🍥 Compare	Mode 🗉 Help Enabled Tutorial				
I for Comparison: 📝 ROWB 1 📝 RO	WB 1 ROWB1 ROWB1 ROWB1 ROWB1	ROWB	81 🔲 ROWB1 🔲 ROWB1 🔲 ROWB1		

Conclusion

Green Infrastructure, an adaptive management framework that promotes flexibility and leverages co-benefits, is a crucial element of New York City's resiliency programs.

PlaNYC: A Stonger, More Resilient New York

nyc.gov/resiliency

2013 Green Infrastructure Annual Report

nyc.gov/greeninfrastructure

NYC Wastewater Resiliency Plan

nyc.gov/dep/climatechange

Speaker Contacts

Beth Sawin, Climate Interactive

esawin@climateinteractive.org | 802-436-1129

To receive notification about Climate Interactive's online learning community: <u>http://www.climateinteractive.org/infrastructure-community/</u>

Alan Cohn, New York City Department of Environmental Protection <u>alanc@dep.nyc.gov</u> | 718-595-4536

Mikelle Adgate, New York City Department of Environmental Protection <u>madgate@dep.nyc.gov</u> | 718-595-5578

Carolina Griggs, New York City Department of Environmental Protection <u>cgriggs@dep.nyc.gov</u> | 718-595-4316

For questions about EPA's Green Infrastructure Webcast Series:

Emily Ashton, ORISE Fellow, U.S. EPA Office of Wastewater Management
<u>Ashton.emily@epa.gov</u> | (202) 564-3324
Eva Birk, ORISE Fellow, U.S. EPA Office of Wastewater Management
<u>Birk.eva@epa.gov</u> | (202) 564-3164